JP4567822B2 - Square non-aqueous electrolyte secondary battery - Google Patents

Square non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4567822B2
JP4567822B2 JP07928199A JP7928199A JP4567822B2 JP 4567822 B2 JP4567822 B2 JP 4567822B2 JP 07928199 A JP07928199 A JP 07928199A JP 7928199 A JP7928199 A JP 7928199A JP 4567822 B2 JP4567822 B2 JP 4567822B2
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
intermediate layer
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07928199A
Other languages
Japanese (ja)
Other versions
JP2000277146A (en
Inventor
高弘 山本
孝之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07928199A priority Critical patent/JP4567822B2/en
Publication of JP2000277146A publication Critical patent/JP2000277146A/en
Application granted granted Critical
Publication of JP4567822B2 publication Critical patent/JP4567822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角型非水電解液二次電池に関する。
【0002】
【従来の技術】
近年、リチウムイオン二次電池に代表される非水電解液二次電池は、高エネルギー密度を有することから、一体型ビデオカメラ、CDプレーヤー、MDプレーヤー、パソコン、携帯情報データ端末機、携帯電話等のコードレスの携帯型電子機器の電源として注目されている。
【0003】
最近、角型非水電解液二次電池の需要が伸びており、小型・軽量化への要求が進む中で、例えば自動車内での保存や船舶等での輸送などにおける高温状態での保存特性の改良への要求がある。特に、角型二次電池において高温状態の保存は、電池の形状から外装缶の膨れが問題になっている。さらに、軽量化が進む中で外装缶を例えばアルミニウム等にすると、前記外装缶の膨れはより顕著になるという問題があった。
【0004】
ところで、従来、電池のサイクル特性や出力特性を高めるに非水電解液中に溶解される非水電解質としてイオン電導性の高いヘキサフルオロリン酸リチウム(LiPF6)を使用することが検討されている。しかしながら、角型非水電解液二次電池において電池諸特性を維持しつつ高温保存時のガス発生による二次電池の膨れやインピーダンスの増加を抑制することは未だ充分に満足する結果が得られていない。
【0005】
【発明が解決しようとする課題】
本発明は、サイクル特性等の諸特性を維持しつつ、高温保存時の膨れおよびインピーダンスの増加を抑制した角型非水電解液二次電池を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明に係わる角型非水電解液二次電池は、正極、負極、セパレータおよび非水電解液を備えた角型非水電解液二次電池であって、
前記非水電解液は、0.05〜0.3モル/Lの濃度のテトラフルオロホウ酸リチウムおよび0.75モル/L以上の濃度のヘキサフルオロリン酸リチウム電解質を含み、かつこの電解質の総濃度が1.3モル/L以下であり、
前記正極は、集電体と活物質層との間に導電性中間層を介在した構造を有し、前記導電性中間層は0.01〜10μmの粒度を持つカーボンブラック類からなる炭素質導電性粒子とゴム架橋体からなる結着剤とを含有し、通常の充電状態および放電状態で比抵抗が1Ω・cm以下の導電性を示し、過充電状態でその100倍以上の比抵抗を示すことを特徴とするものである。
【0008】
【発明の実施の形態】
以下、本発明に係わる角型非水電解液二次電池を詳細に説明する。
【0009】
この角型非水電解液二次電池は、正極、負極、セパレータおよび非水電解液を備える。
【0010】
次に、前記正極、負極、セパレータおよび非水電解液を説明する。
【0011】
1)正極
この正極は、活物質含有層を集電体に担持した構造を有する。
【0012】
前記活物質含有層は、例えば活物質と結着剤とを含有する。前記活物質としては、例えばLiCoO2、LiNiO2、LiMn24、LiCo(1-x)Nix2(xは0<x<1を示す)、LiCo(1-y)y2(Mは、Co,Ni以外の金属で、例えばIn,Sn等を示し、yは0<y<0.1を示す)等のリチウム−遷移金属複合酸化物を挙げることができる。これらのリチウム−遷移金属複合酸化物は,2種以上の混合物で用いることができる。
【0013】
前記集電体としては、例えばアルミニウム板、アルミニウムメッシュ材等を挙げることができる。
【0014】
前記正極は、集電体と活物質含有層の間に導電性中間層を配置した構造を有することが好ましい。
【0015】
前記導電性中間層は、通常の充電状態および放電状態では導体であり、使用に際しての電流が制限されないが、100%充電(満充電)を超えてさらに充電を続けた場合、高抵抗体になる性質を有する。例えば、通常の電池使用状態では比抵抗が1Ω・cm以下の導電性を示すが、過充電状態になると、その100倍以上の比抵抗を示す。
【0016】
前記導電性中間層は、例えば炭素質導電性粒子と結着剤とを含有することが好ましい。
【0017】
前記炭素質導電性粒子としては、例えばファーネスブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、粉末状黒鉛、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等を挙げることができる。特に、カーボンブラック類は薄膜成形性に優れ、かつ通常の使用時における導電性が高く、さらに過充電時の抵抗増大機能が優れているため好適である。
【0018】
前記炭素質導電性粒子の粒度は、特に限定されないが、前記導電性中間層の薄膜化および過充電時における前記導電性中間層の高抵抗体化の観点から0.01〜10μm、より好ましくは0.04〜1μmの粒度にすることが望ましい。
【0019】
前記結着剤としては、例えばフッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、またはフッ素ゴムのようなゴム系樹脂を用いることができる。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリエチレン、ポリアクリロニトリル、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレン−ブタジエンゴム、水添スチレン−ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、カルボキシメチルセルロース党が挙げられる。これらの結着剤の中でエラストマー、ゴム架橋体または極性基を導入した変成体は、前記集電体と前記活物質層との密着性の向上および過充電時の抵抗増大効果の向上の観点から好適である。
【0020】
前記導電性中間層は、前記結着剤が前記炭素質導電性粒子に対して10重量%以上、100重量%未満配合されることが好ましい。前記結着剤の配合量を10重量%未満にすると、前記集電体に対する導電性中間層の密着性が低下する恐れがある。一方、前記結着剤の配合量が100重量%以上にすると導電性中間層の導電性が損なわれ、比抵抗が1Ω・cm以上になり、常用の正極の内部抵抗が高くなったり、過充電時の抵抗増大効果も低減される。より好ましい前記炭素質導電性粒子に対する前記結着剤の配合量は、20〜70重量%である。
