JP2009302019A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2009302019A
JP2009302019A JP2008158385A JP2008158385A JP2009302019A JP 2009302019 A JP2009302019 A JP 2009302019A JP 2008158385 A JP2008158385 A JP 2008158385A JP 2008158385 A JP2008158385 A JP 2008158385A JP 2009302019 A JP2009302019 A JP 2009302019A
Authority
JP
Japan
Prior art keywords
battery
battery case
sealing plate
negative electrode
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008158385A
Other languages
Japanese (ja)
Inventor
Seiya Nakai
晴也 中井
Naoto Kunoike
直人 九之池
Kyosuke Miyata
恭介 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008158385A priority Critical patent/JP2009302019A/en
Publication of JP2009302019A publication Critical patent/JP2009302019A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable sealed battery capable of restraining leak of fluid caused by corrosion of a member (valve) in the battery by infiltration of the liquid from outside toward inside the battery. <P>SOLUTION: The sealed battery comprises a power generation element, a battery case for housing the power generation element, and a sealing plate having a projected section projecting upward in the center as an electrode terminal part and sealing an opening of the battery case. The projected section has an exhaust port for discharging a gas in the battery to the outside at its side, an external package member for covering the exhaust port by fitting to the projected section is mounted on the sealing plate, and the external package member is covered by a heat-shrinking resin film together with the external surface of the battery case. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、密閉型電池に関し、特に密閉型電池の耐漏液性の改善に関する。   The present invention relates to a sealed battery, and more particularly to improvement of leakage resistance of the sealed battery.

近年、AV機器またはパソコンなどの電子機器のポータブル化およびコードレス化が急速に進んでおり、電子機器の駆動用電源として、アルカリ蓄電池、およびリチウム二次電池に代表される非水電解液二次電池のような高容量の密閉型二次電池が広く用いられている。そして、電子機器の高性能化に伴い、高エネルギー密度を有し、負荷特性に優れた非水電解液二次電池に対する性能向上への期待が高まっている。   2. Description of the Related Art In recent years, electronic devices such as AV devices and personal computers have been rapidly becoming portable and cordless. As power sources for driving electronic devices, alkaline storage batteries and nonaqueous electrolyte secondary batteries represented by lithium secondary batteries are used. Such high-capacity sealed secondary batteries are widely used. As electronic devices become more sophisticated, there is an increasing expectation for improving the performance of non-aqueous electrolyte secondary batteries having high energy density and excellent load characteristics.

非水電解液二次電池では、非水溶媒を含む非水電解液が用いられ、電解液が電池外部に漏出すると、電子機器が腐食する場合がある。この電池の漏液を防ぐために、封口部材で確実に電池ケースが密閉されている。
非水電解液二次電池では、例えば、電池ケースの封口部材には、封口板に防爆機構を付加した電池複合蓋が用いられる。電池複合蓋は、例えば、電極端子部として中央に凸部を有する封口板と、金属箔からなる弁体と、弁体の一部と接する導電板と、を重ね合わせた複合部材で構成される。電池ケースの開口端部を、ガスケットを介して、電池複合蓋の周縁部にかしめつけることにより、電池ケースは密閉される。弁体には、通常、良好な電子伝導性を有し、電池内圧の上昇時に変形可能なアルミニウム箔が用いられている。
In a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte containing a non-aqueous solvent is used, and if the electrolyte leaks outside the battery, the electronic equipment may be corroded. In order to prevent the leakage of the battery, the battery case is securely sealed by the sealing member.
In a nonaqueous electrolyte secondary battery, for example, a battery composite lid in which an explosion-proof mechanism is added to a sealing plate is used as a sealing member of a battery case. The battery composite lid is composed of, for example, a composite member in which a sealing plate having a convex portion at the center as an electrode terminal portion, a valve body made of metal foil, and a conductive plate in contact with a part of the valve body are overlapped. . The battery case is sealed by caulking the open end of the battery case to the peripheral edge of the battery composite lid via a gasket. The valve body is usually made of an aluminum foil that has good electronic conductivity and can be deformed when the battery internal pressure increases.

防爆機構は、非水電解液二次電池では、過充電時または短絡時に、電池内部でガスが多く発生し、電池内圧が大幅に上昇し、電池が破損するのを防止するために設けられている。
以下、防爆機構の動作について説明する。電池内圧が所定値に達すると、その内圧を受けて弁体が変形し、導電板と反対方向に押し上げられる。この変形に伴い、弁体が導電板の接触部と離れる。このようにして、過充電や短絡時の発生の初期段階で電流を遮断する。上記動作により、過充電時や短絡時の電池温度および電池内圧の大幅な上昇が抑制される。
Explosion-proof mechanisms are provided in non-aqueous electrolyte secondary batteries to prevent the battery from generating a large amount of gas when overcharged or short-circuited, resulting in a significant increase in battery internal pressure and damage to the battery. Yes.
Hereinafter, the operation of the explosion-proof mechanism will be described. When the battery internal pressure reaches a predetermined value, the valve body is deformed by the internal pressure and is pushed up in the direction opposite to the conductive plate. With this deformation, the valve body is separated from the contact portion of the conductive plate. In this way, the current is interrupted at the initial stage of occurrence during overcharge or short circuit. By the above operation, a significant increase in battery temperature and battery internal pressure during overcharge or short circuit is suppressed.

また、封口板の凸部には、通常、さらに電池内圧が上昇し、弁体が破断した際、電池内部で発生したガスを電池外部に放出するための排気口が設けられている。
しかし、電子機器が、携帯機器、PC、AV機器、および電動工具のような持ち運び可能な機器である場合、機器を使用する環境によっては、コンクリート水やペットからでるアンモニウム液等のアルカリ溶液が電池に付着する可能性がある。しかし、弁体に用いられるアルミニウム箔はアルカリ性に弱いため、アルカリ溶液が弁体に付着すると、腐食により弁体に穴があき、その穴を介して漏液する可能性がある。また、充電の制御を行う保護回路を備えた電池パックの場合、電解液が保護回路に付着すると、漏電し、発熱する可能性がある。
Further, the convex portion of the sealing plate is usually provided with an exhaust port for releasing the gas generated inside the battery to the outside of the battery when the internal pressure of the battery further increases and the valve body is broken.
However, when the electronic device is a portable device such as a portable device, a PC, an AV device, and a power tool, depending on the environment in which the device is used, an alkaline solution such as concrete water or ammonium solution from a pet is a battery. There is a possibility to adhere to. However, since the aluminum foil used for the valve body is weak in alkalinity, if an alkaline solution adheres to the valve body, there is a possibility that the valve body will have a hole due to corrosion and leak through the hole. In addition, in the case of a battery pack provided with a protection circuit that controls charging, if the electrolytic solution adheres to the protection circuit, electric leakage may occur and heat may be generated.

