JP2006156007A - Cylindrical lithium-ion secondary battery - Google Patents

Cylindrical lithium-ion secondary battery Download PDF

Info

Publication number
JP2006156007A
JP2006156007A JP2004342231A JP2004342231A JP2006156007A JP 2006156007 A JP2006156007 A JP 2006156007A JP 2004342231 A JP2004342231 A JP 2004342231A JP 2004342231 A JP2004342231 A JP 2004342231A JP 2006156007 A JP2006156007 A JP 2006156007A
Authority
JP
Japan
Prior art keywords
battery
ion secondary
cylindrical lithium
wound group
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004342231A
Other languages
Japanese (ja)
Inventor
Hiroaki Furuta
裕昭 古田
Norihiro Yamamoto
典博 山本
Kazunari Kinoshita
一成 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004342231A priority Critical patent/JP2006156007A/en
Publication of JP2006156007A publication Critical patent/JP2006156007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical lithium-ion secondary battery having high safety performance and high cycle characteristics under abnormally high temperatures. <P>SOLUTION: The cylindrical lithium-ion secondary battery is formed by spirally winding a positive plate in which an active material is applied to a belt-shaped current collector and a negative plate in which an active material is applied to a belt-shaped current collector through a separator to constitute a wound group, and sealing the wound group in a metallic outer packaging case together with a nonaqueous electrolyte, the ratio ψ1/ψ2 of the diameter (ψ1) of a space installed in the central part to the outer diameter (ψ2) of the wound group is made 0.20-0.30, and the ratio ψ2/ψ3 of the outer diameter (ψ2) of the wound group to the inner diameter (ψ3) of the battery case is made 0.94-0.97. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、円筒形リチウムイオン二次電池に関し、特に、帯状の集電体の両面に正極活物質を含む正極合材を塗着した正極板と、帯状の集電体に充放電によりリチウムイオンが挿脱可能な活物質を塗着した負極板とをセパレータを介して捲回した捲回群を具備する円筒形リチウムイオン二次電池に関する。   The present invention relates to a cylindrical lithium ion secondary battery, and in particular, a positive electrode plate in which a positive electrode mixture containing a positive electrode active material is coated on both surfaces of a belt-shaped current collector, and lithium ion by charging and discharging the belt-shaped current collector. The present invention relates to a cylindrical lithium ion secondary battery including a wound group in which a negative electrode plate coated with an active material that can be inserted and removed is wound through a separator.

円筒形リチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器の電源に使用されている。   Cylindrical lithium ion secondary batteries are mainly used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density.

円筒形リチウムイオン二次電池は、一般的に、次のような構造をしている。帯状の集電体に活物質が塗着された正極板と、帯状の集電体に活物質が塗着された負極板との間に帯状のセパレータを配して渦巻き状に巻かれた捲回群を有している。この捲回群は、非水電解液とともに、電池ケースに収納されている。電池ケースの開口部は、絶縁ガスケットを介して、封口板でかしめにより封口されている。   A cylindrical lithium ion secondary battery generally has the following structure. A strip-shaped separator is disposed between a positive electrode plate in which an active material is applied to a band-shaped current collector and a negative electrode plate in which an active material is applied to a band-shaped current collector. Has a group of times. This wound group is housed in a battery case together with a non-aqueous electrolyte. The opening of the battery case is sealed by caulking with a sealing plate via an insulating gasket.

従来、捲回群の外径に対する正極板および負極板の長さの比を、90〜110とすることにより、入出力特性に優れた高出力密度の電池が提案されている(例えば、特許文献1参照)。
特開2001−210382号公報
Conventionally, by setting the ratio of the length of the positive electrode plate and the negative electrode plate to the outer diameter of the wound group to be 90 to 110, a battery having a high output density excellent in input / output characteristics has been proposed (for example, Patent Documents). 1).
Japanese Patent Laid-Open No. 2001-210382

このような従来の円筒形リチウムイオン二次電池は、高密度かつ薄膜の電極を使用することで高出力密度の電池を可能としたが、逆に、安全性能に課題があった。出力密度が高くなることにより安全性能の低下が懸念される内容としては、内部短絡が発生したときの安全性能、高温雰囲気下に曝された時の安全性能、異常充電状態における安全性能などがある。この高温雰囲気下に曝された時の安全性能を評価する手法の1つに、電池を異常に高温にするような加速試験として、加熱したホットプレート上に、電池を放置する試験が一般的に行われている。この加速試験の判定基準は、加熱された電池が破裂して電池ケース内の電極群が外部に飛びださないこととしている。   Such a conventional cylindrical lithium ion secondary battery enables a battery with a high output density by using high-density and thin-film electrodes, but there is a problem in safety performance. There are concerns about safety performance degradation due to increased output density, such as safety performance when an internal short circuit occurs, safety performance when exposed to a high temperature atmosphere, safety performance under abnormal charging conditions, etc. . One of the methods for evaluating the safety performance when exposed to this high-temperature atmosphere is generally a test in which the battery is left on a heated hot plate as an accelerated test that raises the battery to an abnormally high temperature. Has been done. The criterion of this accelerated test is that the heated battery does not burst and the electrode group in the battery case does not jump out.

