JP2009259749A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009259749A
JP2009259749A JP2008110502A JP2008110502A JP2009259749A JP 2009259749 A JP2009259749 A JP 2009259749A JP 2008110502 A JP2008110502 A JP 2008110502A JP 2008110502 A JP2008110502 A JP 2008110502A JP 2009259749 A JP2009259749 A JP 2009259749A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
positive electrode
lead
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008110502A
Other languages
Japanese (ja)
Inventor
Satoru Hashimoto
哲 橋本
Kazusato Fujikawa
万郷 藤川
Tomohiko Yokoyama
智彦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008110502A priority Critical patent/JP2009259749A/en
Publication of JP2009259749A publication Critical patent/JP2009259749A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable nonaqueous electrolyte secondary battery in which excellent safety is secured at the time of an external short circuit even though a negative electrode lead is used. <P>SOLUTION: The nonaqueous electrolyte secondary battery includes: an electrode group which has a belt-like positive electrode and a belt-like negative electrode rolled up by interposing a belt-like separator between them, wherein the positive electrode has a positive collector and a positive electrode mix layer formed on the positive collector and the negative electrode has a negative collector and a negative electrode mix layer formed on the negative collector; a nonaqueous electrolyte; a negative electrode lead for electrically connecting the negative electrode and a negative electrode terminal; and a positive electrode lead for electrically connecting the positive electrode and a positive electrode terminal. The negative electrode has a negative electrode collector exposed part connected to the negative electrode lead at the outermost periphery of the electrode group. The electrode collector exposed part has an extension part further extending in the lengthwise direction from a connecting part with the negative electrode lead. The negative electrode lead directly contacts with the extension part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、外部短絡時の安全性に優れた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery excellent in safety at the time of an external short circuit.

電子機器のポータブル化およびコードレス化が進み、その電源として高エネルギー密度を有する小型・軽量の非水電解液二次電池が用いられている。そして、近年、電子機器の高機能化および高電力化に伴い、非水電解液二次電池のさらなる高エネルギー密度化が要望され、非水電解液二次電池の中でも、リチウムイオン二次電池に対する期待が高まっている。   As electronic devices become more portable and cordless, a small and lightweight non-aqueous electrolyte secondary battery having a high energy density is used as a power source. In recent years, with higher functionality and higher power of electronic devices, there has been a demand for higher energy density of non-aqueous electrolyte secondary batteries. Among non-aqueous electrolyte secondary batteries, lithium ion secondary batteries Expectations are rising.

非水電解液二次電池では、外部短絡または過充電時の大幅な温度上昇を防ぐため、例えば、非水電解液二次電池の複数個を含む電池パックに、PTC素子やサーモスタッドなどの過電流や温度上昇に対する保護機構が設けられている。しかしながら、種々の電池の異常使用を想定する場合、上記保護機能を介さない外部短絡が起こり、電池が熱暴走する可能性がある。   In a non-aqueous electrolyte secondary battery, in order to prevent a significant temperature increase at the time of an external short circuit or overcharge, for example, a battery pack including a plurality of non-aqueous electrolyte secondary batteries has an overcurrent such as a PTC element or a thermo stud. And a protection mechanism against temperature rise. However, when assuming abnormal use of various batteries, an external short circuit that does not go through the protection function may occur, and the battery may run out of heat.

以下、電池の熱暴走に関して説明する。PTCやサーモスタッドなどの過電流や温度上昇に対する保護機構を介せず外部短絡する場合、電池内に過剰な電流が流れ、大きなジュール熱が発生し、電池が発熱する。短絡電流が流れる領域のなかでも特に高抵抗部の発熱量が大きくなる。一般的な円筒形電池の場合、電池内で負極と電池ケースとを接続するニッケル製の負極リードは抵抗が高く、発熱量が最も大きい。この負極リードの発熱によりセパレータが収縮・溶融して内部短絡を生じ、この内部短絡により電池が熱暴走する。また、負極リードの発熱温度が活物質の耐熱温度を超えることにより電池が熱暴走する。   Hereinafter, the thermal runaway of the battery will be described. When an external short circuit is made without a protection mechanism against overcurrent or temperature rise such as PTC or thermostud, excessive current flows in the battery, large Joule heat is generated, and the battery generates heat. Of the region where the short-circuit current flows, the amount of heat generated by the high resistance portion is particularly large. In the case of a general cylindrical battery, the nickel negative electrode lead connecting the negative electrode and the battery case in the battery has a high resistance and the largest amount of heat generation. The separator shrinks and melts due to the heat generated by the negative electrode lead to cause an internal short circuit, and the battery is thermally runaway due to the internal short circuit. Further, the battery runs out of heat when the heat generation temperature of the negative electrode lead exceeds the heat resistance temperature of the active material.

上記負極リードの発熱による熱暴走を防ぐ方法として、例えば、特許文献1では、正極と負極とを、セパレータを介して捲回した電極群を備えた非水電解液二次電池において、負極リードを用いずに、電極群最外周(負極の巻き終わり側)に負極集電体である金属箔が露出した部分(以下、金属箔露出部とする。)を設け、この金属箔露出部を電池ケースの内面に直接接触させ、電池の放熱性を向上させることが提案されている。
特開平6−150973号公報
As a method for preventing thermal runaway due to heat generation of the negative electrode lead, for example, in Patent Document 1, in a non-aqueous electrolyte secondary battery including an electrode group in which a positive electrode and a negative electrode are wound through a separator, Without using, a portion where the metal foil as the negative electrode current collector is exposed (hereinafter referred to as a metal foil exposed portion) is provided on the outermost periphery of the electrode group (on the winding end side of the negative electrode), and this metal foil exposed portion is used as the battery case. It has been proposed to improve the heat dissipation of the battery by directly contacting the inner surface of the battery.
JP-A-6-150973

しかし、特許文献1記載の方法では、電極群径が電池ケースの内径より小さいと、金属箔露出部と電池ケース内面との接触状態が不均一となり、安全性にばらつきが生じやすい。金属箔露出部と電池ケース内面との接触状態を均一にするためには、電極群径を電池ケースの内径とほぼ同一にする必要がある。しかし、この場合、電極群の挿入圧が増大するため、電極群挿入時において、強度が小さい金属箔露出部のずれや変形が生じ、工程不良を起こし易くなる。また、電池を作製できたとしても、内部短絡を生じる可能性がある。このように、負極リードを用いずに、金属箔露出部と電池内面との間において良好な接触状態を得ることは、製造工程上極めて困難である。   However, in the method described in Patent Document 1, if the electrode group diameter is smaller than the inner diameter of the battery case, the contact state between the exposed metal foil portion and the inner surface of the battery case becomes uneven, and the safety tends to vary. In order to make the contact state between the exposed metal foil portion and the inner surface of the battery case uniform, the electrode group diameter needs to be substantially the same as the inner diameter of the battery case. However, in this case, since the insertion pressure of the electrode group is increased, a shift or deformation of the exposed portion of the metal foil having a low strength occurs when the electrode group is inserted, which easily causes a process failure. Even if the battery can be manufactured, an internal short circuit may occur. Thus, it is extremely difficult in the manufacturing process to obtain a good contact state between the exposed metal foil portion and the battery inner surface without using the negative electrode lead.