【0021】
前記導電性中間層は、0.1〜30μm、より好ましくは0.5〜10μmの厚さを有することが望ましい。前記導電性中間層の厚さを0.1μm未満にすると、前記集電体と前記活物質層とが直接接合するバイパス部分が局所的に形成され、過充電時の導電性中間層部分の抵抗増大による電流遮断効果が不十分になる恐れがある。一方、前記導電性中間層の厚さが30μmを超えると、正極に占める前記導電性中間層の割合が増大し、活物質含有層の比率が相対的に低下して容量の低減化を生じる恐れがある。
【0022】
前記導電性中間層は、前記集電体に対して1〜30g/m2、より好ましくは1.5〜10g/m2にすることが望ましい。
【0023】
前述した導電性中間層を有する正極は、例えば次のような方法により作製することができる。
【0024】
まず、アルミニウム薄膜のような集電体に炭素質導電性粒子と結着剤とを含む分散剤をグラビアロールコータ、ブレードコータ、ロールコータ、バーコータ等により塗布し、乾燥して導電性中間層を形成する。つづいて、前記導電性中間層上に活物質および結着剤を含むペーストを塗布し、乾燥することにより活物質含有層を形成して正極を作製する。このような導電性中間層の形成工程においては、塗布、乾燥時に結着剤が表面に集合する、いわゆる膜張りの生成を回避して結着剤と炭素質導電性粒子が均一に分散させることが好ましい。
【0025】
2)負極
この負極は、特に限定されないが、金属リチウム、リチウム合金、または充放電時にリチウムイオンを可逆的に吸蔵・放出、もしくはインターカレート・ディインターカレートするグラファイト、コークス、カーボン、ポリアセン等の炭素質材料を含むペーストを銅箔のような集電体に保持させたものを用いることができる。
【0026】
3)非水電解液
この非水電解液は、電解質を非水溶媒で溶解した組成を有する。
【0027】
前記電解質は、0.05〜0.3モル/Lの濃度のテトラフルオロホウ酸リチウム(LiBF4)、0.75モル/L以上の濃度のヘキサフルオロリン酸リチウム(LiPF6)を含み、かつこれらの総濃度が1.3モル/L以下である特徴を有する。
【0028】
前記LiBF4の量を0.05モル/L未満にすると、高温保存時のガス発生やインピーダンスの増加を抑制することが困難になる。一方、前記LiBF4の量が0.3モル/Lを超えると、サイクル特性や出力特性が低下する恐れがある。
【0029】
前記LiPF6の量を0.75モル/L未満にすると、イオン伝導度が低くなって、サイクル特性や出力特性が低下するばかりか、容量が低下する恐れがある。
【0030】
前記LiBF4とLiPF6との総濃度が1.3モル/Lを超えると、過充電時に電池が異常に発熱した際リチウムと電解液との反応が起こりやすくなり、電池の発熱が増大して安全性が低下する恐れがある。
【0031】
前記非水溶媒としては、特に制限されないが、前記導電性中間層を過充電時に高抵抗体化させる観点から、環状炭酸エステルを含有することが好ましい。この環状炭酸エステルとしては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、バレロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−ジオキソラン、スルホラン等を挙げることができる。特に、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートが好適である。
【0032】
前記環状炭酸エステル類と併用される非水溶媒としては、エーテル類、ケトン類、ニトリル類、アミド類、スルホン系化合物、鎖状カーボネート類、鎖状エステル類、芳香族炭化水素類等から選ばれる1種または2種以上の混合物を挙げることができる。これらのうちでエーテル類、ケトン類、鎖状カーボネート類、鎖状エステル類が好ましい。
【0033】
前記環状炭酸エステル類と併用される非水溶媒を具体的に例示すると、ジメトキシエタン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、ジメチルホルムアミド、ジメチルスルホキシド、シメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチル等を挙げることができる。
【0034】
前記セパレータとしては、ポリエチレン、ポリプロピレンのような合成樹脂からなる多孔性フィルムが用いられる。
【0035】
前記非水電解液は、一般的に溶液の形態で用いられるが、固体状、例えばゾル状、ゲル状等、または固体状と溶液状の混合形態であってもよい。
【0036】
前述したように正極として集電体と活物質層との間に導電性中間層を介在させると、過充電時における電池の安全性を確保することが可能になる。ただし、導電性中間層を有する正極を用いると、高温保存時においてインピーダンスの増大が大きくなって電池特性を低下させる恐れがある。特定の電解質を特定の量で含有する前記非水電解液を用いることによって、インピーダンスの増大を抑制して電池特性の低下を防ぐことができる。
【0037】
次に、本発明に係わる角型非水電解液二次電池を図1を参照して説明する。
【0038】
金属からなる有底矩形筒状をなし、例えばアルミニウムから作られる外装缶1は、例えば正極端子を兼ね、底部内面に絶縁フィルム2が配置されている。発電要素である電極体3は、前記外装缶1内に収納されている。前記電極体3は、負極4とセパレータ5と正極6とを前記正極6が最外周に位置するように渦巻状に捲回した後、扁平状にプレス成形することにより作製したものである。中心付近にリード取出穴を有する例えば合成樹脂からなるスペーサ7は、前記外装缶1内の前記電極体3上に配置されている。
【0039】
金属製蓋体8は、前記外装缶1の上端開口部に例えばレーザ溶接により気密に接合されている。前記蓋体8の中心付近には、負極端子の取出し穴9が開口されている。負極端子10は、前記蓋体8の穴9にガラス製または樹脂製の絶縁材11を介してハーメティックシールされている。前記負極端子10の下端面には、リード12が接続され、かつこのリード12の他端は前記電極体3の負極4に接続されている。
【0040】
上部側絶縁紙13は、前記蓋体8の外表面全体に被覆されている。スリット14を有する下部側絶縁紙15は、前記外装缶1の底面に配置されている。二つ折りされたPTC素子(Positive Temperature Coefficient)16は、一方の面が前記外装缶1の底面と前記下部側絶縁紙15の間に介装され、かつ他方の面が前記スリット14を通して前記絶縁紙15の外側に延出されている。外装チューブ17は、前記外装缶1の側面から上下面の絶縁紙13、15の周辺まで延出するように配置され、前記上部側絶縁紙13および下部側絶縁紙15を前記外装缶1に固定している。このような外装チューブ17の配置により、外部に延出された前記PTC素子16の他方の面が前記下部側絶縁紙15の底面に向けて折り曲げられる。
【0041】
以上説明した本発明に係わる角型非水電解二次電池は、正極、負極、セパレータおよび非水電解液を備え、前記非水電解液が0.05〜0.3モル/Lの濃度のテトラフルオロホウ酸リチウム、0.75モル/L以上の濃度のヘキサフルオロリン酸リチウム電解質を含み、かつこの電解質の総濃度が1.3モル/L以下であるため、サイクル特性等の諸特性を維持しつつ、高温保存時の膨れおよびインピーダンスの増加を抑制することができる。
【0042】
特に、集電体と活物質層との間に導電性中間層が介在された構造を有する正極を用いることによって、電流上昇による前記導電性中間層が高抵抗体に変化して電流の低減、遮断させることができる。その結果、過充電時における電池の安全性を確保することが可能になる。
【0043】
【実施例】
以下、本発明の実施例を前述した図1に示すような角型非水電解液二次電池を参照して詳細に説明する。
【0044】
参照例1、2および比較例1,2)
<正極の作製>