この加速試験より、電池の内部では以下に説明するようなことが起きていると考えられる。電池の温度上昇に伴い発生するガスが増大することによって電池ケース内の圧力が上昇し、封口板の安全弁が開放する。しかしながら、前記封口板の安全弁が開放するまでの間、捲回群の中心に設けた空間をセパレータの膨潤・溶融により塞いでしまうと、発生ガスは、封口板の安全弁への通り道が塞がれるため、電池ケース内の圧力上昇を封口板の安全弁が検知し、開放するまでの時間が遅れる。そして、多量のガス発生に伴い急激に増大する電池ケース内の圧力によって、捲回群が、電池ケース外に放出され、破裂に至る。このように、異常高温時における電池内部のガスが、封口板の安全弁へ抜けていく時の、抜け易さを評価する方法である。   From this accelerated test, it is considered that the following is occurring inside the battery. As the temperature of the battery increases, the amount of gas generated increases, increasing the pressure in the battery case and opening the safety valve of the sealing plate. However, if the space provided in the center of the winding group is blocked by swelling / melting of the separator until the safety valve of the sealing plate is opened, the path of the generated gas to the safety valve of the sealing plate is blocked. Therefore, the time until the safety valve of the sealing plate detects the pressure increase in the battery case and opens is delayed. And the winding group is discharged out of the battery case due to the pressure in the battery case that increases rapidly with the generation of a large amount of gas, leading to rupture. Thus, this is a method for evaluating the ease of escape when the gas inside the battery at an abnormally high temperature escapes to the safety valve of the sealing plate.

本発明は、このような従来の課題を解決するもので、サイクル特性を維持しつつ、安全性能に優れた円筒形リチウムイオン二次電池を提供することを目的とする。   The present invention solves such a conventional problem, and an object of the present invention is to provide a cylindrical lithium ion secondary battery excellent in safety performance while maintaining cycle characteristics.

前記課題を解決するために、本発明は、帯状の集電体に活物質を塗着した正極板と、帯状の集電体に活物質を塗着した負極板とを、セパレータを介して渦巻状に巻いた捲回群を具備し、この捲回群を非水電解液とともに電池ケースに挿入してなる二次電池において、捲回群の外径(φ) に対する前記捲回群の中心部に設けた空間の直径(φ)の比、φ/φを0.30〜0.40とし、かつ、電池ケースの内径(φ)に対する捲回群の外径(φ)の比、φ/φを0.94〜0.97にする。 In order to solve the above-described problems, the present invention provides a positive electrode plate in which an active material is applied to a strip-shaped current collector, and a negative electrode plate in which the active material is applied to a strip-shaped current collector through a separator. In a secondary battery comprising a wound group wound in a shape and inserted into a battery case together with a non-aqueous electrolyte, the center of the wound group with respect to the outer diameter (φ 2 ) of the wound group The ratio of the diameter (φ 1 ) of the space provided in the section, φ 1 / φ 2 is 0.30 to 0.40, and the outer diameter (φ 2 ) of the wound group with respect to the inner diameter (φ 3 ) of the battery case The ratio φ 2 / φ 3 is set to 0.94 to 0.97.

捲回群の外径に対する捲回群の中心部に設けた空間の直径の比率と電池ケースの内径に対する捲回群の外径の比率を適正化することにより、ホットプレート試験を代表される異常高温下に曝されても破裂に至ることがなく、安全性が高く、サイクル特性に優れた円筒形リチウムイオン二次電池を提供することができる。   Abnormalities represented by the hot plate test by optimizing the ratio of the diameter of the space provided in the center of the wound group to the outer diameter of the wound group and the ratio of the outer diameter of the wound group to the inner diameter of the battery case It is possible to provide a cylindrical lithium ion secondary battery that does not rupture even when exposed to high temperatures, is highly safe, and has excellent cycle characteristics.

電池が異常高温下に曝された際に、破裂に至らないようにするには、発生するガスを効率よく外部に放出させる必要がある。そのためには、前記捲回群の中心部に設けた空間もしくは、電池ケースと捲回群の間に存在する空間をセパレータの膨潤・溶融により塞がないようにする必要がある。   In order to prevent explosion when the battery is exposed to an abnormally high temperature, it is necessary to efficiently release the generated gas to the outside. For this purpose, it is necessary to prevent the space provided at the center of the winding group or the space existing between the battery case and the winding group from being blocked by swelling and melting of the separator.