そこで、本発明は、上記従来の問題を解決するため、負極リードを用いた場合でも、外部短絡時の安全性に優れた高信頼性の非水電解液二次電池を提供することを目的とする。   Therefore, the present invention aims to provide a highly reliable non-aqueous electrolyte secondary battery that is excellent in safety at the time of external short-circuiting, even when a negative electrode lead is used, in order to solve the above conventional problems. To do.

本発明の非水電解液二次電池は、正極集電体および前記正極集電体上に形成された正極合剤層を有する帯状の正極と、負極集電体および前記負極集電体上に形成された負極合剤層を有する帯状の負極とを、帯状のセパレータを介在させて捲回した電極群、非水電解液、前記負極と負極端子部とを電気的に接続する負極リード、ならびに前記正極と正極端子部とを電気的に接続する正極リードを具備し、
前記負極は、前記電極群の最外周部において、前記負極リードと接続する負極集電体露出部を有し、
前記負極集電体露出部は、さらに前記負極リードとの接続部分から長手方向に延びる延長部を有し、
前記負極リードは、前記延長部と直接接触していることを特徴とする。
The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode current collector and a strip-shaped positive electrode having a positive electrode mixture layer formed on the positive electrode current collector, a negative electrode current collector, and the negative electrode current collector. An electrode group obtained by winding a band-shaped negative electrode having a formed negative electrode mixture layer with a band-shaped separator interposed therebetween, a non-aqueous electrolyte, a negative electrode lead electrically connecting the negative electrode and the negative electrode terminal portion, and Comprising a positive lead for electrically connecting the positive electrode and the positive terminal portion;
The negative electrode has a negative electrode current collector exposed portion connected to the negative electrode lead in the outermost peripheral portion of the electrode group,
The negative electrode current collector exposed portion further has an extension portion extending in a longitudinal direction from a connection portion with the negative electrode lead,
The negative electrode lead is in direct contact with the extension.

前記延長部は、前記電極群の捲回方向と同じ方向に捲回され、
前記負極リードは、前記負極集電体露出部の外周面上に接続され、前記延長部で直接覆われているのが好ましい。
The extension is wound in the same direction as the winding direction of the electrode group,
The negative electrode lead is preferably connected to the outer peripheral surface of the negative electrode current collector exposed portion and directly covered with the extension portion.

前記延長部は、前記電極群の捲回方向と反対方向に折り曲げられて形成された折り返し部を有し、
前記負極リードは、前記負極集電体露出部の外周面上に接続され、前記折り返し部で直接覆われているのが好ましい。
The extension has a folded portion formed by being bent in a direction opposite to the winding direction of the electrode group,
The negative electrode lead is preferably connected to the outer peripheral surface of the negative electrode current collector exposed portion and directly covered with the folded portion.

本発明によれば、外部短絡時における高抵抗部である負極リードでの発熱量の増大による電池温度の大幅な上昇を抑制することができ、外部短絡時の安全性に優れた高信頼性の非水電解液二次電池を提供することができる。   According to the present invention, it is possible to suppress a significant increase in battery temperature due to an increase in the amount of heat generated at the negative electrode lead, which is a high resistance portion at the time of an external short circuit, and a highly reliable and excellent safety at the time of an external short circuit. A non-aqueous electrolyte secondary battery can be provided.

本発明は、正極集電体および前記正極集電体上に形成された正極合剤層を有する帯状の正極と、負極集電体および前記負極集電体上に形成された負極合剤層を有する帯状の負極とを、帯状のセパレータを介在させて捲回した電極群、非水電解液、前記負極と負極端子部とを電気的に接続する負極リード、ならびに前記正極と正極端子部とを電気的に接続する正極リードを具備する非水電解液二次電池に関する。そして、前記負極は、前記電極群の最外周部において、前記負極リードと接続する負極集電体露出部を有し、前記負極集電体露出部は、さらに前記負極リードとの接続部分から長手方向に延びる延長部を有し、前記負極リードは、前記延長部と直接接触している点に特徴を有する。上記負極リードは、負極集電体露出部の接続部および延長部で囲まれるように配される。   The present invention provides a strip-shaped positive electrode having a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector, and a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector. An electrode group obtained by winding a strip-shaped negative electrode with a strip-shaped separator interposed therebetween, a non-aqueous electrolyte, a negative electrode lead for electrically connecting the negative electrode and the negative electrode terminal portion, and the positive electrode and the positive electrode terminal portion. The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode lead that is electrically connected. The negative electrode has a negative electrode current collector exposed portion connected to the negative electrode lead at an outermost peripheral portion of the electrode group, and the negative electrode current collector exposed portion further extends from a connection portion with the negative electrode lead. The negative electrode lead is characterized in that the negative electrode lead is in direct contact with the extension. The negative electrode lead is disposed so as to be surrounded by a connection portion and an extension portion of the negative electrode current collector exposed portion.

これにより、PTCやサーモスタッドなどの過電流や温度上昇に対する保護機構を介しない外部短絡を生じた場合でも、電池内の高抵抗部である負極リードにおける局部的な発熱量の増大が抑制され、非水電解液二次電池が熱暴走するのを確実に防ぐことができる。   As a result, even when an external short circuit that does not involve a protection mechanism against an overcurrent or temperature rise such as PTC or thermostud occurs, an increase in local heat generation at the negative electrode lead, which is a high resistance part in the battery, is suppressed. The water electrolyte secondary battery can be reliably prevented from thermal runaway.