まず、活物質としての平均粒径5μmのLiCoO2粉末89重量部、導電フィラーとしてのグラファイト粉末(ロンザ社製商品名;KS6)8重量部および結着剤としてのポリフッ化ビニリデン樹脂(呉羽化学社製商品名;#1100)3重量部をN−メチルピロリドン25重量部にデイゾルバーおよびビーズミルを用いて攪拌、混合して活物質含有ペーストを調製した。このペーストを前記集電体であるAl箔両面にそれぞれ塗工した後、乾燥させ、さらにプレス、スリット加工を施して厚さ180μmのリール状正極を作製した。
【0045】
<負極の作製>
まず、グラファイト(ロザン社製商品名;KS15)100重量部にスチレン/ブタジエンラテックス(旭化成社製商品名;L1571、固形分48重量%)4.2重量部、カルボキシメチルセルロース(第一製薬社製商品名;BSH12)の水溶液(固形分1重量%)130重量部および水20重量部を添加し、混合してペーストを調製した。つづいて、このペーストを厚さ10μm、幅570mmのCu箔に塗布し、乾燥した後、プレス、スリット加工を施して厚さ160μmのリール状負極を作製した。
【0046】
次いで、前記正負極の間にポリエチレン製微多孔膜を挟んだ後、捲回機により渦巻き状に捲回し、つづいて、この円筒状物を10kg/cm2の圧力で圧縮して偏平状電極体(発電要素)を作製した。ひきつづき、外装缶内に前記偏平状電極体を挿入し、下記表1に示す組成の非水電解液を注入した後、前記外装缶の開口部に封口体をレーザ溶接することにより前述した図1に示す構造の4種の角型非水電解液二次電池(リチウムイオン二次電池)を組立てた。
【0047】
得られた参照例1、2および比較例1,2の二次電池について、以下に説明する試験による3サイクル目の外装缶の厚さ変化およびインピーダンスの変化を測定した。
【0048】
すなわち、1サイクル目は20℃で充電を0.5CmA定電流の後、4.2V定電圧で6時間行い、つづいて放電を1CmA定電流で、放電終止電圧3.0Vの条件で行った。2サイクル目は、20℃で充電を1CmA定電流の後、4.2V定電圧で3時間行い、つづいて放電を1CmA定電流で、放電終止電圧3.0Vの条件で行った。3サイクル目は、20℃で充電を1CmA定電流の後、4.2V定電圧で3時間行い、充電のまま85℃の恒温槽に保存し24時間後の外装缶の厚さ変化とおよびインピーダンスの変化を測定した。ここで、1CmAとは満充電の電池を1時間で放電し得る電流を意味する。よって、0.5CmAは1CmAの0.5倍、電流量としては1/2となる。
【0049】
また、前記各二次電池について、満充電から1CmAで最大12Vまで充電し、電池がガス噴出、発火しない場合は8時間通電しつづける過充電試験、満充電から1CmAで最大32Vまで充電し、電池がガス噴出、発火しない場合は8時間通電しつづける過充電試験を行った。さらに、前記各二次電池について、20℃にて、充放電電流1CmAで、4.2V〜3.0Vの繰り返しを300回行った時の初期容量に対する容量維持率(サイクル特性)を測定した。
【0050】
これらの結果を下記表1に示す。
【0051】
【表1】

Figure 0004567822
【0052】
前記表1から明らかなように参照例1,2の二次電池は、比較例1の二次電池に比べて、優れたサイクル特性を有し、かつ85℃保存後の外装缶の厚さ変化およびインピーダンスの増加量が小さく、優れた特性を有することがわかる。
【0053】
また、参照例1、2および比較例1の二次電池は過充電試験において満充電から1CmAで最大12Vに充電した結果は良好であるものの、満充電から1CmAで最大32Vに充電する過酷な過充電試験では漏液等の発生頻度が高くなる。
【0054】
また、比較例2の二次電池は85℃保存後の特性が優れているものの、過充電試験による性能が劣ることがわかる。
【0055】
(実施例3〜7および比較例3〜5)
<正極の作製>
次の方法により作製した正極を用い、かつ下記表2に示す組成の非水電解液をを用いた以外、実施例1と同様な方法により前述した図1に示す構造の8種の角型非水電解液二次電池(リチウムイオン二次電池)を組立てた。
【0056】
(実施例1〜5および比較例3〜5)
<正極の作製>
次の方法により作製した正極を用い、かつ下記表2に示す組成の非水電解液を用いた以外、参照例1と同様な方法により前述した図1に示す構造の8種の角型非水電解液二次電池(リチウムイオン二次電池)を組立てた。
【0057】
次いで、活物質としての平均粒径3μmのLiCoO2粉末89重量部、導電フィラーとしてのグラファイト粉末(ロンザ社製商品名;KS6)8重量部および結着剤としてのポリフッ化ビニリデン樹脂(呉羽化学社製商品名;#1100)3重量部をN−メチルピロリドン25重量部にデイゾルバーおよびビーズミルを用いて攪拌、混合して活物質含有ペーストを調製した。このペーストを前記集電体であるAl箔両面に被覆された導電性中間層にそれぞれ塗工した後、乾燥させ、さらにプレス、スリット加工を施して厚さ180μmの正極を作製した。
【0058】
得られた実施例1〜5および比較例3〜5の二次電池について、参照例1と同様な手法により3サイクル目の外装缶の厚さ変化およびインピーダンスの変化を測定した。
【0059】
また、前記各二次電池について、満充電から1CmAで最大32Vまで充電し、電池がガス噴出、発火しない場合は8時間通電しつづける過充電試験を行った。さらに、前記各二次電池について、20℃にて、充放電電流1CmAで、4.2V〜3.0Vの繰り返しを300回行った時の初期容量に対する容量維持率(サイクル特性)を測定した。
【0060】
これらの結果を下記表2に示す。
【0061】
【表2】
Figure 0004567822
【0062】
前記表2から明らかなように実施例1〜5の二次電池は、比較例4の二次電池に比べて、優れたサイクル特性を有し、かつ比較例3の二次電池に比べて85℃保存後の外装缶の厚さ変化およびインピーダンスの増加量が小さく、優れた特性を有することがわかる。一方、比較例5の二次電池は実施例1〜5の二次電池と同等のサイクル特性および85℃保存後の外装缶の厚さ変化が小さいものの、過酷な過充電試験において30個中5個の二次電池がガス噴出を生じ、安全性の点問題がある。
【0063】
また、導電性中間層を有する正極を備えた実施例1〜5の二次電池は導電性中間層を介在させない正極を備えた参照例1,2の二次電池に比べて満充電から1CmAで最大32Vに充電する過酷な過充電試験において良好な特性を示すことがわかる。
【0064】
【発明の効果】
以上詳述したように、本発明によればサイクル特性等の諸特性を維持しつつ、高温保存時の膨れおよびインピーダンスの増加を抑制した高温状態での使用の耐えうる高信頼性の角型非水電解液二次電池を提供できる。
【図面の簡単な説明】
【図1】本発明に係わる非水電解液二次電池の一例である角型リチウムイオン二次電池を示す部分切欠斜視図。
【符号の説明】
1…外装缶、
3…電極体、
4…負極、
5…セパレータ、
6…正極
8…蓋体、
14…PTC素子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prismatic non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have a high energy density, so an integrated video camera, CD player, MD player, personal computer, portable information data terminal, mobile phone, etc. Has attracted attention as a power source for cordless portable electronic devices.
[0003]