ところで、特許文献1では、発電要素と電池複合蓋との間にPTFE(ポリテトラフルオロエチレン)膜を配することが提案されている。この方法に基づいて、例えば、上記弁体の腐食による漏液を防ぐ手段として、弁体をPTFE膜で覆うことが考えられる。
特開平10−27596号公報
By the way, Patent Document 1 proposes that a PTFE (polytetrafluoroethylene) film is disposed between the power generation element and the battery composite lid. Based on this method, for example, as a means for preventing leakage due to corrosion of the valve body, it is conceivable to cover the valve body with a PTFE membrane.
JP-A-10-27596

しかしながら、弁体を封口板に溶接した後では、弁体の上面(排気口側の面)は封口板の凸部内部で露出するため、弁体の上面をPTFE膜で覆うことは難しい。また、予め弁体をPTFE膜で覆う場合、弁体を封口板に溶接することが難しい。
そこで、本発明は、上記従来の問題を解決するため、外部から電池内部への液体の侵入による電池内の部材(弁体)の腐食による漏液が抑制された高信頼性の密閉型電池を提供することを目的とする。
However, after the valve body is welded to the sealing plate, the upper surface (exhaust port side surface) of the valve body is exposed inside the convex portion of the sealing plate, so it is difficult to cover the upper surface of the valve body with the PTFE film. Further, when the valve body is previously covered with a PTFE membrane, it is difficult to weld the valve body to the sealing plate.
Therefore, in order to solve the above-described conventional problems, the present invention provides a highly reliable sealed battery in which leakage due to corrosion of a member (valve element) in the battery due to penetration of liquid from the outside into the battery is suppressed. The purpose is to provide.

本発明は、発電要素と、前記発電要素を収納する電池ケースと、電極端子部として、上方に突出する凸部を中央に有し、前記電池ケースの開口部を封口する封口板と、を具備する密閉型電池であって、
前記凸部は、側部に前記電池内のガスを外部に放出するための排気口を有し、
前記封口板上に、前記凸部と嵌合して前記排気口を覆う外装部材が配され、
前記外装部材が、前記電池ケース外面とともに熱収縮性樹脂フィルムで覆われていることを特徴とする。
The present invention includes a power generation element, a battery case that houses the power generation element, and a sealing plate that has an upward protruding protrusion at the center as an electrode terminal portion and seals the opening of the battery case. A sealed battery,
The convex part has an exhaust port for releasing the gas in the battery to the outside on the side part,
On the sealing plate, an exterior member that fits the convex portion and covers the exhaust port is disposed,
The exterior member is covered with a heat-shrinkable resin film together with the outer surface of the battery case.

前記外装部材は、エチレンプロピレンジエンゴム、フッ素ゴム、またはアクリル樹脂からなるのが好ましい。   The exterior member is preferably made of ethylene propylene diene rubber, fluoro rubber, or acrylic resin.

本発明によれば、外部から電池内部への液体の侵入による電池内の部材(弁体)の腐食による漏液が抑制され、高信頼性の密閉型電池を提供することができる。   According to the present invention, leakage due to corrosion of a member (valve element) in the battery due to intrusion of liquid from outside into the battery is suppressed, and a highly reliable sealed battery can be provided.

本発明は、発電要素と、発電要素を収納する電池ケースと、電極端子部として上方に突出する凸部を中央に有し、前記電池ケースの開口部を封口する封口板と、を具備する密閉型電池に関する。そして、前記凸部は、側部に前記電池内のガスを外部に放出するための排気口を有し、前記封口板上に、前記凸部と嵌合する開口部を有し、前記排気口を覆う外装部材が配され、前記外装部材が、前記電池ケース外面とともに熱収縮性樹脂フィルムで覆われている点に特徴を有する。   The present invention includes a power generation element, a battery case that houses the power generation element, and a sealing plate that has a projecting portion protruding upward as an electrode terminal portion at the center and seals the opening of the battery case. Type battery. And the said convex part has the exhaust port for discharge | releasing the gas in the said battery to the exterior in a side part, has an opening part fitted to the said convex part on the said sealing board, The said exhaust port The exterior member which covers is arranged, The said exterior member is characterized by the point covered with the heat-shrinkable resin film with the said battery case outer surface.

これにより、電池使用時における外部から電池内部への液体の侵入を防ぐことができ、電池内の部材(弁体)の腐食による漏液(電解液の電池外部への漏出)が抑制されるため、安全性に優れた高信頼性の密閉型電池が得られる。長期で保存する場合にも、外部から電池内部への液体の侵入を確実に防ぐことができ、長期保存に対する信頼性も大幅に向上する。
上記外装部材は、封口板上において、外装部材の開口部が凸部と嵌合し、かつ電池ケースの外面とともに熱収縮性樹脂フィルムで覆われている。このため、外装部材を安定した状態で封口板上に固定することができる。
As a result, liquid can be prevented from entering the battery from the outside when the battery is used, and leakage due to corrosion of the member (valve element) in the battery (leakage of electrolyte to the outside of the battery) is suppressed. Thus, a highly reliable sealed battery excellent in safety can be obtained. Even in the case of long-term storage, liquid can be reliably prevented from entering the battery from the outside, and the reliability for long-term storage is greatly improved.
On the sealing plate, the exterior member is covered with a heat-shrinkable resin film together with the outer surface of the battery case, with the opening of the exterior member fitted into the convex portion. For this reason, the exterior member can be fixed on the sealing plate in a stable state.