実施の形態1
以下、本発明の非水電解液二次電池の一実施形態である円筒形リチウムイオン二次電池の構造を、図1を参照しながら説明する。図1は、本発明の非水電解液二次電池の一実施形態である円筒形リチウムイオン二次電池の概略縦断面図である。
Embodiment 1
Hereinafter, the structure of a cylindrical lithium ion secondary battery which is an embodiment of the non-aqueous electrolyte secondary battery of the present invention will be described with reference to FIG. FIG. 1 is a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery which is an embodiment of the non-aqueous electrolyte secondary battery of the present invention.

有底円筒形の電池ケース1内に、略円柱状の電極群4が収納されている。電極群4は、帯状の正極5と帯状の負極6とを、帯状のセパレータ7を介在させて捲回することにより構成されている。   A substantially cylindrical electrode group 4 is accommodated in a bottomed cylindrical battery case 1. The electrode group 4 is configured by winding a belt-like positive electrode 5 and a belt-like negative electrode 6 with a belt-like separator 7 interposed therebetween.

正極5は、正極集電体および正極集電体上に形成された正極合剤層を有する。正極5の一部には、正極集電体上に正極合剤層を形成せずに、正極集電体が露出する部分(以下、正極集電体露出部とする。)が設けられ、正極集電体露出部に正極リード9の端部の一方が接続されている。正極リード9の端部の他方は、正極端子部を兼ねる電池蓋2の下面に接続されている。   The positive electrode 5 has a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector. A part of the positive electrode 5 is provided with a portion where the positive electrode current collector is exposed without forming a positive electrode mixture layer on the positive electrode current collector (hereinafter, referred to as a positive electrode current collector exposed portion). One end of the positive electrode lead 9 is connected to the current collector exposed portion. The other end of the positive electrode lead 9 is connected to the lower surface of the battery lid 2 that also serves as a positive electrode terminal portion.

電極群4の最内周側、および最外周側(電極群4と電池ケース1との間)にも、セパレータ7が配されている。電極群4の上部と下部には、それぞれ絶縁リング8a、8bが配されている。電池ケース1の開口端部をガスケット3を介して電池蓋2の周縁部にかしめつけつけることにより、電池ケース1の開口部は封口されている。   Separators 7 are also arranged on the innermost and outermost sides of the electrode group 4 (between the electrode group 4 and the battery case 1). Insulating rings 8a and 8b are disposed on the upper and lower portions of the electrode group 4, respectively. The opening portion of the battery case 1 is sealed by caulking the opening end portion of the battery case 1 to the peripheral portion of the battery lid 2 via the gasket 3.

ここで、図1のリチウムイオン二次電池の電極群の要部横断面図(電極群4の捲回方向に垂直な断面図)を図2に示す。図2では、電極群最外周部(負極の巻き終わり側)のみを示し、電極群の最外周部以外の部分は省略する。また、負極の正面図を図3に示す。
図2および3に示すように、負極6は、負極集電体6bおよび負極集電体6bの両面に形成された負極合剤層6aを有する。負極6は、電極群4の最外周部の端部において、負極集電体6bの両面に負極合剤層6aを形成せずに、負極集電体6bが露出する部分(負極集電体露出部11)を有し、負極リード10の端部の一方は負極集電体露出部11における外周面(電池ケースとの対向面)上に接続されている。負極リード10の端部の他方は、負極端子部を兼ねる電池ケース1の内底面に接続されている。
Here, FIG. 2 shows a cross-sectional view of the main part of the electrode group of the lithium ion secondary battery of FIG. 1 (cross-sectional view perpendicular to the winding direction of the electrode group 4). In FIG. 2, only the outermost peripheral part of the electrode group (negative electrode winding end side) is shown, and the parts other than the outermost peripheral part of the electrode group are omitted. A front view of the negative electrode is shown in FIG.
As shown in FIGS. 2 and 3, the negative electrode 6 has a negative electrode mixture layer 6a formed on both surfaces of the negative electrode current collector 6b and the negative electrode current collector 6b. The negative electrode 6 is a portion where the negative electrode current collector 6b is exposed at the end of the outermost peripheral portion of the electrode group 4 without forming the negative electrode mixture layer 6a on both surfaces of the negative electrode current collector 6b (negative electrode current collector exposure). Part 11), and one end of the negative electrode lead 10 is connected to the outer peripheral surface (surface facing the battery case) of the negative electrode current collector exposed part 11. The other end of the negative electrode lead 10 is connected to the inner bottom surface of the battery case 1 that also serves as the negative electrode terminal portion.

負極集電体露出部11は、負極リード10との接続部12、および接続部12からさらに長手方向に延びる延長部13を有する。延長部13は電極群4の捲回方向と同じ方向に捲回され、負極リード10を直接覆う。延長部13は、長手方向において、少なくとも電極群の最外周における一周分に相当する長さを有していればよい。したがって、負極リード10は、接続部12だけでなく延長部13とも接触し、負極リード10の周りが負極集電体6bで囲まれるように負極リード10は負極集電体6bと接している。これにより、外部短絡時に負極リードで発生した熱を効率よく負極集電体へ放散させることができ、負極リードにおける局部的な発熱量の増大を抑制することができる。   The negative electrode current collector exposed portion 11 has a connection portion 12 with the negative electrode lead 10 and an extension portion 13 further extending in the longitudinal direction from the connection portion 12. The extension 13 is wound in the same direction as the winding direction of the electrode group 4 and directly covers the negative electrode lead 10. The extension 13 only needs to have a length corresponding to at least one turn in the outermost periphery of the electrode group in the longitudinal direction. Therefore, the negative electrode lead 10 is in contact with not only the connection portion 12 but also the extension portion 13, and the negative electrode lead 10 is in contact with the negative electrode current collector 6 b so that the negative electrode lead 10 is surrounded by the negative electrode current collector 6 b. Thereby, the heat generated in the negative electrode lead during an external short circuit can be efficiently dissipated to the negative electrode current collector, and the local increase in the amount of heat generated in the negative electrode lead can be suppressed.