本発明の円筒形リチウムイオン二次電池は、帯状の集電体に活物質を塗着した正極板と、帯状の集電体に活物質を塗着した負極板とを、セパレータを介して渦巻状に巻いた捲回群を有し、前記捲回群を非水電解液とともに、電池ケースに挿入している。   A cylindrical lithium ion secondary battery according to the present invention includes a positive electrode plate in which an active material is applied to a strip-shaped current collector, and a negative electrode plate in which an active material is applied to a strip-shaped current collector through a separator. The winding group is inserted into a battery case together with a non-aqueous electrolyte.

前記捲回群の外径(φ)に対する中心部に設けた空間の直径(φ)の比、すなわちφ/φを0.30より小さくすると異常高温状態で発生するガスが効率よく外部に放出されないため、電池が破裂して電池ケース内の電極群が外部に飛びだし、逆に、φ/φを0.40より大きくすると電池の容量が著しく低下してしまう。また、φ/φが0.30〜0.40の範囲内で電池ケースの内径(φ)に対する捲回群の外径(φ)の比、すなわちφ/φを0.94より小さくすると、電池容量が著しく低下すると同時に、電極群の外径が小さくなるため、電池ケース内での電極群の移動量が大きくなる。このことにより、負極リードを電池ケースに溶着する際の位置決めが困難になり、製造工程上、不具合が生じる。逆に、φ/φを0.97より大きくすると、電極群の外径が大きくなるため、電池ケースへの挿入が非常に困難になり、電池ケースの開口部で電極群の外周が電池ケースによりけずられる現象、いわゆる“かじり”が発生し、内部短絡に至る等の不具合が生じる。 When the ratio of the diameter (φ 1 ) of the space provided in the center with respect to the outer diameter (φ 2 ) of the wound group, that is, φ 1 / φ 2 is smaller than 0.30, the gas generated at an abnormally high temperature is efficiently obtained Since it is not released to the outside, the battery bursts and the electrode group in the battery case jumps to the outside. Conversely, if φ 1 / φ 2 is larger than 0.40, the capacity of the battery is significantly reduced. In addition, the ratio of the outer diameter (φ 2 ) of the wound group to the inner diameter (φ 3 ) of the battery case, that is, φ 2 / φ 3 , is within the range of φ 1 / φ 2 of 0.30 to 0.40. If it is smaller than 94, the battery capacity is remarkably reduced, and at the same time, the outer diameter of the electrode group is reduced, so that the amount of movement of the electrode group within the battery case is increased. As a result, positioning when the negative electrode lead is welded to the battery case becomes difficult, resulting in problems in the manufacturing process. On the other hand, if φ 2 / φ 3 is larger than 0.97, the outer diameter of the electrode group becomes large, so that it becomes very difficult to insert the battery group into the battery case. Phenomena such as a galling phenomenon that occurs depending on the case occurs, leading to an internal short circuit.

以上の理由から、本発明を実施するための最良の形態は、φ/φが0.30〜0.40、かつφ/φが0.94〜0.97である。 For the above reasons, the best mode for carrying out the present invention is that φ 1 / φ 2 is 0.30 to 0.40 and φ 2 / φ 3 is 0.94 to 0.97.

本発明の円筒形リチウムイオン二次電池における正極は、少なくとも正極活物質と結着剤と導電剤を含む。正極活物質としては、リチウム含有複合酸化物を挙げることができる。この複合酸化物としては、コバルト酸リチウム、コバルト酸リチウムの変性体、ニッケル酸リチウム、ニッケル酸リチウムの変性体、マンガン酸リチウム、マンガン酸リチウムの変性体などが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものがある。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものもある。   The positive electrode in the cylindrical lithium ion secondary battery of the present invention includes at least a positive electrode active material, a binder, and a conductive agent. An example of the positive electrode active material is a lithium-containing composite oxide. As this complex oxide, lithium cobaltate, a modified product of lithium cobaltate, lithium nickelate, a modified product of lithium nickelate, lithium manganate, a modified product of lithium manganate, and the like are preferable. Some modified bodies contain elements such as aluminum and magnesium. There are also those containing at least two of cobalt, nickel and manganese.