以下、本発明の密閉型電池の一実施形態である円筒形リチウムイオン二次電池の構造を、図1を参照しながら説明するが、本発明は、以下の実施形態に限定されない。図1は、本発明の密閉型電池の一実施形態である円筒形リチウムイオン二次電池の概略縦断面図である。
有底円筒形の金属製(例えば、表面にNiめっきを施した鋼板)の電池ケース1内に、発電要素として電極群4が収納されている。電池ケースの底面が負極端子部となる。電極群4は、帯状の正極5と、帯状の負極6と、両電極間に介在させた帯状のセパレータ7とを捲回することにより構成されている。セパレータ7には、例えば、厚さ10〜30μmの微多孔性樹脂フィルムが用いられる。その樹脂フィルムには、ポリプロピレンまたはポリエチレンが用いられる。
Hereinafter, although the structure of the cylindrical lithium ion secondary battery which is one Embodiment of the sealed battery of this invention is demonstrated, referring FIG. 1, this invention is not limited to the following embodiment. FIG. 1 is a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery which is an embodiment of the sealed battery of the present invention.
An electrode group 4 is housed as a power generation element in a battery case 1 made of a bottomed cylindrical metal (for example, a steel plate having a surface plated with Ni). The bottom surface of the battery case serves as a negative electrode terminal portion. The electrode group 4 is constituted by winding a belt-like positive electrode 5, a belt-like negative electrode 6, and a belt-like separator 7 interposed between both electrodes. For the separator 7, for example, a microporous resin film having a thickness of 10 to 30 μm is used. Polypropylene or polyethylene is used for the resin film.

正極5は、正極集電体および正極集電体上に形成された正極合剤層を有する。正極リード9の一方の端部は、正極5に接続され、正極リード9の他方の端部は、後述の電池複合蓋12における下板15の下面に接続されている。負極6は、負極集電体および負極集電体上に形成された負極合剤層を有する。負極リード10の一方の端部は、負極6に接続され、負極リード10の他方の端部は、電池ケース1の内底面に接続されている。負極リード10には、例えば、ニッケルリードまたは銅リードが用いられる。正極リード9には、アルミニウムリードが用いられる。
電極群4の上部および下部には、それぞれ絶縁リング8aおよび8bが配されている。電池ケース1の開口端部を、樹脂製(例えば、ポリプロピレン製)のガスケット3を介して電池複合蓋2の周縁部にかしめつけることにより、電池ケース1の開口部は密閉されている。
The positive electrode 5 has a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector. One end of the positive electrode lead 9 is connected to the positive electrode 5, and the other end of the positive electrode lead 9 is connected to the lower surface of the lower plate 15 in the battery composite lid 12 described later. The negative electrode 6 has a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector. One end of the negative electrode lead 10 is connected to the negative electrode 6, and the other end of the negative electrode lead 10 is connected to the inner bottom surface of the battery case 1. For the negative electrode lead 10, for example, a nickel lead or a copper lead is used. An aluminum lead is used for the positive electrode lead 9.
Insulating rings 8a and 8b are disposed on the upper and lower portions of the electrode group 4, respectively. The opening of the battery case 1 is sealed by caulking the opening end of the battery case 1 to the peripheral edge of the battery composite lid 2 via a gasket 3 made of resin (for example, polypropylene).

電池複合蓋2は、正極端子部として上方に突出する凸部12aを中央に有する金属製(例えば、ニッケル製)の封口板12と、金属箔(例えば、厚さ10〜30μmのアルミニウム箔)からなる弁体13と、弁体13の一部と電気的に接続されている金属製(例えば、アルミニウム製)の導電板14と、弁体13の周縁部と導電板14の周縁部との間に配されるリング状の樹脂製の絶縁板15と、導電板14の下方に配された金属製(例えば、アルミニウム製)の下板16とからなる。導電板14および下板16は、ガスを通すための開口部を有する。
封口板2の凸部12aは、筒状側部および筒状側部の上部の開口を塞ぐように設けられた円盤状上部からなる。凸部12aの筒状側部には複数個の排気口12bが設けられている。複数個の排気口12bは、筒状側部の中央部付近において、筒状側部の周方向に沿って等間隔に設けられるのが好ましい。導電板14の中央部は弁体13と接触可能な形状を有し、導電板14の中央部は弁体13の中央部と溶着により電気的に接続されている。
The battery composite lid 2 is made of a metal (for example, nickel) sealing plate 12 having a convex portion 12a protruding upward as a positive terminal portion and a metal foil (for example, an aluminum foil having a thickness of 10 to 30 μm). The valve body 13, the metal (for example, aluminum) conductive plate 14 electrically connected to a part of the valve body 13, and the periphery of the valve body 13 and the periphery of the conductive plate 14. A ring-shaped insulating plate 15 made of resin, and a lower plate 16 made of metal (for example, aluminum) arranged below the conductive plate 14. The conductive plate 14 and the lower plate 16 have openings for passing gas.
The convex part 12a of the sealing board 2 consists of a disk-shaped upper part provided so that the opening of the upper part of a cylindrical side part and a cylindrical side part may be plugged up. A plurality of exhaust ports 12b are provided on the cylindrical side portion of the convex portion 12a. The plurality of exhaust ports 12b are preferably provided at equal intervals along the circumferential direction of the cylindrical side portion in the vicinity of the central portion of the cylindrical side portion. The central portion of the conductive plate 14 has a shape that can contact the valve body 13, and the central portion of the conductive plate 14 is electrically connected to the central portion of the valve body 13 by welding.