正極合剤層は、例えば、正極活物質、結着剤、および導電材を含む。
正極活物質としては、例えば、リチウム含有複合酸化物が用いられる。リチウム含有複合酸化物としては、例えば、コバルト酸リチウム(LiCoO2)、LiCoO2の変性体、ニッケル酸リチウム(LiNiO2)、LiNiO2の変性体、マンガン酸リチウム(LiMnO2)、またはLiMnO2の変性体が挙げられる。各変性体には、アルミニウム(Al)、マグネシウム(Mg)のような元素を含むものが挙げられる。また、各変性体には、コバルト(Co)、ニッケル(Ni)、およびマンガン(Mn)のうち少なくとも2種を含むものが挙げられる。
The positive electrode mixture layer includes, for example, a positive electrode active material, a binder, and a conductive material.
As the positive electrode active material, for example, a lithium-containing composite oxide is used. Examples of the lithium-containing composite oxide include lithium cobaltate (LiCoO 2 ), modified LiCoO 2 , lithium nickelate (LiNiO 2 ), modified LiNiO 2 , lithium manganate (LiMnO 2 ), or LiMnO 2 . Examples include modified products. Examples of each modified body include those containing elements such as aluminum (Al) and magnesium (Mg). Further, examples of each modified body include those containing at least two of cobalt (Co), nickel (Ni), and manganese (Mn).

正極用結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、変性アクリロニトリルゴム粒子(例えば、日本ゼオン(株)製のBM−500B(商品名))、またはPVDFが用いられる。PTFEおよび変性アクリロニトリルゴム粒子は、正極合剤層の原料ペーストに用いられる、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)、または変性アクリロニトリルゴム(例えば、日本ゼオン(株)製のBM−720H(商品名))のような増粘剤と併用するのが好ましい。PVDFは、結着剤および増粘剤の両方の機能を有する。
導電材としては、例えば、アセチレンブラックおよびケッチェンブラックのようなカーボンブラック、または天然黒鉛および人造黒鉛のような黒鉛材料が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the positive electrode binder, for example, polytetrafluoroethylene (PTFE), modified acrylonitrile rubber particles (for example, BM-500B (trade name) manufactured by Nippon Zeon Co., Ltd.), or PVDF is used. PTFE and modified acrylonitrile rubber particles are carboxymethylcellulose (CMC), polyethylene oxide (PEO), or modified acrylonitrile rubber (for example, BM-720H manufactured by Nippon Zeon Co., Ltd.) (product) It is preferable to use in combination with a thickener such as name)). PVDF functions as both a binder and a thickener.
As the conductive material, for example, carbon black such as acetylene black and ketjen black, or graphite material such as natural graphite and artificial graphite is used. These may be used alone or in combination of two or more.

負極リード10としては、例えば、ニッケル、銅、ニッケルおよび銅のクラッド材、または銅のニッケルめっき材が用いられる。電池ケースとの溶接が容易である点で、ニッケルが好ましい。低抵抗である点で、銅が好ましい。
負極合剤層6bは、例えば、負極活物質および結着剤を含む。負極活物質としては、例えば、天然黒鉛、人造黒鉛、シリサイドなどのシリコン含有複合材料、または各種合金材料を用いることができる。負極用結着剤としては、例えば、PVDFまたはその変性体が用いられる。
As the negative electrode lead 10, for example, nickel, copper, a clad material of nickel and copper, or a nickel plating material of copper is used. Nickel is preferred in that it can be easily welded to the battery case. Copper is preferred because of its low resistance.
The negative electrode mixture layer 6b includes, for example, a negative electrode active material and a binder. As the negative electrode active material, for example, natural graphite, artificial graphite, silicon-containing composite materials such as silicide, or various alloy materials can be used. As the negative electrode binder, for example, PVDF or a modified product thereof is used.

セパレータ7は、例えば、ポリプロピレン樹脂またはポリエチレン樹脂の単層、または複数の単層を積み重ねた積層体からなる。電極間の絶縁性維持および電解液保持の観点から、セパレータの厚みは10μm以上が好ましい。電池の設計容量維持の観点から、より好ましくはセパレータの厚みは30μm以下である。   The separator 7 is made of, for example, a single layer of polypropylene resin or polyethylene resin, or a laminate in which a plurality of single layers are stacked. From the viewpoint of maintaining insulation between the electrodes and maintaining the electrolyte solution, the thickness of the separator is preferably 10 μm or more. From the viewpoint of maintaining the design capacity of the battery, the thickness of the separator is more preferably 30 μm or less.

電極群4は非水電解液を含む。非水電解液は、例えば、非水溶媒および前記非水溶媒に溶解するリチウム塩からなる。リチウム塩には、例えば、六フッ化リン酸リチウム(LiPF6)、または四フッ化ホウ酸リチウム(LiBF4)が用いられる。非水溶媒には、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、またはメチルエチルカーボネート(MEC)が用いられ、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、非水電解液に、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、またはそれらの変性体を添加してもよい。 The electrode group 4 includes a non-aqueous electrolyte. The non-aqueous electrolyte is composed of, for example, a non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent. For example, lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ) is used as the lithium salt. As the non-aqueous solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (MEC) is used, and these may be used alone. Alternatively, two or more kinds may be used in combination. Further, vinylene carbonate (VC), cyclohexyl benzene (CHB), or a modified product thereof may be added to the nonaqueous electrolytic solution.

実施の形態2
本発明の非水電解液二次電池の他の実施形態である円筒形リチウムイオン二次電池を、図4を参照しながら説明する。図4は、本発明の非水電解液二次電池の他の実施形態である円筒形リチウムイオン二次電池の電極群の要部横断面図である。図4では、電極群最外周部の一部(負極の巻き終わり側の負極集電体露出部付近)のみを示し、それ以外の部分は省略する。また、図4の電極群を構成する負極の正面図を図5に示す。電極群最外周部以外は、上記実施の形態1の電池と同じ構造である。
Embodiment 2
A cylindrical lithium ion secondary battery which is another embodiment of the non-aqueous electrolyte secondary battery of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view of an essential part of an electrode group of a cylindrical lithium ion secondary battery which is another embodiment of the non-aqueous electrolyte secondary battery of the present invention. FIG. 4 shows only a part of the outermost peripheral part of the electrode group (near the negative electrode current collector exposed part on the winding end side of the negative electrode), and the other parts are omitted. Further, FIG. 5 shows a front view of the negative electrode constituting the electrode group of FIG. Except for the outermost periphery of the electrode group, it has the same structure as the battery of the first embodiment.