Recently, the demand for prismatic non-aqueous electrolyte secondary batteries has been increasing, and the demand for miniaturization and weight reduction has progressed. For example, storage characteristics in high temperature conditions such as storage in automobiles and transportation in ships etc. There is a demand for improvement. In particular, storage of a high temperature state in a prismatic secondary battery has a problem of swelling of the outer can due to the shape of the battery. Furthermore, when the outer can is made of aluminum or the like while the weight is being reduced, there is a problem that the swelling of the outer can becomes more remarkable.
[0004]
By the way, the use of lithium hexafluorophosphate (LiPF 6 ) having a high ion conductivity has been studied as a non-aqueous electrolyte dissolved in a non-aqueous electrolyte in order to improve the cycle characteristics and output characteristics of the battery. . However, in the case of a prismatic nonaqueous electrolyte secondary battery, it is still satisfactory to suppress the expansion of the secondary battery and the increase in impedance due to gas generation during high temperature storage while maintaining the battery characteristics. Absent.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a prismatic non-aqueous electrolyte secondary battery that suppresses swelling and impedance increase during high-temperature storage while maintaining various characteristics such as cycle characteristics.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a prismatic nonaqueous electrolyte secondary battery according to the present invention is a prismatic nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte,
The non-aqueous electrolyte includes 0.05 to 0.3 mol / L lithium tetrafluoroborate and 0.75 mol / L or more concentration electrolyte of lithium hexafluorophosphate in a concentration of, and the electrolyte the total concentration Ri der less than 1.3 mol / L,
The positive electrode has a structure in which a conductive intermediate layer is interposed between a current collector and an active material layer, and the conductive intermediate layer is a carbonaceous conductive material made of carbon black having a particle size of 0.01 to 10 μm. Conductive particles and a binder composed of a crosslinked rubber, exhibiting a specific resistance of 1 Ω · cm or less in a normal charge state and a discharge state, and exhibiting a specific resistance of 100 times or more in an overcharge state. It is characterized by this.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the prismatic nonaqueous electrolyte secondary battery according to the present invention will be described in detail.
[0009]
This square non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
[0010]
Next, the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution will be described.
[0011]
1) Positive electrode The positive electrode has a structure in which an active material-containing layer is supported on a current collector.
[0012]
The active material-containing layer contains, for example, an active material and a binder. As the active material, for example LiCoO 2, LiNiO 2, LiMn 2 O 4, LiCo (1-x) Ni x O 2 ( where x indicates a 0 <x <1), LiCo (1-y) M y O 2 (M represents a metal other than Co and Ni, for example, In, Sn, etc., and y represents 0 <y <0.1). These lithium-transition metal composite oxides can be used in a mixture of two or more.
[0013]
Examples of the current collector include an aluminum plate and an aluminum mesh material.
[0014]
The positive electrode preferably has a structure in which a conductive intermediate layer is disposed between the current collector and the active material-containing layer.