封口板12上において、排気口12bを覆う外装リング11が、凸部12aと電池ケース1の開口端部のかしめ部との間に配されている。外装リング11の中央に設けられた開口部に凸部12aが嵌合し、外装リング11を熱収縮性樹脂フィルム17で覆うことにより、外装リング11が封口板12上に安定した状態で固定されている。装着性の観点から、外装リング11の内径(開口部の径)は、凸部12aの筒状側部の外径とほぼ同じであるのが好ましい。
これにより、外部から排気口を介して電池内部に液体が入り、弁体に液体が付着するのを防止できる。その結果、弁体の穴開きの発生、およびそれによる漏液を防ぐことができる。
On the sealing plate 12, an exterior ring 11 that covers the exhaust port 12 b is disposed between the convex portion 12 a and the caulked portion at the open end of the battery case 1. The convex part 12a fits into the opening provided in the center of the exterior ring 11, and the exterior ring 11 is fixed on the sealing plate 12 in a stable state by covering the exterior ring 11 with the heat-shrinkable resin film 17. ing. From the viewpoint of wearability, it is preferable that the outer diameter of the outer ring 11 (the diameter of the opening) is substantially the same as the outer diameter of the cylindrical side portion of the convex portion 12a.
Thereby, it can prevent that a liquid enters into the inside of a battery via an exhaust port from the exterior, and a liquid adheres to a valve body. As a result, it is possible to prevent the valve body from being perforated and the resulting leakage.

外装リング11には、弾性を有し、金属との密着性に優れた樹脂またはゴムのような材料を用いるのが好ましい。このような材料としては、例えば、エチレンプロピレンジエンゴム(EPDM)、フッ素ゴム、またはアクリル樹脂が挙げられる。これらの材料は、耐アルカリ性に優れている。
熱収縮性および作業性の観点から、熱収縮性樹脂フィルム17には、ポリ塩化ビニリデン樹脂フィルム(例えば、(株)クレハ製、クレハロンフィルム)を用いるのが好ましい。また、環境面での配慮から、熱収縮性樹脂フィルム17には、ポリエチレンテレフタレート(PET)フィルムを用いるのが好ましい。
For the outer ring 11, it is preferable to use a material such as a resin or rubber having elasticity and excellent adhesion to a metal. Examples of such a material include ethylene propylene diene rubber (EPDM), fluorine rubber, and acrylic resin. These materials are excellent in alkali resistance.
From the viewpoints of heat shrinkability and workability, it is preferable to use a polyvinylidene chloride resin film (for example, Kureha Corporation, Kurehalon Film) as the heat shrinkable resin film 17. In consideration of the environment, a polyethylene terephthalate (PET) film is preferably used for the heat-shrinkable resin film 17.

電池内圧が上昇すると、弁体13(防爆機構)は以下のように作動する。電池内圧が上昇し、電池内圧が所定値に達すると、導電板14の開口部を介して、ガス圧により弁体13が上方に押し上げられて変形する。この変形に伴い、弁体13の中央部が導電板14の中央部と離れることにより、電流が遮断される。
さらに、電池内圧が上昇し、電池内圧が所定値に達すると、弁体13がさらに上方に押し上げられ、弁体13が破断し、電池内圧により外装リング11が外れて、電池内のガスが凸部12aの排気口12bを介して外部に放出される。
When the battery internal pressure increases, the valve body 13 (explosion-proof mechanism) operates as follows. When the battery internal pressure rises and the battery internal pressure reaches a predetermined value, the valve body 13 is pushed upward by the gas pressure through the opening of the conductive plate 14 and deforms. With this deformation, the central portion of the valve body 13 is separated from the central portion of the conductive plate 14, thereby interrupting the current.
Further, when the battery internal pressure rises and the battery internal pressure reaches a predetermined value, the valve body 13 is further pushed upward, the valve body 13 is broken, the outer ring 11 is detached by the battery internal pressure, and the gas in the battery protrudes. It is discharged outside through the exhaust port 12b of the part 12a.

上記実施形態では、外装リングは、電池の開口端部のかしめ部よりも内側に配されているが、外装リングの形状はこれに限定されない。例えば、外装リングは、その外周縁部が電池の開口端部のかしめ部の上部まで延び、かしめ部の上部を覆うような形状を有してもよく、この場合、電池ケースのかしめ部が封口板に接することによる短絡をより確実に防ぐことができる。
上記実施形態では、外装リングは、凸部とかしめ部との間を完全に埋めるように配されているが、外装リングの形状はこれに限定されない。外装リングが凸部の排気口を塞ぐ形状であればよい。
上記実施形態では、熱収縮性樹脂フィルムは、外装リングの上面全体を覆うが、熱収縮性樹脂フィルムの外装リングの覆い方はこれに限定されない。外装リングを固定可能であれば、外装リングの上面の一部を覆う構成でもよい。
上記実施形態では、熱収縮性樹脂フィルムは電池ケースの側面全体を覆っているが、熱収縮性フィルムの電池ケースの覆い方はこれに限定されない。外装リングを安定して覆うことができればよい。
In the said embodiment, although the exterior ring is distribute | arranged inside the crimping part of the opening edge part of a battery, the shape of an exterior ring is not limited to this. For example, the outer ring may have a shape in which the outer peripheral edge extends to the upper part of the caulking part of the opening end of the battery and covers the upper part of the caulking part. In this case, the caulking part of the battery case is sealed. Short circuit due to contact with the plate can be prevented more reliably.
In the said embodiment, although the exterior ring is distribute | arranged so that between a convex part and a crimping | crimped part may be completely filled, the shape of an exterior ring is not limited to this. The exterior ring may have a shape that closes the exhaust port of the convex portion.
In the said embodiment, although a heat-shrinkable resin film covers the whole upper surface of an exterior ring, how to cover the exterior ring of a heat-shrinkable resin film is not limited to this. As long as the exterior ring can be fixed, it may be configured to cover a part of the upper surface of the exterior ring.
In the said embodiment, although the heat-shrinkable resin film has covered the whole side surface of the battery case, how to cover the battery case of a heat-shrinkable film is not limited to this. What is necessary is just to be able to cover an exterior ring stably.

正極合剤層は、例えば、正極活物質、結着剤、および導電材を含む。正極活物質としては、例えば、リチウム含有複合酸化物が用いられる。リチウム含有複合酸化物としては、例えば、コバルト酸リチウム(LiCoO2)、LiCoO2の変性体、ニッケル酸リチウム(LiNiO2)、LiNiO2の変性体、マンガン酸リチウム(LiMnO2)、またはLiMnO2の変性体が挙げられる。各変性体には、アルミニウム(Al)、マグネシウム(Mg)のような元素を含むものが挙げられる。また、各変性体には、コバルト(Co)、ニッケル(Ni)、およびマンガン(Mn)のうち少なくとも2種を含むものが挙げられる。 The positive electrode mixture layer includes, for example, a positive electrode active material, a binder, and a conductive material. As the positive electrode active material, for example, a lithium-containing composite oxide is used. Examples of the lithium-containing composite oxide include lithium cobaltate (LiCoO 2 ), modified LiCoO 2 , lithium nickelate (LiNiO 2 ), modified LiNiO 2 , lithium manganate (LiMnO 2 ), or LiMnO 2 . Examples include modified products. Examples of each modified body include those containing elements such as aluminum (Al) and magnesium (Mg). Further, examples of each modified body include those containing at least two of cobalt (Co), nickel (Ni), and manganese (Mn).

結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、変性アクリロニトリルゴム粒子(例えば、日本ゼオン(株)製のBM−500B(商品名))、またはポリフッ化ビニリデン(PVDF)が用いられる。PTFEおよび変性アクリロニトリルゴム粒子は、正極合剤層の原料ペーストに用いられる、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)、または変性アクリロニトリルゴム(例えば、日本ゼオン(株)製のBM−720H(商品名))のような増粘剤と併用するのが好ましい。PVDFは、結着剤および増粘剤の両方の機能を有する。
導電材としては、例えば、アセチレンブラックおよびケッチェンブラックのようなカーボンブラック、または天然黒鉛および人造黒鉛のような黒鉛材料が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the binder, for example, polytetrafluoroethylene (PTFE), modified acrylonitrile rubber particles (for example, BM-500B (trade name) manufactured by Nippon Zeon Co., Ltd.), or polyvinylidene fluoride (PVDF) is used. PTFE and modified acrylonitrile rubber particles are carboxymethylcellulose (CMC), polyethylene oxide (PEO), or modified acrylonitrile rubber (for example, BM-720H manufactured by Nippon Zeon Co., Ltd.) (product) It is preferable to use in combination with a thickener such as name)). PVDF functions as both a binder and a thickener.
As the conductive material, for example, carbon black such as acetylene black and ketjen black, or graphite material such as natural graphite and artificial graphite is used. These may be used alone or in combination of two or more.

負極合剤層は、例えば、負極活物質および結着剤を含む。負極活物質としては、例えば、天然黒鉛、人造黒鉛、シリサイドなどのシリコン含有複合材料、または合金材料を用いることができる。負極用結着剤としては、例えば、PVDFまたはその変性体が用いられる。   The negative electrode mixture layer includes, for example, a negative electrode active material and a binder. As the negative electrode active material, for example, natural graphite, artificial graphite, silicon-containing composite materials such as silicide, or alloy materials can be used. As the negative electrode binder, for example, PVDF or a modified product thereof is used.

電極群4は非水電解液を含む。非水電解液は、例えば、非水溶媒および前記非水溶媒に溶解するリチウム塩からなる。リチウム塩には、例えば、六フッ化リン酸リチウム(LiPF6)、または四フッ化ホウ酸リチウム(LiBF4)が用いられる。非水溶媒には、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、またはエチルメチルカーボネート(EMC)が用いられ、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、非水電解液に、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、またはそれらの変性体を添加してもよい。 The electrode group 4 includes a non-aqueous electrolyte. The non-aqueous electrolyte is composed of, for example, a non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent. For example, lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ) is used as the lithium salt. As the nonaqueous solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethyl methyl carbonate (EMC) is used, and these may be used alone. Alternatively, two or more kinds may be used in combination. Further, vinylene carbonate (VC), cyclohexyl benzene (CHB), or a modified product thereof may be added to the nonaqueous electrolytic solution.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
以下の手順で、図1に示す構造の円筒形リチウムイオン二次電池を作製した。
(1)正極の作製
Li2CO3、Co34、NiO、およびMnO2を、Li:Ni:Mn:Co=0.94:0.35:0.35:0.35の原子比となるように混合した後、900℃で10時間焼成し、正極活物質としてLi0.94Ni0.35Mn0.35Co0.352を得た。正極活物質100重量部に、導電材としてアセチレンブラック2.5重量部と、結着剤としてPTFE4重量部と、適量のカルボキシメチルセルロース水溶液とを加えた後、双腕式練合機にて攪拌し、正極ペーストを得た。この正極ペーストを厚さ30μmのアルミニウム箔からなる正極集電体の両面に塗布した後、乾燥し、正極集電体の両面に正極合剤層を形成し、正極を得た。正極合剤層と正極集電体とを合わせた正極の総厚さが115μmとなるように正極を圧延した後、これを、幅52mmおよび長さ1350mmの帯状に裁断し、正極5を得た。正極リード9との接続部分には、正極合剤層を形成せずに、正極集電体を露出させた。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
A cylindrical lithium ion secondary battery having the structure shown in FIG. 1 was produced according to the following procedure.
(1) Preparation of positive electrode Li 2 CO 3 , Co 3 O 4 , NiO, and MnO 2 are mixed with an atomic ratio of Li: Ni: Mn: Co = 0.94: 0.35: 0.35: 0.35. Then, the mixture was calcined at 900 ° C. for 10 hours to obtain Li 0.94 Ni 0.35 Mn 0.35 Co 0.35 O 2 as a positive electrode active material. To 100 parts by weight of the positive electrode active material, 2.5 parts by weight of acetylene black as a conductive material, 4 parts by weight of PTFE as a binder, and an appropriate amount of an aqueous carboxymethyl cellulose solution were added, and then stirred with a double-arm kneader. A positive electrode paste was obtained. This positive electrode paste was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 30 μm, and then dried to form a positive electrode mixture layer on both surfaces of the positive electrode current collector to obtain a positive electrode. After the positive electrode was rolled so that the total thickness of the positive electrode combined with the positive electrode mixture layer and the positive electrode current collector was 115 μm, this was cut into a strip having a width of 52 mm and a length of 1350 mm to obtain the positive electrode 5. . The positive electrode current collector was exposed at the connecting portion with the positive electrode lead 9 without forming the positive electrode mixture layer.

(2)負極の作製
メソフェーズ小球体を2800℃の高温で黒鉛化し、負極活物質としてメソフェーズ黒鉛を得た。この負極活物質100重量部に、SBR(スチレン・ブタジエンゴム)のアクリル酸変性体2.5重量部と、カルボキシメチルセルロース1重量部と、適量の水とを加えた後、双腕式練合機にて攪拌し、負極ペーストを得た。この負極ペーストを厚さ0.02mmの銅箔からなる負極集電体の両面に塗布した後、乾燥し、負極集電体の両面に負極合剤層を形成し、負極を得た。負極合剤層と負極集電体とを合わせた負極の総厚さ120μmおよび負極合剤層の多孔度35%となるように負極を圧延した後、幅57mmおよび長さ1570mmの帯状に裁断し、負極6を得た。負極リードとの接続部分には、負極合剤層を形成せずに、負極集電体を露出させた。
(2) Production of Negative Electrode Mesophase spherules were graphitized at a high temperature of 2800 ° C. to obtain mesophase graphite as a negative electrode active material. To 100 parts by weight of the negative electrode active material, 2.5 parts by weight of an acrylic acid-modified product of SBR (styrene / butadiene rubber), 1 part by weight of carboxymethyl cellulose, and an appropriate amount of water were added, and then a double-arm kneader. To obtain a negative electrode paste. This negative electrode paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 0.02 mm, and then dried to form a negative electrode mixture layer on both sides of the negative electrode current collector to obtain a negative electrode. The negative electrode was rolled so that the total thickness of the negative electrode combined with the negative electrode mixture layer and the negative electrode current collector was 120 μm and the negative electrode mixture layer had a porosity of 35%, and then cut into a strip having a width of 57 mm and a length of 1570 mm. A negative electrode 6 was obtained. The negative electrode current collector was exposed at the connecting portion with the negative electrode lead without forming the negative electrode mixture layer.

(3)電池の組立
上記で得られた正極5と、負極6と、両電極を隔離するセパレータ7とを捲回して電極群4を構成した。電極群4を有底円筒形の電池ケース1(直径26.0mm、高さ65mm)に収納した。セパレータ7には、厚さ20μmのポリエチレンフィルムを用いた。電池ケース1に電池複合蓋2を載せるための環状段部を設けた後、その段部にブロン剤を塗布し乾燥させた。電極群4を収納した電池ケース1に、非水電解液13gを注入した。非水電解液には、ECとEMCとDMCとを体積比15:15:70の割合で混合した非水溶媒に、リチウム塩としてLiPF6を濃度1.4mol/Lで溶解させたものを用いた。アルミニウム製の弁体13およびニッケル製の封口板12を含む電池複合蓋2を段部の上部に載置した後、電池ケース1の開口端部を、ガスケット3を介して、電池複合蓋2の周縁部にかしめつけ、電池ケース1の開口部を密閉した。
(3) Battery assembly The positive electrode 5, the negative electrode 6, and the separator 7 that separates the two electrodes were wound to form the electrode group 4. The electrode group 4 was housed in a bottomed cylindrical battery case 1 (diameter 26.0 mm, height 65 mm). As the separator 7, a polyethylene film having a thickness of 20 μm was used. After providing an annular stepped portion for placing the battery composite lid 2 on the battery case 1, a bronze agent was applied to the stepped portion and dried. 13 g of non-aqueous electrolyte was injected into the battery case 1 in which the electrode group 4 was housed. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 as a lithium salt at a concentration of 1.4 mol / L in a non-aqueous solvent in which EC, EMC, and DMC are mixed at a volume ratio of 15:15:70 is used. It was. After the battery composite lid 2 including the aluminum valve body 13 and the nickel sealing plate 12 is placed on the upper part of the stepped portion, the opening end of the battery case 1 is connected to the battery composite lid 2 via the gasket 3. The opening of the battery case 1 was sealed by crimping on the peripheral edge.

封口板12の上部における、電池ケース1の開口端部のかしめ部に露出するガスケット3と、封口板12の凸部12bとで囲まれた環状のくぼみ部分に、EPDMからなる外装リング11(内径11.9mm、外径25.9mm、高さ1.5mm)を装着し、封口板12の排気口12bを外装リング11で覆った。
外装リング11とともに電池ケース1の外面(ただし、電池ケース1の外底面の負極端子部を除く。)を熱収縮性樹脂フィルム17で覆った後、熱収縮性樹脂フィルム17を熱収縮させ、電池表面に固定させた。熱収縮性樹脂フィルム17には、ポリ塩化ビニリデン樹脂フィルム(厚さ80μm)を用いた。
封口板12の排気口12b(幅3.4mm、高さ1.0mm)を、凸部12aの上面から1mm下方における側面の周方向に沿って等間隔に6箇所設けた。封口板12の凸部12aは外径11.8mmおよび高さ2.1mmであった。
An outer ring 11 (inner diameter) made of EPDM is formed in an annular recess portion surrounded by the gasket 3 exposed at the caulked portion of the opening end portion of the battery case 1 and the convex portion 12b of the sealing plate 12 at the upper portion of the sealing plate 12. 11.9 mm, outer diameter 25.9 mm, and height 1.5 mm) were mounted, and the exhaust port 12 b of the sealing plate 12 was covered with the exterior ring 11.
After covering the outer surface of the battery case 1 together with the outer ring 11 (except for the negative electrode terminal portion on the outer bottom surface of the battery case 1) with the heat-shrinkable resin film 17, the heat-shrinkable resin film 17 is heat-shrinked, and the battery Fixed to the surface. As the heat-shrinkable resin film 17, a polyvinylidene chloride resin film (thickness 80 μm) was used.
Six exhaust ports 12b (width 3.4 mm, height 1.0 mm) of the sealing plate 12 were provided at equal intervals along the circumferential direction of the side surface 1 mm below the top surface of the convex portion 12a. The convex portion 12a of the sealing plate 12 had an outer diameter of 11.8 mm and a height of 2.1 mm.

《実施例2》
外装リングの材質をフッ素ゴムに変えた以外、実施例1と同様の方法により電池を作製した。
Example 2
A battery was produced in the same manner as in Example 1 except that the material of the exterior ring was changed to fluororubber.

《実施例3》
外装リングの材質をウレタンゴムに変えた以外、実施例1と同様の方法により電池を作製した。
Example 3
A battery was produced in the same manner as in Example 1 except that the material of the exterior ring was changed to urethane rubber.

《比較例1》
図2に示す従来の構成の円筒形リチウムイオン二次電池を作製した。具体的には、以下のように作製した。外装リングを装着しなかった。熱収縮性樹脂フィルムを用いなかった。また、封口板の凸部に設けられる排気口の位置を、凸部の角部に変えた。上記以外、実施例1と同様の方法により電池を作製した。
<< Comparative Example 1 >>
A cylindrical lithium ion secondary battery having the conventional configuration shown in FIG. 2 was produced. Specifically, it was produced as follows. The exterior ring was not installed. A heat-shrinkable resin film was not used. Moreover, the position of the exhaust port provided in the convex part of a sealing board was changed into the corner | angular part of a convex part. A battery was fabricated in the same manner as in Example 1 except for the above.

[評価]
次に、本発明の実施例1および2の電池ならびに従来の比較例1および2の電池について、以下の評価試験を実施した。
[Evaluation]
Next, the following evaluation tests were carried out on the batteries of Examples 1 and 2 of the present invention and the batteries of conventional Comparative Examples 1 and 2.

(1)電池漏液試験
pHが9程度の塩化アンモニウム水に電池を10秒間含浸させた。その後、温度40℃および湿度95%の雰囲気下にて電池を1ヶ月放置し、弁体の錆の発生および漏液の有無を確認した。各電池の試験数は10個とした。
(1) Battery leakage test A battery was impregnated with ammonium chloride water having a pH of about 9 for 10 seconds. Thereafter, the battery was allowed to stand for 1 month in an atmosphere of a temperature of 40 ° C. and a humidity of 95%, and the occurrence of rust on the valve body and the presence or absence of leakage were confirmed. The number of tests for each battery was 10.

(2)電池パック漏液試験
上記電池(単セル)の4個を直列接続した保護回路付き電池パックを準備し、pHが9程度の塩化アンモニウム水に電池パックを10秒間含浸させた。その後、温度40℃および湿度95%の雰囲気下にて電池パックを1ヶ月放置し、漏液による保護回路の発熱の有無を確認した。熱電対を用いて、保護回路の温度を測定し、温度が100℃以上の場合に発熱有(漏液有)と判断した。各電池パックの試験数は5個とした。
(2) Battery Pack Leakage Test A battery pack with a protection circuit in which four of the batteries (single cells) were connected in series was prepared, and the battery pack was impregnated with ammonium chloride water having a pH of about 9 for 10 seconds. Thereafter, the battery pack was left for 1 month in an atmosphere of a temperature of 40 ° C. and a humidity of 95%, and it was confirmed whether or not the protection circuit generated heat due to leakage. Using a thermocouple, the temperature of the protection circuit was measured, and when the temperature was 100 ° C. or higher, it was determined that heat was generated (leak was present). The number of tests for each battery pack was five.

(3)電池加熱試験
電池をバーナーで加熱して電池の破損の有無を確認した。各電池の試験数は10個とした。上記試験の結果を表1に示す。
(3) Battery heating test The battery was heated with a burner to check for damage to the battery. The number of tests for each battery was 10. The results of the above test are shown in Table 1.

Figure 2009302019
Figure 2009302019

本発明の実施例1〜3の電池では、比較例1の電池と比べて、耐漏液性が改善された。また、実施例1〜3の電池を用いた電池パックにおいても、比較例1の電池を用いた電池パックと比べて、耐漏液性が改善された。特に、耐アルカリ性樹脂であるEPDMおよびフッ素樹脂からなる外装リングを用いた本発明の実施例1および2の電池では、いずれの電池も、弁体の腐食およびそれによる漏液は起こらず、優れた耐漏液性および高信頼性が得られた。実施例1および2の電池を用いた電池パックの場合でも、優れた耐漏液性および高信頼性が得られた。   In the batteries of Examples 1 to 3 of the present invention, the liquid leakage resistance was improved as compared with the battery of Comparative Example 1. Also, in the battery pack using the batteries of Examples 1 to 3, leakage resistance was improved as compared with the battery pack using the battery of Comparative Example 1. In particular, in the batteries of Examples 1 and 2 of the present invention using the outer ring made of EPDM, which is an alkali-resistant resin, and a fluororesin, none of the batteries was corroded and leaked by the valve body, which was excellent. Liquid leakage resistance and high reliability were obtained. Even in the case of the battery pack using the batteries of Examples 1 and 2, excellent liquid leakage resistance and high reliability were obtained.

これに対して、従来の比較例1の電池では、いずれもの電池も漏液した。電池パック漏液試験においても、比較例1では、漏液の影響による保護回路の発熱を生じた電池パックがみられた。また、漏液した実施例3の電池を調べたところ、ウレタンゴムからなる外装リングの一部がアルカリ溶液により溶解していることが確認された。   On the other hand, in the conventional battery of Comparative Example 1, all the batteries leaked. Also in the battery pack leakage test, in Comparative Example 1, there was a battery pack that generated heat in the protection circuit due to the influence of the leakage. Further, when the leaked battery of Example 3 was examined, it was confirmed that a part of the outer ring made of urethane rubber was dissolved by the alkaline solution.

電池加熱試験については、いずれの電池も破損しなかった。外装リングで封口板の排気口を閉じた場合でも、電池内圧が上昇して弁体が作動(破断)し、電池内圧により外装リングが外れ、排気口からガスが放出された。   For the battery heating test, none of the batteries were damaged. Even when the exhaust port of the sealing plate was closed with the exterior ring, the internal pressure of the battery increased and the valve element was actuated (broken), the external ring was removed by the internal pressure of the battery, and gas was released from the exhaust port.

本発明の密閉型電池は、携帯機器または情報機器等の電子機器の電源として好適に用いられる。   The sealed battery of the present invention is suitably used as a power source for electronic devices such as portable devices or information devices.

本発明の密閉型電池の一実施形態である円筒形リチウムイオン二次電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylindrical lithium ion secondary battery which is one Embodiment of the sealed battery of this invention. 従来の比較例1の円筒形リチウムイオン二次電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylindrical lithium ion secondary battery of the conventional comparative example 1.

符号の説明Explanation of symbols

1 電池ケース
2 電池複合蓋
3 ガスケット
4 電極群
5 正極
6 負極
7 セパレータ
8a、8b 絶縁リング
9 正極リード
10 負極リード
11 絶縁リング
12 封口板
12a 凸部
12b 排気口
13 弁体
14 導電板
15 絶縁板
16 下板
17 熱収縮性樹脂フィルム
DESCRIPTION OF SYMBOLS 1 Battery case 2 Battery compound cover 3 Gasket 4 Electrode group 5 Positive electrode 6 Negative electrode 7 Separator 8a, 8b Insulating ring 9 Positive electrode lead 10 Negative electrode lead 11 Insulating ring 12 Sealing plate 12a Protruding part 12b Exhaust port 13 Valve body 14 Conductive plate 15 Insulating plate 16 Lower plate 17 Heat shrinkable resin film

Claims (2)

発電要素と、
前記発電要素を収納する電池ケースと、
電極端子部として上方に突出する凸部を中央に有し、前記電池ケースの開口部を封口する封口板と、を具備する密閉型電池であって、
前記凸部は、側部に前記電池内のガスを外部に放出するための排気口を有し、
前記封口板上に、前記凸部と嵌合して前記排気口を覆う外装部材が配され、
前記外装部材が、前記電池ケース外面とともに熱収縮性樹脂フィルムで覆われていることを特徴とする密閉型電池。
Power generation elements,
A battery case for storing the power generation element;
A sealed battery having a convex part protruding upward as an electrode terminal part in the center, and a sealing plate for sealing the opening of the battery case,
The convex part has an exhaust port for releasing the gas in the battery to the outside on the side part,
On the sealing plate, an exterior member that fits the convex portion and covers the exhaust port is disposed,
The sealed battery, wherein the exterior member is covered with a heat-shrinkable resin film together with the outer surface of the battery case.
前記外装部材は、エチレンプロピレンジエンゴム、フッ素ゴム、またはアクリル樹脂からなる請求項1記載の密閉型電池。   The sealed battery according to claim 1, wherein the exterior member is made of ethylene propylene diene rubber, fluorine rubber, or acrylic resin.
JP2008158385A 2008-06-17 2008-06-17 Sealed battery Pending JP2009302019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158385A JP2009302019A (en) 2008-06-17 2008-06-17 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158385A JP2009302019A (en) 2008-06-17 2008-06-17 Sealed battery

Publications (1)

Publication Number Publication Date
JP2009302019A true JP2009302019A (en) 2009-12-24

Family

ID=41548692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158385A Pending JP2009302019A (en) 2008-06-17 2008-06-17 Sealed battery

Country Status (1)

Country Link
JP (1) JP2009302019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206884A (en) * 2012-03-29 2013-10-07 Samsung Sdi Co Ltd Rechargeable battery
WO2015098866A1 (en) * 2013-12-26 2015-07-02 新神戸電機株式会社 Power storage device
US9478833B2 (en) 2012-08-28 2016-10-25 Samsung Sdi Co., Ltd. Secondary battery with a heat shrinkable insulation member
JPWO2016103656A1 (en) * 2014-12-25 2017-10-05 三洋電機株式会社 Cylindrical non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287894A (en) * 1995-04-11 1996-11-01 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JP2004213947A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Sealed alkaline primary battery
JP2006128010A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Sealed battery
JP2006294669A (en) * 2005-04-06 2006-10-26 Nok Corp Pressure release valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287894A (en) * 1995-04-11 1996-11-01 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JP2004213947A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Sealed alkaline primary battery
JP2006128010A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Sealed battery
JP2006294669A (en) * 2005-04-06 2006-10-26 Nok Corp Pressure release valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206884A (en) * 2012-03-29 2013-10-07 Samsung Sdi Co Ltd Rechargeable battery
US9478833B2 (en) 2012-08-28 2016-10-25 Samsung Sdi Co., Ltd. Secondary battery with a heat shrinkable insulation member
WO2015098866A1 (en) * 2013-12-26 2015-07-02 新神戸電機株式会社 Power storage device
CN105849841A (en) * 2013-12-26 2016-08-10 日立化成株式会社 Power storage device
JPWO2015098866A1 (en) * 2013-12-26 2017-03-23 日立化成株式会社 Power storage device
US10186692B2 (en) 2013-12-26 2019-01-22 Hitachi Chemical Company, Ltd. Electrical storage device
JPWO2016103656A1 (en) * 2014-12-25 2017-10-05 三洋電機株式会社 Cylindrical non-aqueous electrolyte secondary battery
US20170338463A1 (en) * 2014-12-25 2017-11-23 Sanyo Electric Co., Ltd. Cylindrical nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US11824223B2 (en) Cylindrical sealed battery and battery pack
JP6538650B2 (en) Cylindrical sealed battery
JP6250567B2 (en) Sealed battery
JP5291020B2 (en) Lithium secondary battery
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
JPWO2014119309A1 (en) Sealed battery
JP2006252848A (en) Sealed battery and its manufacturing method
CN106486637B (en) Nonaqueous electrolyte secondary battery
JP5571318B2 (en) Cylindrical battery
JP2004014395A (en) Battery
JP2003308873A (en) Nonaqueous electrolyte secondary battery
JP2008251187A (en) Sealed battery
JP2009302019A (en) Sealed battery
JP4984359B2 (en) Sealed battery and its sealing plate
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
KR20180080798A (en) Cylindrical Battery Cell Comprising Safety Cap
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP2000277067A (en) Sealed battery
JP2003297432A (en) Nonaqeuous electrolyte secondary battery
JP2007242520A (en) Cylindrical battery
JP2004139809A (en) Sealed battery
JP2006156007A (en) Cylindrical lithium-ion secondary battery
JP2004220816A (en) Reed terminal for battery and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130704