図4に示すように、電極群14は、正極(図示せず)と、負極16とを、セパレータ(図示せず)を介して構成されている。負極16は、負極集電体16bおよび負極集電体16bの両面に形成された負極合剤層16aを有する。負極16は、電極群の最外周部の端部において、負極集電体16bの両面に負極合剤層16aを形成せずに、負極集電体16bが露出する部分(負極集電体露出部21)を有し、負極リード10の端部の一方が負極集電体露出部21における外周面(電池ケース1との対向面)上に接続されている。負極リード10の端部の他方は、電池ケース1の内底面に接続されている。   As shown in FIG. 4, the electrode group 14 includes a positive electrode (not shown) and a negative electrode 16 via a separator (not shown). The negative electrode 16 includes a negative electrode current collector 16b and a negative electrode mixture layer 16a formed on both surfaces of the negative electrode current collector 16b. The negative electrode 16 has a portion where the negative electrode current collector 16b is exposed without forming the negative electrode mixture layer 16a on both surfaces of the negative electrode current collector 16b at the end of the outermost peripheral portion of the electrode group (negative electrode current collector exposed portion). 21), and one end of the negative electrode lead 10 is connected to the outer peripheral surface (the surface facing the battery case 1) of the negative electrode current collector exposed portion 21. The other end of the negative electrode lead 10 is connected to the inner bottom surface of the battery case 1.

負極集電体露出部21は、負極リード10との接続部22、および接続部22からさらに長手方向に延びる延長部23を有する。延長部23は、図5の延長部23内の破線に沿って延長部23の一部を電極群(接続部22)の捲回方向と反対方向に折り曲げることにより形成された折り返し部24を有する。この折り返し部24が、負極リード10を直接覆う。延長部23を折り曲げる箇所は、折り返し部24が負極リードを覆うことができる位置であればよい。したがって、負極リード10は、接続部21だけでなく折り返し部24とも接触し、負極リード10の周りが負極集電体16bで囲まれるように負極リード10は負極集電体16bと接している。   The negative electrode current collector exposed portion 21 has a connection portion 22 to the negative electrode lead 10 and an extension portion 23 that further extends in the longitudinal direction from the connection portion 22. The extension part 23 has a folded part 24 formed by bending a part of the extension part 23 in a direction opposite to the winding direction of the electrode group (connection part 22) along the broken line in the extension part 23 of FIG. . The folded portion 24 directly covers the negative electrode lead 10. The portion where the extension portion 23 is bent may be a position where the folded portion 24 can cover the negative electrode lead. Therefore, the negative electrode lead 10 is in contact with not only the connecting portion 21 but also the folded portion 24, and the negative electrode lead 10 is in contact with the negative electrode current collector 16b so that the negative electrode lead 10 is surrounded by the negative electrode current collector 16b.

これにより、外部短絡時に負極リードで発生した熱を効率よく負極集電体へ放散させることができ、負極リードにおける局部的な発熱量の増大を抑制することができる。図3に示す電極群を備える実施の形態2の電池は、図2に示す電極群を備える実施の形態1の電池と比べて、延長部の長手方向の長さが短いため、放熱性は劣るが、コスト低減が可能である。   Thereby, the heat generated in the negative electrode lead during an external short circuit can be efficiently dissipated to the negative electrode current collector, and the local increase in the amount of heat generated in the negative electrode lead can be suppressed. The battery of the second embodiment including the electrode group shown in FIG. 3 is inferior in heat dissipation because the length of the extension portion in the longitudinal direction is shorter than that of the battery of the first embodiment including the electrode group shown in FIG. However, the cost can be reduced.

以下、本発明の実施例を詳細に説明するが、本発明は実施例に限定されない。
《実施例1》
図1と同じ構造の円筒形リチウムイオン二次電池を以下の手順で作製した。
Examples of the present invention will be described in detail below, but the present invention is not limited to the examples.
Example 1
A cylindrical lithium ion secondary battery having the same structure as that shown in FIG. 1 was produced by the following procedure.

(1)正極の作製
以下の手順で正極5を作製した。正極活物質としてのコバルト酸リチウム3kgと、結着剤としての呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むN−メチル−2−ピロリドン(以下、NMPと略す)溶液)1kgと、導電材としてのアセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを得た。この正極合剤ペーストを厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥後に圧延して、正極集電体の両面に正極合剤層を形成し、シート状の正極を得た。このとき、正極集電体および正極合剤層からなる正極の厚みは160μmであった。
(1) Production of positive electrode A positive electrode 5 was produced by the following procedure. 3 kg of lithium cobaltate as a positive electrode active material and “# 1320 (trade name)” (made by Kureha Chemical Co., Ltd.) as a binder (N-methyl-2-pyrrolidone containing 12% by weight of PVDF (hereinafter referred to as NMP) (Omitted) 1 kg of solution), 90 g of acetylene black as a conductive material, and an appropriate amount of NMP were stirred with a double-arm kneader to obtain a positive electrode mixture paste. This positive electrode mixture paste is applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried and rolled to form a positive electrode mixture layer on both surfaces of the positive electrode current collector, thereby obtaining a sheet-like positive electrode. It was. At this time, the thickness of the positive electrode composed of the positive electrode current collector and the positive electrode mixture layer was 160 μm.

その後、正極を、電池ケースに挿入可能な大きさ(幅方向の長さ56mm、および長手方向の長さ610mm)に帯状に裁断した。正極の一部に、正極集電体露出部を設けた。正極リード9(厚み方向の長さ70mm、および幅方向の長さ3.5mm)を正極集電体露出部にスポット溶接した。   Thereafter, the positive electrode was cut into a strip shape into a size that can be inserted into the battery case (length in the width direction is 56 mm and length in the longitudinal direction is 610 mm). A positive electrode current collector exposed portion was provided on a part of the positive electrode. The positive electrode lead 9 (70 mm in the thickness direction and 3.5 mm in the width direction) was spot welded to the exposed portion of the positive electrode current collector.