[0015]
The conductive intermediate layer is a conductor in a normal charge state and a discharge state, and a current during use is not limited. However, when the charge is continued beyond 100% charge (full charge), it becomes a high resistance body. Have properties. For example, in a normal battery use state, the specific resistance is 1 Ω · cm or less, but in an overcharged state, the specific resistance is 100 times or more.
[0016]
The conductive intermediate layer preferably contains, for example, carbonaceous conductive particles and a binder.
[0017]
Examples of the carbonaceous conductive particles include carbon blacks such as furnace black, acetylene black, and ketjen black, graphites such as powdered graphite and powdered expanded graphite, pulverized carbon fibers, pulverized graphitized carbon fibers, Etc. In particular, carbon blacks are suitable because they are excellent in thin film moldability, have high conductivity during normal use, and have an excellent resistance increasing function during overcharge.
[0018]
The particle size of the carbonaceous conductive particles is not particularly limited, but is preferably 0.01 to 10 μm from the viewpoint of reducing the thickness of the conductive intermediate layer and increasing the resistance of the conductive intermediate layer during overcharging. A particle size of 0.04 to 1 μm is desirable.
[0019]
As the binder, for example, a thermoplastic resin such as a fluororesin, a polyolefin resin, a styrene resin, an acrylic resin, or a rubber resin such as fluororubber can be used. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, polysulfide rubber, nitrocellulose , Cyanoethyl cellulose, carboxymethyl cellulose party. Among these binders, an elastomer, a rubber cross-linked body, or a modified body into which a polar group is introduced has the viewpoint of improving the adhesion between the current collector and the active material layer and improving the resistance increasing effect during overcharging. To preferred.
[0020]
In the conductive intermediate layer, the binder is preferably blended in an amount of 10 wt% or more and less than 100 wt% with respect to the carbonaceous conductive particles. When the amount of the binder is less than 10% by weight, the adhesion of the conductive intermediate layer to the current collector may be reduced. On the other hand, when the blending amount of the binder is 100% by weight or more, the conductivity of the conductive intermediate layer is impaired, the specific resistance is 1 Ω · cm or more, the internal resistance of the normal positive electrode is increased, and the overcharge is performed. The effect of increasing resistance at the time is also reduced. The blending amount of the binder with respect to the carbonaceous conductive particles is more preferably 20 to 70% by weight.
[0021]
The conductive intermediate layer preferably has a thickness of 0.1 to 30 μm, more preferably 0.5 to 10 μm. When the thickness of the conductive intermediate layer is less than 0.1 μm, a bypass portion where the current collector and the active material layer are directly joined is locally formed, and the resistance of the conductive intermediate layer portion during overcharge is formed. The current interruption effect due to the increase may be insufficient. On the other hand, when the thickness of the conductive intermediate layer exceeds 30 μm, the proportion of the conductive intermediate layer in the positive electrode increases, and the ratio of the active material-containing layer may be relatively decreased to reduce the capacity. There is.
[0022]
The conductive intermediate layer, 1 to 30 g / m 2 with respect to the current collector, more preferably it is desirable to 1.5~10g / m 2.
[0023]
The positive electrode having the conductive intermediate layer described above can be produced, for example, by the following method.
[0024]
First, a current collector such as an aluminum thin film is coated with a dispersant containing carbonaceous conductive particles and a binder using a gravure roll coater, blade coater, roll coater, bar coater, etc., and dried to form a conductive intermediate layer. Form. Subsequently, a paste containing an active material and a binder is applied on the conductive intermediate layer and dried to form an active material-containing layer, thereby producing a positive electrode. In the process of forming such a conductive intermediate layer, the binder and the carbonaceous conductive particles are uniformly dispersed by avoiding the formation of a so-called film tension in which the binder collects on the surface during coating and drying. Is preferred.
[0025]
2) Negative electrode The negative electrode is not particularly limited, but is lithium metal, lithium alloy, or graphite, coke, carbon, polyacene, etc. that reversibly occlude / release or intercalate / deintercalate lithium ions during charge / discharge. A paste containing a carbonaceous material in a current collector such as a copper foil can be used.
[0026]
3) Nonaqueous electrolyte This nonaqueous electrolyte has a composition in which an electrolyte is dissolved in a nonaqueous solvent.
[0027]
The electrolyte includes lithium tetrafluoroborate (LiBF 4 ) at a concentration of 0.05 to 0.3 mol / L, lithium hexafluorophosphate (LiPF 6 ) at a concentration of 0.75 mol / L or more, and The total concentration of these is 1.3 mol / L or less.
[0028]
When the amount of LiBF 4 is less than 0.05 mol / L, it is difficult to suppress gas generation and impedance increase during high temperature storage. On the other hand, when the amount of LiBF 4 exceeds 0.3 mol / L, cycle characteristics and output characteristics may be deteriorated.
[0029]
When the amount of LiPF 6 is less than 0.75 mol / L, the ionic conductivity is lowered, and not only the cycle characteristics and output characteristics are lowered, but also the capacity may be lowered.
[0030]
When the total concentration of LiBF 4 and LiPF 6 exceeds 1.3 mol / L, the reaction between lithium and the electrolytic solution is likely to occur when the battery abnormally generates heat during overcharging, and the heat generation of the battery increases. Safety may be reduced.
[0031]
Although it does not restrict | limit especially as said non-aqueous solvent, From the viewpoint of making the said electroconductive intermediate | middle layer high resistance at the time of overcharge, it is preferable to contain cyclic carbonate. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 3-dioxolane, sulfolane and the like. In particular, ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate are suitable.
[0032]
The non-aqueous solvent used in combination with the cyclic carbonate is selected from ethers, ketones, nitriles, amides, sulfone compounds, chain carbonates, chain esters, aromatic hydrocarbons, and the like. One type or a mixture of two or more types can be mentioned. Of these, ethers, ketones, chain carbonates, and chain esters are preferred.
[0033]
Specific examples of the non-aqueous solvent used in combination with the cyclic carbonates include dimethoxyethane, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexane, acetonitrile, propionitrile, butyronitrile, dimethylformamide Dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate and the like.
[0034]
As the separator, a porous film made of a synthetic resin such as polyethylene or polypropylene is used.