正極に用いる結着剤は、特に限定されず、ポリテトラフルオロエチレン、変性アクリロニトリルゴム粒子、ポリフッ化ビニリデンなどを用いることができる。ポリテトラフルオロエチレンや変性アクリロニトリルゴム粒子は、正極合剤層の原料ペーストの増粘剤となるカルボキシメチルセルロース、ポリエチレンオキシド、変性アクリロニトリルゴムなどと組み合わせて用いることが好ましい。ポリフッ化ビニリデンは、単一で結着剤と増粘剤の双方の機能を有する。   The binder used for the positive electrode is not particularly limited, and polytetrafluoroethylene, modified acrylonitrile rubber particles, polyvinylidene fluoride, and the like can be used. The polytetrafluoroethylene and modified acrylonitrile rubber particles are preferably used in combination with carboxymethyl cellulose, polyethylene oxide, modified acrylonitrile rubber and the like that serve as a thickener for the raw material paste of the positive electrode mixture layer. Polyvinylidene fluoride has a single function as both a binder and a thickener.

導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。   As the conductive agent, acetylene black, ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.

負極は、少なくとも負極活物質と結着剤を含む。負極活物質としては、各種天然黒鉛、各種人造黒鉛、シリサイドなどのシリコン含有複合材料、各種合金材料を用いることができる。結着剤としては、ポリフッ化ビニリデンおよびその変性体を始め各種バインダーを用いることができる。   The negative electrode includes at least a negative electrode active material and a binder. As the negative electrode active material, various natural graphites, various artificial graphites, silicon-containing composite materials such as silicide, and various alloy materials can be used. As the binder, various binders such as polyvinylidene fluoride and modified products thereof can be used.

非水電解液には、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などの各種リチウム塩を溶質として用いることができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを用いることが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。また、添加剤としては、ビニレンカーボネート、シクロヘキシルベンゼン、ジフェニルエーテルなどを用いることもできる。 In the non-aqueous electrolyte, various lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) can be used as solutes. As the non-aqueous solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used, but are not limited thereto. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. Moreover, as an additive, vinylene carbonate, cyclohexylbenzene, diphenyl ether, etc. can also be used.

セパレータは、円筒形リチウムイオン二次電池の使用環境に耐え得る材料からなるものであれば、特に限定されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂からなる微多孔フィルムを用いることが一般的である。微多孔フィルムは、1種のポリオレフィン系樹脂からなる単層膜であってもよく、2種以上のポリオレフィン系樹脂からなる多層膜であってもよい。   The separator is not particularly limited as long as it is made of a material that can withstand the use environment of the cylindrical lithium ion secondary battery, but it is common to use a microporous film made of a polyolefin-based resin such as polyethylene or polypropylene. . The microporous film may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resin.


図1に、本発明の一実施例である円筒形リチウムイオン二次電池の概略縦断面図を示す。

FIG. 1 is a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery which is an embodiment of the present invention.

図1において、帯状のアルミニウム箔集電体(図示せず)に正極合剤(図示せず)が塗着された正極板1と、帯状の銅箔集電体(図示せず)に負極合剤(図示せず)が塗着された負極板2と、正極板間に厚み20μmのセパレータ3を配して渦巻き状に巻かれた捲回群4が、電解液とともに電池ケース6内に収納されている。電池ケース6の上端開口部を、絶縁ガスケット8を介して電池蓋7の外周にかしめることにより、電池5は密閉されている。正極リード9は、電池蓋7に溶接により接続され、負極リード10は、電池ケース6に溶接により接続されている。捲回群4の上部には、電池蓋7と絶縁するために上部絶縁リング11が配置され、捲回群4の下部には、電池ケース6と絶縁するために下部絶縁リング12が配置されている。作製した電池5は、直径18mm、高さ65mmの18650サイズの円筒形リチウムイオン二次電池で、電池容量が2000mAhである。   In FIG. 1, a positive electrode plate 1 in which a positive electrode mixture (not shown) is coated on a strip-shaped aluminum foil current collector (not shown), and a negative electrode composite on a strip-shaped copper foil current collector (not shown). A negative electrode plate 2 coated with an agent (not shown) and a wound group 4 wound in a spiral shape with a separator 3 having a thickness of 20 μm interposed between the positive electrode plates are housed in a battery case 6 together with the electrolyte. Has been. The battery 5 is hermetically sealed by caulking the upper end opening of the battery case 6 to the outer periphery of the battery lid 7 via an insulating gasket 8. The positive electrode lead 9 is connected to the battery lid 7 by welding, and the negative electrode lead 10 is connected to the battery case 6 by welding. An upper insulating ring 11 is disposed above the winding group 4 to insulate it from the battery lid 7, and a lower insulating ring 12 is disposed below the winding group 4 to insulate from the battery case 6. Yes. The produced battery 5 is a 18650 size cylindrical lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm, and has a battery capacity of 2000 mAh.