(2)負極の作製
以下の手順で負極6を作製した。負極活物質としての人造黒鉛3kgと、結着材としての日本ゼオン(株)製の「BM−400B(商品名)」(スチレン−ブタジエン共重合体(ゴム粒子)を40重量%含む水性分散液)75gと、増粘剤としてのカルボキシメチルセルロース30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。この負極合剤ペーストを厚み10μmの銅箔からなる負極集電体の両面に塗布し、乾燥後に圧延して、負極集電体の両面に負極合剤層を形成し、シート状の負極を得た。このとき、負極集電体および負極合剤層からなる負極の厚みは180μmであった。
(2) Production of negative electrode A negative electrode 6 was produced by the following procedure. An aqueous dispersion containing 3 kg of artificial graphite as a negative electrode active material and 40% by weight of “BM-400B (trade name)” (styrene-butadiene copolymer (rubber particles)) manufactured by Nippon Zeon Co., Ltd. as a binder. ) 75 g, 30 g of carboxymethyl cellulose as a thickener, and an appropriate amount of water were stirred with a double-arm kneader to prepare a negative electrode mixture paste. This negative electrode mixture paste is applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode mixture layer on both sides of the negative electrode current collector, thereby obtaining a sheet-like negative electrode. It was. At this time, the thickness of the negative electrode comprising the negative electrode current collector and the negative electrode mixture layer was 180 μm.

その後、負極を、電池ケースに挿入可能な大きさ(幅方向の長さ58mm、および長手方向の長さ640mm)に帯状に裁断した。負極の外周部に、負極集電体露出部11(長手方向の長さ70mm)を設けた。負極集電体露出部11において、接続部12の長手方向の長さ25mm、および延長部13の長手方向の長さ45mmとした。負極リード10(厚み方向の長さ70mm、および幅方向の長さ3mm)を負極集電体露出部11の接続部12にスポット溶接した。   Thereafter, the negative electrode was cut into a strip shape so as to be inserted into the battery case (a length in the width direction of 58 mm and a length in the longitudinal direction of 640 mm). A negative electrode current collector exposed portion 11 (length in the longitudinal direction: 70 mm) was provided on the outer periphery of the negative electrode. In the negative electrode current collector exposed portion 11, the length of the connection portion 12 in the longitudinal direction was 25 mm, and the length of the extension portion 13 in the longitudinal direction was 45 mm. The negative electrode lead 10 (70 mm in the thickness direction and 3 mm in the width direction) was spot welded to the connection portion 12 of the negative electrode current collector exposed portion 11.

(3)非水電解液の調製
ECとMECとを体積比1:3の割合で混合した非水溶媒に、LiPF6を1mol/Lの濃度で溶解して非水電解液を調製した。
(3) Preparation of Nonaqueous Electrolyte Solution A nonaqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a nonaqueous solvent in which EC and MEC were mixed at a volume ratio of 1: 3.

(4)電池の組み立て
上記で得られた正極5と負極6とを、厚み16μmのポリプロピレン製微多孔膜からなるセパレータ7を介して捲回し、電極群4を構成した。このとき、電極群4の外周部において、負極集電体露出部11の延長部13で負極リード10を直接覆った。
この電極群4を有底円筒形の電池ケース1(直径18mm、および高さ65mm)内に挿入した。このとき、電極群4の上部と下部にそれぞれ絶縁リング8a、8bを配した。上記で得られた非水電解液5.5gを電池ケース1内に注入した。負極リード10を電池ケース1の内底面に溶接し、正極リード9を電池蓋2の下面に溶接した。電池ケース1の開口端部をガスケット3を介して電池蓋2の周縁部にかしめつけ、電池ケース1の開口部を封口した。このようにして、18650サイズの円筒形リチウムイオン二次電池(直径18mm、および高さ65mm)を作製した。
(4) Battery Assembly The positive electrode 5 and the negative electrode 6 obtained above were wound through a separator 7 made of a polypropylene microporous film having a thickness of 16 μm to constitute an electrode group 4. At this time, the negative electrode lead 10 was directly covered with the extended portion 13 of the negative electrode current collector exposed portion 11 in the outer peripheral portion of the electrode group 4.
This electrode group 4 was inserted into a bottomed cylindrical battery case 1 (18 mm in diameter and 65 mm in height). At this time, insulating rings 8a and 8b were disposed on the upper and lower portions of the electrode group 4, respectively. 5.5 g of the nonaqueous electrolytic solution obtained above was injected into the battery case 1. The negative electrode lead 10 was welded to the inner bottom surface of the battery case 1, and the positive electrode lead 9 was welded to the lower surface of the battery lid 2. The opening end of the battery case 1 was caulked to the peripheral edge of the battery lid 2 via the gasket 3 to seal the opening of the battery case 1. In this way, a 18650 size cylindrical lithium ion secondary battery (18 mm in diameter and 65 mm in height) was produced.

《実施例2》
実施例1と同じプレート状の負極を電池ケースに挿入可能な大きさ(幅方向の長さ58mm、および長手方向の長さ630mm)に帯状に裁断した。負極の外周部に負極集電体露出部21(長手方向の長さ60mm)を設けた。負極集電体露出部21において、接続部22の長手方向の長さ15mm、および延長部23の長手方向の長さ45mmとした。このようにして、図5と同じ負極16を得た。
負極16と、正極5とを、セパレータ7を介して捲回し、図4と同じ電極群14を構成した。このとき、負極集電体露出部21の接続部22に負極リード10を接続した。延長部23の一部を電極群14の捲回方向と反対方向に折り曲げて折り返し部24(長手方向の長さ30mm)を形成し、負極リード10を折り返し部24で直接覆った。
上記以外、実施例1と同様の方法により電池を作製した。
Example 2
The same plate-like negative electrode as in Example 1 was cut into a strip shape so that it could be inserted into the battery case (length in the width direction was 58 mm and length in the longitudinal direction was 630 mm). A negative electrode current collector exposed portion 21 (length in the longitudinal direction: 60 mm) was provided on the outer periphery of the negative electrode. In the negative electrode current collector exposed portion 21, the length of the connecting portion 22 in the longitudinal direction was set to 15 mm, and the length of the extending portion 23 in the longitudinal direction was set to 45 mm. In this way, the same negative electrode 16 as in FIG. 5 was obtained.
The negative electrode 16 and the positive electrode 5 were wound through the separator 7 to configure the same electrode group 14 as that in FIG. At this time, the negative electrode lead 10 was connected to the connection portion 22 of the negative electrode current collector exposed portion 21. A part of the extension 23 was bent in a direction opposite to the winding direction of the electrode group 14 to form a folded part 24 (length in the longitudinal direction 30 mm), and the negative electrode lead 10 was directly covered with the folded part 24.
A battery was fabricated in the same manner as in Example 1 except for the above.

《比較例1》
負極集電体露出部に延長部を設けない負極を用いた以外、実施例1と同様の方法により電池を作製した。
<< Comparative Example 1 >>
A battery was produced in the same manner as in Example 1 except that a negative electrode without an extension portion was provided on the negative electrode current collector exposed portion.