[0035]
The nonaqueous electrolytic solution is generally used in the form of a solution, but may be in a solid form, for example, a sol form, a gel form, or a mixed form of a solid form and a solution form.
[0036]
As described above, when a conductive intermediate layer is interposed between the current collector and the active material layer as the positive electrode, it is possible to ensure the safety of the battery during overcharge. However, when a positive electrode having a conductive intermediate layer is used, there is a risk that the increase in impedance becomes large during high-temperature storage and the battery characteristics deteriorate. By using the non-aqueous electrolyte solution containing a specific electrolyte in a specific amount, an increase in impedance can be suppressed and deterioration of battery characteristics can be prevented.
[0037]
Next, a square nonaqueous electrolyte secondary battery according to the present invention will be described with reference to FIG.
[0038]
An outer can 1 made of metal, for example, made of aluminum, also serves as a positive electrode terminal, for example, and an insulating film 2 is disposed on the inner surface of the bottom. An electrode body 3 that is a power generation element is accommodated in the outer can 1. The electrode body 3 is manufactured by winding the negative electrode 4, the separator 5, and the positive electrode 6 in a spiral shape so that the positive electrode 6 is located on the outermost periphery, and then press-molding it into a flat shape. A spacer 7 made of, for example, a synthetic resin having a lead extraction hole in the vicinity of the center is disposed on the electrode body 3 in the outer can 1.
[0039]
The metal lid 8 is airtightly joined to the upper end opening of the outer can 1 by, for example, laser welding. In the vicinity of the center of the lid 8, a lead-out hole 9 for the negative electrode terminal is opened. The negative electrode terminal 10 is hermetically sealed in the hole 9 of the lid 8 via an insulating material 11 made of glass or resin. A lead 12 is connected to the lower end surface of the negative electrode terminal 10, and the other end of the lead 12 is connected to the negative electrode 4 of the electrode body 3.
[0040]
The upper insulating paper 13 is covered on the entire outer surface of the lid 8. The lower insulating paper 15 having the slits 14 is disposed on the bottom surface of the outer can 1. The PTC element (Positive Temperature Coefficient) 16 folded in half has one surface interposed between the bottom surface of the outer can 1 and the lower insulating paper 15 and the other surface through the slit 14 to the insulating paper. 15 is extended outside. The outer tube 17 is disposed so as to extend from the side surface of the outer can 1 to the periphery of the upper and lower insulating papers 13 and 15, and the upper insulating paper 13 and the lower insulating paper 15 are fixed to the outer can 1. is doing. With such an arrangement of the outer tube 17, the other surface of the PTC element 16 extended to the outside is bent toward the bottom surface of the lower insulating paper 15.
[0041]
The prismatic nonaqueous electrolytic secondary battery according to the present invention described above includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution, and the nonaqueous electrolytic solution has a concentration of 0.05 to 0.3 mol / L. Since lithium fluoroborate and lithium hexafluorophosphate electrolyte with a concentration of 0.75 mol / L or more are included and the total concentration of this electrolyte is 1.3 mol / L or less, various characteristics such as cycle characteristics are maintained. However, it is possible to suppress swelling and impedance increase during high temperature storage.
[0042]
In particular, by using a positive electrode having a structure in which a conductive intermediate layer is interposed between a current collector and an active material layer, the conductive intermediate layer is changed to a high-resistance body due to an increase in current, thereby reducing current. Can be blocked. As a result, it is possible to ensure the safety of the battery during overcharge.
[0043]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to a square nonaqueous electrolyte secondary battery as shown in FIG.
[0044]
( Reference Examples 1 and 2 and Comparative Examples 1 and 2)
<Preparation of positive electrode>
First, 89 parts by weight of LiCoO 2 powder having an average particle size of 5 μm as an active material, 8 parts by weight of graphite powder (Lonza Corporation trade name: KS6) as a conductive filler, and polyvinylidene fluoride resin (Kureha Chemical Co., Ltd.) as a binder Product name; # 1100) 3 parts by weight of N-methylpyrrolidone was stirred and mixed with 25 parts by weight of a dissolver and a bead mill to prepare an active material-containing paste. This paste was applied to both sides of the Al foil as the current collector, then dried, and further pressed and slitted to produce a reel-shaped positive electrode having a thickness of 180 μm.
[0045]
<Production of negative electrode>
First, 100 parts by weight of graphite (trade name manufactured by Rozan; KS15) and 4.2 parts by weight of styrene / butadiene latex (trade name manufactured by Asahi Kasei Co., Ltd .; L1571, solid content 48% by weight), carboxymethylcellulose (product of Daiichi Pharmaceutical Co., Ltd.) Name: 130 parts by weight of an aqueous solution of BSH12) (solid content 1% by weight) and 20 parts by weight of water were added and mixed to prepare a paste. Subsequently, this paste was applied to a Cu foil having a thickness of 10 μm and a width of 570 mm, dried, and then subjected to pressing and slitting to produce a reel-shaped negative electrode having a thickness of 160 μm.
[0046]
Next, after sandwiching a polyethylene microporous film between the positive and negative electrodes, the film is wound in a spiral shape with a winding machine, and then the cylindrical object is compressed at a pressure of 10 kg / cm 2 to obtain a flat electrode body. (Power generation element) was produced. Next, after inserting the flat electrode body into the outer can and injecting a non-aqueous electrolyte having the composition shown in Table 1 below, the sealing body is laser welded to the opening of the outer can as described above with reference to FIG. Four types of prismatic non-aqueous electrolyte secondary batteries (lithium ion secondary batteries) having the structure shown in FIG.
[0047]
With respect to the obtained secondary batteries of Reference Examples 1 and 2 and Comparative Examples 1 and 2, the thickness change and impedance change of the outer can at the third cycle by the test described below were measured.
[0048]
That is, in the first cycle, charging was carried out at 20 ° C. after a constant current of 0.5 CmA and then at a constant voltage of 4.2 V for 6 hours, followed by discharging at a constant current of 1 CmA and a discharge end voltage of 3.0 V. In the second cycle, charging was performed at 20 ° C. after 1 CmA constant current and then at 4.2 V constant voltage for 3 hours, and then discharging was performed at 1 CmA constant current and discharge end voltage of 3.0 V. In the third cycle, charging at 20 ° C. was performed at a constant current of 1 CmA for 3 hours at a constant voltage of 4.2 V, stored as it was in a constant temperature bath at 85 ° C., and the thickness change and impedance of the outer can 24 hours later. The change of was measured. Here, 1 CmA means a current that can discharge a fully charged battery in one hour. Therefore, 0.5 CmA is 0.5 times 1 CmA, and the current amount is 1/2.
[0049]
In addition, for each of the secondary batteries, the battery is charged up to 12 V at 1 CmA from the full charge, and when the battery does not squirt or ignite, the battery is charged for 8 hours. When no gas erupted or ignited, an overcharge test was conducted in which the current was continued for 8 hours. Furthermore, about each said secondary battery, the capacity maintenance factor (cycle characteristic) with respect to the initial capacity | capacitance when repeating 4.2V-3.0V 300 times was performed at 20 degreeC with the charging / discharging electric current of 1 CmA.
[0050]
These results are shown in Table 1 below.
[0051]
[Table 1]
Figure 0004567822
[0052]
As is clear from Table 1, the secondary batteries of Reference Examples 1 and 2 have excellent cycle characteristics as compared with the secondary battery of Comparative Example 1, and the thickness change of the outer can after storage at 85 ° C. It can also be seen that the increase in impedance is small and has excellent characteristics.
[0053]
In addition, the secondary batteries of Reference Examples 1 and 2 and Comparative Example 1 had a good result of being charged to 1 CmA up to 12 V from full charge in the overcharge test. In the charge test, the occurrence frequency of leakage etc. becomes high.
[0054]
Moreover, although the secondary battery of the comparative example 2 is excellent in the characteristic after 85 degreeC preservation | save, it turns out that the performance by an overcharge test is inferior.
[0055]
(Examples 3-7 and Comparative Examples 3-5)
<Preparation of positive electrode>
Except for using a positive electrode produced by the following method and using a non-aqueous electrolyte solution having the composition shown in Table 2 below, the eight types of prismatic non-structures having the structure shown in FIG. A water electrolyte secondary battery (lithium ion secondary battery) was assembled.
[0056]
(Examples 1-5 and Comparative Examples 3-5)
<Preparation of positive electrode>
8 types of square non-aqueous structures having the structure shown in FIG. 1 described above by the same method as in Reference Example 1 except that a positive electrode produced by the following method was used and a non-aqueous electrolyte solution having the composition shown in Table 2 below was used. An electrolyte secondary battery (lithium ion secondary battery) was assembled.
[0057]
Subsequently, 89 parts by weight of LiCoO 2 powder having an average particle diameter of 3 μm as an active material, 8 parts by weight of graphite powder (trade name, manufactured by Lonza Corporation; KS6) as a conductive filler, and polyvinylidene fluoride resin (Kureha Chemical Co., Ltd.) as a binder Product name; # 1100) 3 parts by weight of N-methylpyrrolidone was stirred and mixed with 25 parts by weight of a dissolver and a bead mill to prepare an active material-containing paste. The paste was applied to the conductive intermediate layer covered on both sides of the Al foil as the current collector, then dried, and further pressed and slitted to produce a positive electrode having a thickness of 180 μm.
[0058]
With respect to the obtained secondary batteries of Examples 1 to 5 and Comparative Examples 3 to 5, the thickness change and impedance change of the third cycle outer can were measured by the same method as in Reference Example 1.
[0059]
Moreover, about each said secondary battery, it charged from the full charge to 32V at a maximum at 1 CmA, and when the battery did not spout and did not ignite, the overcharge test which continued energizing for 8 hours was done. Furthermore, about each said secondary battery, the capacity maintenance factor (cycle characteristic) with respect to the initial capacity when repeating 4.2V-3.0V 300 times was performed at 20 degreeC with the charging / discharging electric current of 1 CmA.
[0060]
These results are shown in Table 2 below.
[0061]
[Table 2]
Figure 0004567822
[0062]
As is clear from Table 2, the secondary batteries of Examples 1 to 5 have excellent cycle characteristics as compared with the secondary battery of Comparative Example 4, and 85 as compared with the secondary battery of Comparative Example 3. It can be seen that the thickness change and the increase in impedance of the outer can after storage at 0 ° C. are small and have excellent characteristics. On the other hand, the secondary battery of Comparative Example 5 has the same cycle characteristics as the secondary batteries of Examples 1 to 5 and the change in thickness of the outer can after storage at 85 ° C. is small, but 5 out of 30 in the severe overcharge test. Each secondary battery causes gas ejection, which has a safety problem.
[0063]
In addition, the secondary batteries of Examples 1 to 5 including the positive electrode having the conductive intermediate layer were charged at 1 CmA from the full charge as compared with the secondary batteries of Reference Examples 1 and 2 having the positive electrode not including the conductive intermediate layer. It can be seen that good characteristics are exhibited in a severe overcharge test in which charging is performed at a maximum of 32V.
[0064]
【The invention's effect】
As described in detail above, according to the present invention, a highly reliable rectangular non-reliable structure that can withstand use in a high temperature state while suppressing the swelling and impedance increase during high temperature storage while maintaining various characteristics such as cycle characteristics. A water electrolyte secondary battery can be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a prismatic lithium ion secondary battery which is an example of a non-aqueous electrolyte secondary battery according to the present invention.
[Explanation of symbols]
1 ... Exterior can,
3 ... electrode body,
4 ... negative electrode,
5 ... separator,
6 ... positive electrode 8 ... lid,
14: PTC element.