以下に、正極と負極の作製方法、および電解液の調整方法について、詳細に説明する。
(a)正極の作製
コバルト酸リチウム3kgと、結着剤としてポリフッ化ビニリデン(呉羽化学(株)製#1320(固形分12重量%のN−メチル−2−ピロリドン(以下、NMPと略す)溶液)(以下、PVDFと略す))を1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製する。このペーストを15μm厚のアルミニウム箔に塗布し、乾燥後圧延して、正極合剤層を形成する。
(b)負極の作製
人造黒鉛3kgと、結着剤としてスチレン−ブタジエン共重合体(日本ゼオン(株)製BM−400B、固形分40重量%の水性分散液)75gと、増粘剤としてのカルボキシメチルセルロース30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製する。このペーストを10μm厚の銅箔に塗布し、乾燥後圧延して、負極合剤層を形成する。
(c)電解液の調製
エチレンカーボネートと、ジメチルカーボネートと、メチルエチルカーボネートとを体積比2:3:3で混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を1mol/Lの濃度で溶解し、さらに添加剤として、ビニレンカーボネートを3重量%加え、電解液を調製する。
Below, the preparation methods of a positive electrode and a negative electrode, and the adjustment method of electrolyte solution are demonstrated in detail.
(A) Production of Positive Electrode 3 kg of lithium cobaltate and polyvinylidene fluoride as a binder (# 1320 manufactured by Kureha Chemical Co., Ltd. (N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) solution having a solid content of 12% by weight) ) (Hereinafter abbreviated as PVDF)), 90 g of acetylene black, and an appropriate amount of NMP are stirred in a double-arm kneader to prepare a positive electrode mixture paste. This paste is applied to an aluminum foil having a thickness of 15 μm, dried and rolled to form a positive electrode mixture layer.
(b) Preparation of negative electrode 3 kg of artificial graphite, 75 g of styrene-butadiene copolymer (BM-400B manufactured by Nippon Zeon Co., Ltd., aqueous dispersion having a solid content of 40% by weight) as a binder, 30 g of carboxymethyl cellulose and an appropriate amount of water are stirred with a double-arm kneader to prepare a negative electrode mixture paste. This paste is applied to a 10 μm thick copper foil, dried and then rolled to form a negative electrode mixture layer.
(C) Preparation of electrolyte solution In a mixed solvent obtained by mixing ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate in a volume ratio of 2: 3: 3, a concentration of 1 mol / L of lithium hexafluorophosphate (LiPF 6 ) Then, 3% by weight of vinylene carbonate is added as an additive to prepare an electrolytic solution.

以下に、捲回群4の中心部に設けた空間13の直径φ、捲回群4の外径φ、電池ケース6の内径φについて、図2を用いて詳細に説明する。 Hereinafter, the diameter φ 1 of the space 13 provided at the center of the wound group 4, the outer diameter φ 2 of the wound group 4, and the inner diameter φ 3 of the battery case 6 will be described in detail with reference to FIG.

《実施例1〜5》
捲回群4の中心部に設けた空間の直径13をφ、捲回群4の外径をφ、電池ケース6の内径をφとした時のφに対するφの比、φ/φおよびφに対するφの比、φ/φを表1に示す値になるように円筒形リチウムイオン二次電池を作製した。
<< Examples 1-5 >>
The ratio of φ 1 to φ 2 when the diameter 13 of the space provided at the center of the wound group 4 is φ 1 , the outer diameter of the wound group 4 is φ 2 , and the inner diameter of the battery case 6 is φ 3 , φ 1 / phi 2 and phi 3 for phi 2 ratio, the φ 2 / φ 3 to prepare a cylindrical lithium ion secondary battery so as to the values shown in Table 1.

《比較例1〜4》
捲回群4の中心部に設けた空間13の直径をφ、捲回群4の外径をφ、電池ケース6の内径をφとした時のφに対するφの比、φ/φおよびφに対するφの比、φ/φを表1に示す値になるように円筒形リチウムイオン二次電池を作製した。
<< Comparative Examples 1-4 >>
The ratio of φ 1 to φ 2 when the diameter of the space 13 provided in the center of the wound group 4 is φ 1 , the outer diameter of the wound group 4 is φ 2 , and the inner diameter of the battery case 6 is φ 3 , φ 1 / phi 2 and phi 3 for phi 2 ratio, the φ 2 / φ 3 to prepare a cylindrical lithium ion secondary battery so as to the values shown in Table 1.

このようにして作製した電池をホットプレート試験、電池容量試験、充放電サイクル試験を行った結果を表2に示す。   Table 2 shows the results of the hot plate test, the battery capacity test, and the charge / discharge cycle test performed on the battery thus manufactured.

なお、ホットプレート試験、電池容量試験、充放電サイクル試験は次のようにして行った。   The hot plate test, battery capacity test, and charge / discharge cycle test were conducted as follows.

(ホットプレート試験)
ホットプレート試験は、加熱したホットプレート上に、電池を放置し、電池を異常に高温にするような加速試験として、一般的に行われている試験である。
(Hot plate test)
The hot plate test is a test that is generally performed as an accelerated test in which a battery is left on a heated hot plate and the battery is heated to an abnormally high temperature.

上記のように作製した円筒形リチウムイオン二次電池各10個を用いて、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまでは1400mA(0.7ItA)の定電流充電を行い、その後、電流値が減衰して100mA(0.05ItA)になるまで充電した満充電の電池を、250℃のホットプレート上に放置し、封口板の安全弁が開放するまでの時間を測定することで、ガスの抜け性を評価すると共に、破裂に至った個数を確認した。   Using each of the 10 cylindrical lithium ion secondary batteries produced as described above, the battery voltage reaches 4.2 V after remaining discharge at a constant current of 2000 mA (1.0 ItA) to a final voltage of 3.0 V. Until 1400 mA (0.7 ItA) is charged at constant current, and then the fully charged battery charged until the current value decays to 100 mA (0.05 ItA) is left on a 250 ° C. hot plate, By measuring the time until the safety valve of the sealing plate was opened, the gas detachability was evaluated and the number of ruptures was confirmed.

(電池容量試験)
上記のように作製した円筒形リチウムイオン二次電池各10個を用いて、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまでは1400mA(0.7ItA)の定電流充電を行い、その後、電流値が減衰して100mA(0.05ItA)になるまで充電した満充電の電池を、400mA(0.2ItA)の定電流で3.0Vの放電終止電圧まで放電させる充放電の2サイクル目の電池容量を測定し、その平均値を算出した。
(Battery capacity test)
Using each of the 10 cylindrical lithium ion secondary batteries produced as described above, the battery voltage reaches 4.2 V after remaining discharge at a constant current of 2000 mA (1.0 ItA) to a final voltage of 3.0 V. Up to 1400 mA (0.7 ItA) is charged at a constant current, and then a fully charged battery charged until the current value decays to 100 mA (0.05 ItA) at a constant current of 400 mA (0.2 ItA). The battery capacity at the second cycle of charge / discharge for discharging to a discharge end voltage of 3.0 V was measured, and the average value was calculated.

(充放電サイクル試験)
上記のように作製した円筒形リチウムイオン二次電池各10個を用いて、充放電サイクル特性は、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまでは1400mA(0.7ItA)の定電流充電を行い、その後、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で放電するサイクルを500サイクル繰り返したときの容量を測定し、3サイクル目を100%としたときの500サイクル目の容量維持率を算出し、その平均値を算出した。
(Charge / discharge cycle test)
Using each of the 10 cylindrical lithium ion secondary batteries produced as described above, the charge / discharge cycle characteristics were such that the battery voltage remained after discharging at a constant current of 2000 mA (1.0 ItA) up to a final voltage of 3.0 V. When a constant current charge of 1400 mA (0.7 ItA) is performed until the voltage reaches 4.2 V, and then a cycle of discharging at a constant current of 2000 mA (1.0 ItA) to a final voltage of 3.0 V is repeated 500 times The capacity was measured, the capacity retention rate at the 500th cycle when the third cycle was taken as 100% was calculated, and the average value was calculated.

ホットプレート試験に代表される異常高温状態において、円筒形リチウムイオン二次電池の好ましい壊れ方のモードは、発生ガスの増大によって電池ケース内の圧力が上昇し、封口板の安全弁が開放するまでの間、捲回群の中心部に設けた空間をセパレータの膨潤・溶融により塞がないことである。前記空間を塞ぐと発生ガスは、封口板の安全弁への通り道が塞がれるため、電池ケース内の圧力上昇を封口板の安全弁が検知し、開放するまでの時間が遅れる。そして、多量のガス発生に伴い急激に増大する電池ケース内の圧力によって、捲回群が、電池ケース外に放出され、破裂に至る。   In an abnormally high temperature state typified by the hot plate test, the preferred mode of breakage of the cylindrical lithium ion secondary battery is that the pressure in the battery case increases due to an increase in the generated gas and the safety valve on the sealing plate opens. In the meantime, the space provided in the central part of the winding group is not blocked by the swelling / melting of the separator. Since the passage of the generated gas to the safety valve of the sealing plate is blocked when the space is closed, the time until the safety valve of the sealing plate detects the pressure increase in the battery case and opens is delayed. And the winding group is discharged out of the battery case due to the pressure in the battery case that increases rapidly with the generation of a large amount of gas, leading to rupture.

サイクル特性に関しては、サイクル劣化につながる要因の1つとして、サイクル進行に伴う正、負電極内のインピーダンスの増大がある。さらに、前記インピーダンスが増大する要因の1つとして、両電極内に存在する電解液の“液枯れ”がある。液枯れとは、両電極が充電/放電時に膨潤・収縮を繰り返す際、電極内に保持していた電解液を電極外に押し出し、電極内で電解液の枯渇する部位が発生することである。この液枯れによって、サイクル特性は大きく低下する。   Regarding the cycle characteristics, one of the factors leading to cycle deterioration is an increase in impedance in the positive and negative electrodes as the cycle progresses. Further, as one of the factors that increase the impedance, there is “drying out” of the electrolyte present in both electrodes. Liquid depletion means that when both electrodes repeatedly swell and contract during charging / discharging, the electrolyte held in the electrode is pushed out of the electrode, and a portion where the electrolyte is depleted in the electrode is generated. The cycle characteristics are greatly deteriorated by this liquid withering.

したがって、電池ケースと捲回群の間に設けた空間、または、捲回群の中心部に設けた空間を大きくすることによって、電解液を増量することが可能となるため、前記液枯れによるサイクル特性の低下を改善できる。   Therefore, it is possible to increase the amount of electrolyte by enlarging the space provided between the battery case and the winding group, or the space provided in the center of the winding group. The deterioration of characteristics can be improved.

比較例1では、安全弁が開放されるまでの時間が長いことから、捲回群の中心部に設けた空間がセパレータの膨潤・溶融により塞がっているため、破裂に至っている。   In Comparative Example 1, since the time until the safety valve is opened is long, the space provided at the center of the wound group is blocked by the swelling / melting of the separator, leading to rupture.

実施例1から実施例3までは、捲回群の中心径が大きいため、セパレータによる目詰まりが生じても、空間が保持されている。そのため、封口板の安全弁が正常に作動し、発生ガスが効率よく外部に放出され、電池ケース内の圧力が急激に上昇しないため、破裂には至らない。   In Examples 1 to 3, since the center diameter of the wound group is large, the space is maintained even if the separator is clogged. Therefore, the safety valve of the sealing plate operates normally, the generated gas is efficiently released to the outside, and the pressure in the battery case does not increase rapidly, so that the explosion does not occur.

比較例2も捲回群の中心径が大きいため破裂には至らないが、捲回群の中心径を大きくするにつれて、電池の容量が低下してしまう。   In Comparative Example 2, the wound group does not rupture because the center diameter of the wound group is large, but the capacity of the battery decreases as the center diameter of the wound group is increased.

比較例3は捲回群の中心径を大きくし、さらに捲回群の外径も小さくすることで発生ガスの放出性がさらに改善され、安全性能が向上したが、比較例2と同様、電池の容量が低下してしまう。   In Comparative Example 3, the release diameter of the generated gas was further improved by increasing the center diameter of the wound group and further reducing the outer diameter of the wound group, and safety performance was improved. The capacity of will decrease.

実施例4、5は、安全性能、サイクル特性ともに問題ないことが判明したが、比較例4は、捲回群の外径と電池ケースの内径がほぼ同じであるため、電池ケースに挿入することが不可能であった。   In Examples 4 and 5, it was found that there was no problem in both safety performance and cycle characteristics. However, in Comparative Example 4, the outer diameter of the wound group and the inner diameter of the battery case were almost the same, so that they were inserted into the battery case. Was impossible.

以上の結果より、ホットプレート試験で破裂に至らず、安全性能、電池容量が高く、良好な充放電サイクル特性を兼ね備えた円筒形リチウムイオン二次電池を得るためには、φ/φ=0.30〜0.40であり、なおかつ、φ/φ=0.94〜0.97が好ましい。 From the above results, in order to obtain a cylindrical lithium ion secondary battery that does not rupture in the hot plate test, has high safety performance, high battery capacity, and good charge / discharge cycle characteristics, φ 2 / φ 1 = 0.30 to 0.40, and φ 1 / φ 3 = 0.94 to 0.97 is preferable.

本発明は、電池容量が高く、充放電サイクル特性優れ、高安全性の円筒形リチウムイオン二次電池を提供することができ、ノートパソコン、デジタルスチルカメラなどの電子機器の駆動電源として有用である。   INDUSTRIAL APPLICABILITY The present invention can provide a cylindrical lithium ion secondary battery with high battery capacity, excellent charge / discharge cycle characteristics, and high safety, and is useful as a drive power source for electronic devices such as notebook computers and digital still cameras. .

本発明の一実施例における円筒形リチウムイオン二次電池の縦断面概略図1 is a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention. 図1のX−Y断面の詳細図Detailed view of XY cross section of FIG.