[評価]
上記で作製した各電池について、以下の方法により、外部短絡試験を実施した。
各電池を、以下に示す(A)〜(E)の順に予備充放電し、45℃環境下で3日間保存した。
(A)定電流充電:400mA(終止電圧4.0V)
(B)定電流放電:400mA(終止電圧3.0V)
(C)定電流充電:400mA(終止電圧4.0V)
(D)定電流放電:400mA(終止電圧3.0V)
(E)定電流充電:400mA(終止電圧4.0V)
[Evaluation]
About each battery produced above, the external short circuit test was implemented with the following method.
Each battery was precharged / discharged in the order of (A) to (E) shown below, and stored in a 45 ° C. environment for 3 days.
(A) Constant current charging: 400 mA (end voltage 4.0 V)
(B) Constant current discharge: 400 mA (end voltage 3.0 V)
(C) Constant current charging: 400 mA (end voltage 4.0 V)
(D) Constant current discharge: 400 mA (end voltage 3.0 V)
(E) Constant current charging: 400 mA (end voltage 4.0 V)

その後、25℃環境下で、以下(F)および(G)の順に充放電した。
(F)予備放電
定電流放電:400mA(終止電圧3.0V)
(G)第1パターン
定電流充電:1400mA(終止電圧4.2V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:400mA(終止電圧3.0V)
Then, it charged / discharged in order of the following (F) and (G) in 25 degreeC environment.
(F) Predischarge
Constant current discharge: 400 mA (end voltage 3.0 V)
(G) First pattern
Constant current charge: 1400mA (end voltage 4.2V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 400 mA (end voltage 3.0 V)

上記充放電した後、さらに以下の充電を行った。
定電流充電:1400mA(終止電圧4.25V)
定電圧充電:4.25V(終止電流100mA)
60℃環境下にて、上記充電した電池の正極端子および負極端子にそれぞれニッケルリード板(長さ30mm、幅4mm、厚み0.1mm)を抵抗溶接し、両端子に接続されたニッケルリード板を外部抵抗に接続し、電池を外部短絡させた。
このとき、熱電対を用いて、電池ケースにおける負極リードが対向する部分の表面温度(電池表面温度)を測定し、外部短絡時の最高電池温度を求めた。
なお、電池の安全性の判断基準として、最高電池温度が120℃より低い場合をOKとし、120℃以上の場合をNGとした。試験結果を表1に示す。
After the above charging / discharging, the following charging was further performed.
Constant current charging: 1400mA (end voltage 4.25V)
Constant voltage charge: 4.25V (end current 100mA)
Under a 60 ° C. environment, a nickel lead plate (length 30 mm, width 4 mm, thickness 0.1 mm) was resistance-welded to the positive electrode terminal and the negative electrode terminal of the charged battery, respectively, and the nickel lead plate connected to both terminals was The battery was short-circuited externally by connecting to an external resistor.
At this time, using the thermocouple, the surface temperature (battery surface temperature) of the part where the negative electrode lead in the battery case opposes was measured, and the maximum battery temperature at the time of external short circuit was obtained.
In addition, as a criterion for judging the safety of the battery, the case where the maximum battery temperature was lower than 120 ° C. was determined as OK, and the case where the maximum battery temperature was 120 ° C. or higher was determined as NG. The test results are shown in Table 1.

Figure 2009259749
Figure 2009259749

負極集電体露出部に延長部を設けない負極を用いた比較例1の電池では、最高電池温度が150℃以上であるのに対して、負極集電体露出部に延長部を設けた負極を用いた実施例1および2の電池では、最高電池温度が120℃以下であった。このように、実施例1および2の電池では、比較例1の電池に比べて、外部短絡時の発熱による電池温度の上昇が大幅に抑制された。   In the battery of Comparative Example 1 using the negative electrode in which the negative electrode current collector exposed portion is not provided with the extension portion, the maximum battery temperature is 150 ° C. or higher, whereas the negative electrode current collector exposed portion is provided with the extension portion. In the batteries of Examples 1 and 2 using the above, the maximum battery temperature was 120 ° C. or lower. Thus, in the batteries of Examples 1 and 2, as compared with the battery of Comparative Example 1, an increase in battery temperature due to heat generation during an external short circuit was significantly suppressed.

外部短絡試験後の電池を分解して調べたところ、全ての電池において、負極リード部付近でセパレータの溶融が確認された。実施例1および2の電池では、セパレータの溶融がごくわずかであったので対し、比較例1の電池では、セパレータの溶融範囲が広く、内部短絡する可能性のある程度のセパレータの溶融が確かめられた。このことから、実施例1および2の電池では、比較例1の電池と比べて、負極リードでの発熱が大幅に抑制されたことがわかった。   When the batteries after the external short-circuit test were disassembled and examined, melting of the separator was confirmed in the vicinity of the negative electrode lead portion in all the batteries. In the batteries of Examples 1 and 2, the melting of the separator was negligible, whereas in the battery of Comparative Example 1, the melting range of the separator was wide, and it was confirmed that the separator was melted to some extent that could cause an internal short circuit. . From this, it was found that in the batteries of Examples 1 and 2, heat generation at the negative electrode lead was significantly suppressed as compared with the battery of Comparative Example 1.

上記実施例では、円筒形リチウムイオン二次電池の場合を示したが、角形リチウムイオン電池でも同様の効果が確認された。本発明の非水電解液二次電池は、正極および負極を、セパレータを介して捲回した電極群を備えていればよく、本発明の非水電解液二次電池の形状はこれに限定されない。   In the above examples, the case of a cylindrical lithium ion secondary battery was shown, but the same effect was confirmed even in a prismatic lithium ion battery. The non-aqueous electrolyte secondary battery of the present invention only needs to include an electrode group in which a positive electrode and a negative electrode are wound through a separator, and the shape of the non-aqueous electrolyte secondary battery of the present invention is not limited thereto. .

本発明の非水電解液二次電池は安全性に優れ、情報機器および携帯機器などの電子機器の電源として好適に用いられる。   The non-aqueous electrolyte secondary battery of the present invention is excellent in safety and is suitably used as a power source for electronic equipment such as information equipment and portable equipment.