Claims (3)

正極、負極、セパレータおよび非水電解液を備えた角型非水電解液二次電池であって、
前記非水電解液は、0.05〜0.3モル/Lの濃度のテトラフルオロホウ酸リチウムおよび0.75モル/L以上の濃度のヘキサフルオロリン酸リチウム電解質を含み、かつこの電解質の総濃度が1.3モル/L以下であり、
前記正極は、集電体と活物質層との間に導電性中間層を介在した構造を有し、前記導電性中間層は0.01〜10μmの粒度を持つカーボンブラック類からなる炭素質導電性粒子とゴム架橋体からなる結着剤とを含有し、通常の充電状態および放電状態で比抵抗が1Ω・cm以下の導電性を示し、過充電状態でその100倍以上の比抵抗を示すことを特徴とする角型非水電解液二次電池。
A prismatic non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
The non-aqueous electrolyte includes 0.05 to 0.3 mol / L lithium tetrafluoroborate and 0.75 mol / L or more concentration electrolyte of lithium hexafluorophosphate in a concentration of, and the electrolyte the total concentration Ri der less than 1.3 mol / L,
The positive electrode has a structure in which a conductive intermediate layer is interposed between a current collector and an active material layer, and the conductive intermediate layer is a carbonaceous conductive material made of carbon black having a particle size of 0.01 to 10 μm. Conductive particles and a binder composed of a crosslinked rubber, exhibiting a specific resistance of 1 Ω · cm or less in a normal charge state and a discharge state, and exhibiting a specific resistance of 100 times or more in an overcharge state. A prismatic non-aqueous electrolyte secondary battery characterized by the above.
前記カーボンブラック類がアセチレンブラック、ファーネスブラック、またはケッチェンブラックであり、前記ゴム架橋体がスチレン−ブタジエンゴムまたは水添スチレン−ブタジエンゴムであることを特徴とする請求項1記載の角型非水電解液二次電池。2. The square non-aqueous solution according to claim 1, wherein the carbon black is acetylene black, furnace black, or ketjen black, and the crosslinked rubber is styrene-butadiene rubber or hydrogenated styrene-butadiene rubber. Electrolyte secondary battery. 前記導電性中間層は0.1〜30μmの厚さを有することを特徴とする請求項1記載の角型非水電解液二次電池。The square non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive intermediate layer has a thickness of 0.1 to 30 µm.
JP07928199A 1999-03-24 1999-03-24 Square non-aqueous electrolyte secondary battery Expired - Lifetime JP4567822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07928199A JP4567822B2 (en) 1999-03-24 1999-03-24 Square non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07928199A JP4567822B2 (en) 1999-03-24 1999-03-24 Square non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000277146A JP2000277146A (en) 2000-10-06
JP4567822B2 true JP4567822B2 (en) 2010-10-20

Family

ID=13685493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07928199A Expired - Lifetime JP4567822B2 (en) 1999-03-24 1999-03-24 Square non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4567822B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4963780B2 (en) * 2003-02-27 2012-06-27 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery
WO2004077599A1 (en) * 2003-02-27 2004-09-10 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and lithium secondary battery
CN100347903C (en) * 2003-02-27 2007-11-07 三菱化学株式会社 Nonaqueous electrolytic solution and lithium secondary battery
JP5375816B2 (en) * 2003-02-27 2013-12-25 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery
US7083878B2 (en) 2003-02-27 2006-08-01 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and lithium secondary battery
KR100612272B1 (en) 2003-07-31 2006-08-11 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
JP4955201B2 (en) * 2003-10-10 2012-06-20 三井化学株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP2011082033A (en) * 2009-10-07 2011-04-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery module
CN106207082A (en) * 2010-08-19 2016-12-07 株式会社半导体能源研究所 Electrical equipment
JP5682209B2 (en) * 2010-10-05 2015-03-11 新神戸電機株式会社 Lithium ion secondary battery
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
CN103035922B (en) 2011-10-07 2019-02-19 株式会社半导体能源研究所 Electrical storage device
JP6009343B2 (en) 2011-12-26 2016-10-19 株式会社半導体エネルギー研究所 Secondary battery positive electrode and method for producing secondary battery positive electrode
JPWO2015046492A1 (en) * 2013-09-30 2017-03-09 凸版印刷株式会社 Lithium ion secondary battery electrode and lithium ion secondary battery
JP6933149B2 (en) 2018-01-22 2021-09-08 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283363A (en) * 1990-03-30 1991-12-13 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH0817468A (en) * 1994-06-29 1996-01-19 Sony Corp Non-aqueous electrolytic secondary battery
JPH0864237A (en) * 1994-08-25 1996-03-08 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH09199169A (en) * 1996-01-17 1997-07-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10154529A (en) * 1996-11-25 1998-06-09 Fuji Film Selltec Kk Nonaqueous electrolyte secondary battery
JPH1186907A (en) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH11329493A (en) * 1998-05-13 1999-11-30 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283363A (en) * 1990-03-30 1991-12-13 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH0817468A (en) * 1994-06-29 1996-01-19 Sony Corp Non-aqueous electrolytic secondary battery
JPH0864237A (en) * 1994-08-25 1996-03-08 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH09199169A (en) * 1996-01-17 1997-07-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10154529A (en) * 1996-11-25 1998-06-09 Fuji Film Selltec Kk Nonaqueous electrolyte secondary battery
JPH1186907A (en) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH11329493A (en) * 1998-05-13 1999-11-30 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2000277146A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP4366101B2 (en) Lithium secondary battery
JP5218808B2 (en) Lithium ion battery
JP4177612B2 (en) Lithium ion secondary battery
JP4567822B2 (en) Square non-aqueous electrolyte secondary battery
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP3794553B2 (en) Lithium secondary battery electrode and lithium secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP5053044B2 (en) Nonaqueous electrolyte secondary battery
JP5258499B2 (en) Non-aqueous secondary battery
US20080113260A1 (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP2003272704A (en) Nonaqueous secondary battery
CN111129430A (en) Secondary battery and method for manufacturing secondary battery
JP2005135826A (en) Nonaqueous electrolyte secondary battery
JP7403474B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery
JP2002110251A (en) Lithium ion secondary battery
JP2004158362A (en) Organic electrolyte liquid battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JP2005071712A (en) Manufacturing method of positive electrode
JP2002015769A (en) Non-aqueous electrolyte battery
JP4272657B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

EXPY Cancellation because of completion of term