符号の説明Explanation of symbols

1 正極板
2 負極板
3 セパレータ
4 捲回群
5 電池
6 電池ケース
7 電池蓋
8 絶縁ガスケット
9 正極リード
10 負極リード
11 上部絶縁リング
12 下部絶縁リング
13 捲回群4の中心に設けた空間
φ捲回群4の中心に設けた空間の直径
φ捲回群4の外径
φ電池ケース1の内径
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Winding group 5 Battery 6 Battery case 7 Battery cover 8 Insulating gasket 9 Positive electrode lead 10 Negative electrode lead 11 Upper insulating ring 12 Lower insulating ring 13 Space provided in the center of winding group 4 φ 1 The diameter of the space provided in the center of the winding group 4 φ 2 The outer diameter of the winding group 4 φ 3 The inner diameter of the battery case 1

Claims (1)

帯状の集電体に活物質を塗着した正極板と、帯状の集電体に活物質を塗着した負極板とを、セパレータを介して渦巻状に巻いた捲回群を具備し、この捲回群を非水電解液とともに、電池ケースに挿入してなる円筒形リチウムイオン二次電池であって、
前記捲回群の外径(φ)に対する中心部に設けた空間の直径(φ)の比、φ/φが0.30〜0.40であり、かつ、電池ケースの内径(φ)に対する捲回群の外径(φ)の比、φ/φが0.94〜0.97である円筒形リチウムイオン二次電池。
A positive electrode plate in which an active material is coated on a strip-shaped current collector and a negative electrode plate in which an active material is coated on a strip-shaped current collector are wound in a spiral shape with a separator interposed therebetween. A cylindrical lithium ion secondary battery in which a wound group is inserted into a battery case together with a non-aqueous electrolyte,
The ratio of the diameter (φ 1 ) of the space provided at the center to the outer diameter (φ 2 ) of the wound group, φ 1 / φ 2 is 0.30 to 0.40, and the inner diameter ( A cylindrical lithium ion secondary battery in which the ratio of the outer diameter (φ 2 ) of the wound group to φ 3 ), φ 2 / φ 3 is 0.94 to 0.97.
JP2004342231A 2004-11-26 2004-11-26 Cylindrical lithium-ion secondary battery Pending JP2006156007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342231A JP2006156007A (en) 2004-11-26 2004-11-26 Cylindrical lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342231A JP2006156007A (en) 2004-11-26 2004-11-26 Cylindrical lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006156007A true JP2006156007A (en) 2006-06-15

Family

ID=36634050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342231A Pending JP2006156007A (en) 2004-11-26 2004-11-26 Cylindrical lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006156007A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098023A (en) * 2006-10-13 2008-04-24 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
WO2009144919A1 (en) * 2008-05-28 2009-12-03 パナソニック株式会社 Cylindrical nonaqueous electrolytic secondary battery
JP2014212242A (en) * 2013-04-19 2014-11-13 太陽誘電株式会社 Electrochemical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279566U (en) * 1988-12-07 1990-06-19
JP2003059539A (en) * 2001-08-22 2003-02-28 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2003229177A (en) * 2001-11-28 2003-08-15 Sanyo Electric Co Ltd Sealed battery
JP2003257494A (en) * 2002-02-28 2003-09-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2003308873A (en) * 2002-04-17 2003-10-31 Sony Corp Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279566U (en) * 1988-12-07 1990-06-19
JP2003059539A (en) * 2001-08-22 2003-02-28 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2003229177A (en) * 2001-11-28 2003-08-15 Sanyo Electric Co Ltd Sealed battery
JP2003257494A (en) * 2002-02-28 2003-09-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2003308873A (en) * 2002-04-17 2003-10-31 Sony Corp Nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098023A (en) * 2006-10-13 2008-04-24 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
WO2009144919A1 (en) * 2008-05-28 2009-12-03 パナソニック株式会社 Cylindrical nonaqueous electrolytic secondary battery
US20100233524A1 (en) * 2008-05-28 2010-09-16 Yasuhiko Hina Cylindrical non-aqueous electrolyte secondary battery
JP2014212242A (en) * 2013-04-19 2014-11-13 太陽誘電株式会社 Electrochemical device

Similar Documents

Publication Publication Date Title
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
JP4915390B2 (en) Non-aqueous electrolyte battery
JP3368877B2 (en) Cylindrical lithium-ion battery
US20100233524A1 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2000058117A (en) Nonaqueous secondary battery
US20110250505A1 (en) Non-aqueous electrolyte secondary battery
JP2000077061A (en) Lithium ion battery
JP2002313415A (en) Non-aqueous electrolyte secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
US20060172180A1 (en) Non-aqueous electrolyte secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2010108679A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2008251187A (en) Sealed battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP3402237B2 (en) Non-aqueous electrolyte secondary battery
JP2002289159A (en) Nonaqueous electrolyte secondary battery pack
JP2007073212A (en) Lithium-ion secondary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP2009302019A (en) Sealed battery
JP2006156007A (en) Cylindrical lithium-ion secondary battery
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP2003303623A (en) Non-aqueous electrolyte battery
JP2002110251A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019