本発明の非水電解液二次電池の一実施形態である円筒形リチウムイオン二次電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylindrical lithium ion secondary battery which is one Embodiment of the nonaqueous electrolyte secondary battery of this invention. 図1の円筒形リチウムイオン二次電池の電極群の要部横断面図である。It is a principal part cross-sectional view of the electrode group of the cylindrical lithium ion secondary battery of FIG. 図2の電極群を構成する負極の正面図である。It is a front view of the negative electrode which comprises the electrode group of FIG. 本発明の非水電解液二次電池の他の実施形態である円筒形リチウムイオン二次電池の電極群の要部横断面図である。It is a principal part cross-sectional view of the electrode group of the cylindrical lithium ion secondary battery which is other embodiment of the nonaqueous electrolyte secondary battery of this invention. 図4の電極群を構成する負極の正面図である。It is a front view of the negative electrode which comprises the electrode group of FIG.

符号の説明Explanation of symbols

1 電池ケース
2 電池蓋
3 ガスケット
4、14 電極群
5 正極
6、16 負極
6a、16a 負極合剤層
6b、16b 負極集電体
7 セパレータ
8a、8b 絶縁リング
9 正極リード
10 負極リード
11、21 負極集電体露出部
12、22 接続部
13、23 延長部
24 折り返し部
DESCRIPTION OF SYMBOLS 1 Battery case 2 Battery cover 3 Gasket 4, 14 Electrode group 5 Positive electrode 6, 16 Negative electrode 6a, 16a Negative electrode mixture layer 6b, 16b Negative electrode collector 7 Separator 8a, 8b Insulation ring 9 Positive electrode lead 10 Negative electrode lead 11, 21 Negative electrode Current collector exposed part 12, 22 Connection part 13, 23 Extension part 24 Folding part

Claims (3)

正極集電体および前記正極集電体上に形成された正極合剤層を有する帯状の正極と、負極集電体および前記負極集電体上に形成された負極合剤層を有する帯状の負極とを、帯状のセパレータを介在させて捲回した電極群、
非水電解液、
前記負極と負極端子部とを電気的に接続する負極リード、ならびに
前記正極と正極端子部とを電気的に接続する正極リードを具備し、
前記負極は、前記電極群の最外周部において、前記負極リードと接続する負極集電体露出部を有し、
前記負極集電体露出部は、さらに前記負極リードとの接続部分から長手方向に延びる延長部を有し、
前記負極リードは、前記延長部と直接接触していることを特徴とする非水電解液二次電池。
A strip-shaped positive electrode having a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector, and a strip-shaped negative electrode having a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector A group of electrodes wound with a band-shaped separator interposed therebetween,
Non-aqueous electrolyte,
A negative electrode lead that electrically connects the negative electrode and the negative electrode terminal portion; and a positive electrode lead that electrically connects the positive electrode and the positive electrode terminal portion;
The negative electrode has a negative electrode current collector exposed portion connected to the negative electrode lead in the outermost peripheral portion of the electrode group,
The negative electrode current collector exposed portion further has an extension portion extending in a longitudinal direction from a connection portion with the negative electrode lead,
The non-aqueous electrolyte secondary battery, wherein the negative electrode lead is in direct contact with the extension.
前記延長部は、前記電極群の捲回方向と同じ方向に捲回され、
前記負極リードは、前記負極集電体露出部の外周面上に接続され、前記延長部で直接覆われている請求項1記載の非水電解液二次電池。
The extension is wound in the same direction as the winding direction of the electrode group,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode lead is connected on an outer peripheral surface of the negative electrode current collector exposed portion and is directly covered with the extension portion.
前記延長部は、前記電極群の捲回方向と反対方向に折り曲げられて形成された折り返し部を有し、
前記負極リードは、前記負極集電体露出部の外周面上に接続され、前記折り返し部で直接覆われている請求項1記載の非水電解液二次電池。
The extension has a folded portion formed by being bent in a direction opposite to the winding direction of the electrode group,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode lead is connected on an outer peripheral surface of the negative electrode current collector exposed portion and is directly covered with the folded portion.
JP2008110502A 2008-04-21 2008-04-21 Nonaqueous electrolyte secondary battery Pending JP2009259749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110502A JP2009259749A (en) 2008-04-21 2008-04-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110502A JP2009259749A (en) 2008-04-21 2008-04-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2009259749A true JP2009259749A (en) 2009-11-05

Family

ID=41386900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110502A Pending JP2009259749A (en) 2008-04-21 2008-04-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2009259749A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212086A (en) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015153691A (en) * 2014-02-18 2015-08-24 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
WO2015129154A1 (en) * 2014-02-27 2015-09-03 三洋電機株式会社 Battery and production method for battery
JP2016162617A (en) * 2015-03-03 2016-09-05 トヨタ自動車株式会社 Power storage manufacturing method and power storage device
JP2017147177A (en) * 2016-02-19 2017-08-24 積水化学工業株式会社 Secondary battery and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212086A (en) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015153691A (en) * 2014-02-18 2015-08-24 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
WO2015129154A1 (en) * 2014-02-27 2015-09-03 三洋電機株式会社 Battery and production method for battery
CN106030859A (en) * 2014-02-27 2016-10-12 三洋电机株式会社 Battery and production method for battery
US10319979B2 (en) 2014-02-27 2019-06-11 Sanyo Electric Co., Ltd. Battery and method of manufacturing battery
JP2016162617A (en) * 2015-03-03 2016-09-05 トヨタ自動車株式会社 Power storage manufacturing method and power storage device
JP2017147177A (en) * 2016-02-19 2017-08-24 積水化学工業株式会社 Secondary battery and method of manufacturing the same

Similar Documents

Publication Publication Date Title
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
US7745042B2 (en) Lithium ion secondary battery
WO2009150791A1 (en) Battery
JP2983205B1 (en) Non-aqueous secondary battery
US20110159364A1 (en) Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
JP2007103356A (en) Non-aqueous secondary battery
JP6661485B2 (en) Non-aqueous electrolyte secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP2000058115A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4382557B2 (en) Non-aqueous secondary battery
KR101871231B1 (en) Lithium ion secondary battery
US20060172180A1 (en) Non-aqueous electrolyte secondary battery
JP2013097903A (en) Nonaqueous electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP2008251187A (en) Sealed battery
JP4984359B2 (en) Sealed battery and its sealing plate
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2014035807A (en) Battery pack
JP2008021431A (en) Non-aqueous electrolyte secondary battery
JP2003243036A (en) Cylindrical lithium secondary battery
JP2009302019A (en) Sealed battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery