JP4963780B2 - Non-aqueous electrolyte and lithium secondary battery - Google Patents

Non-aqueous electrolyte and lithium secondary battery Download PDF

Info

Publication number
JP4963780B2
JP4963780B2 JP2004048048A JP2004048048A JP4963780B2 JP 4963780 B2 JP4963780 B2 JP 4963780B2 JP 2004048048 A JP2004048048 A JP 2004048048A JP 2004048048 A JP2004048048 A JP 2004048048A JP 4963780 B2 JP4963780 B2 JP 4963780B2
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
battery
mol
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004048048A
Other languages
Japanese (ja)
Other versions
JP2005032701A (en
Inventor
稔 古田土
信一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004048048A priority Critical patent/JP4963780B2/en
Publication of JP2005032701A publication Critical patent/JP2005032701A/en
Application granted granted Critical
Publication of JP4963780B2 publication Critical patent/JP4963780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系電解液およびそれを用いたリチウム二次電池に関するものである。詳しくは、高容量で、保存特性、サイクル特性、連続充電特性に優れ、更にガス発生量の少ないリチウム二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte and a lithium secondary battery using the same. Specifically, the present invention relates to a lithium secondary battery having a high capacity, excellent storage characteristics, cycle characteristics, and continuous charge characteristics, and having a small amount of gas generation.

近年の電気製品の軽量化、小型化にともない、高いエネルギー密度を持つリチウム電池の開発が進められている。また、適用分野が拡大するにつれて電池特性の改善が要望されている。
非水系リチウム二次電池に用いる電解液は、通常、主としてリチウム塩と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネートやエチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステルなどが用いられている。
With the recent reduction in weight and size of electrical products, development of lithium batteries with high energy density is underway. Further, as the application field expands, improvement of battery characteristics is desired.
The electrolytic solution used for the non-aqueous lithium secondary battery is usually composed mainly of a lithium salt and a non-aqueous solvent. As main components of the non-aqueous solvent, cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate and ethyl methyl carbonate; cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone are used. Yes.

また、この二次電池の負荷特性、サイクル特性、保存特性、低温特性等の特性を改良するために、非水溶媒やリチウム塩について種々の検討がなされている。
例えば、非水溶媒として、非対称鎖状カーボネートと二重結合を有する環状カーボネートの混合物を用いると、二重結合を有する環状カーボネートが負極と優先的に反応して負極表面に良質の被膜を形成し、これにより非対称鎖状カーボネートに起因する負極表面上での不導体被膜の形成が抑制されるので、保存特性とサイクル特性が向上することが特許文献1に開示されている。
In addition, in order to improve characteristics such as load characteristics, cycle characteristics, storage characteristics, and low temperature characteristics of the secondary battery, various studies have been made on non-aqueous solvents and lithium salts.
For example, when a mixture of asymmetric chain carbonate and a cyclic carbonate having a double bond is used as a non-aqueous solvent, the cyclic carbonate having a double bond preferentially reacts with the negative electrode to form a good film on the negative electrode surface. Thus, since formation of a non-conductive film on the negative electrode surface due to the asymmetric chain carbonate is suppressed, Patent Document 1 discloses that storage characteristics and cycle characteristics are improved.

また、リチウム塩としてLiPF6だけを含有する電解液を用いた二次電池では、Li
PF6の解離(LiPF6→Li++PF6 -→Li++F-+PF5)により生じるPF5が非
水溶媒であるカーボネートのC−O結合を切断し、カーボネートが分解(自己放電)するため、保存中に電池容量の低下が起きていたが、LiPF6とLiBF4を含有する電解液を用いた二次電池では、LiBF4から生成したアニオン(BF4 -)が、LiPF6から生成するPF6 -の分解を抑制し、非水電解液を安定化するため、保存中の電池容量の低下を抑えられることが特許文献2に開示されている。この特許文献2には、電解液の非水溶媒として、環状カーボネートと鎖状カーボネートとの混合物が用いられることが記載されており、実施例では、エチレンカーボネートとジエチルカーボネートの混合物が用いられている。
特開平11−185806号公報 特開平8−64237号公報
In a secondary battery using an electrolyte containing only LiPF 6 as a lithium salt, Li
Dissociation PF 6 (LiPF 6 → Li + + PF 6 - → Li + + F - + PF 5) PF 5 cleaves the C-O bond of the carbonate is a non-aqueous solvent resulting from, for carbonate is decomposed (self-discharge) In the secondary battery using the electrolytic solution containing LiPF 6 and LiBF 4 , the anion (BF 4 ) generated from LiBF 4 is generated from LiPF 6 . Patent Document 2 discloses that a decrease in battery capacity during storage can be suppressed in order to suppress the decomposition of PF 6 and stabilize the non-aqueous electrolyte. Patent Document 2 describes that a mixture of a cyclic carbonate and a chain carbonate is used as a non-aqueous solvent for an electrolytic solution. In the examples, a mixture of ethylene carbonate and diethyl carbonate is used. .
Japanese Patent Laid-Open No. 11-185806 JP-A-8-64237

しかしながら、近年のリチウム二次電池に対する高性能化への要求はますます高くなっており、高容量でかつ高レベルの高温保存特性、およびサイクル特性を高い次元で達成することが求められている。
電池を高容量化する方法として、電極層の空隙をなるべく減少させるべく、電極の活物質層を加圧して電極層を高密度化したり、限られた電池体積の中にできるだけ多くの活物質を詰め込む設計が一般的となっている。しかし、電池を高容量化していくと新たな問題点も生じてくる。例えば、電池内の空隙を減少させると、電解液の分解で少量のガスが発生しても電池内圧は顕著に上昇してしまう。
However, the demand for higher performance of lithium secondary batteries in recent years is increasing, and it is required to achieve high capacity and high level high-temperature storage characteristics and cycle characteristics at a high level.
As a method of increasing the capacity of the battery, in order to reduce the gap of the electrode layer as much as possible, the electrode active material layer is pressurized to increase the density of the electrode layer, or as much active material as possible is contained in the limited battery volume. The stuffing design is common. However, as the capacity of the battery increases, new problems arise. For example, if the voids in the battery are reduced, the internal pressure of the battery will rise significantly even if a small amount of gas is generated due to the decomposition of the electrolyte.

また、電池を停電時のバックアップ電源や、ポータブル機器の電源として用いる場合には、電池の自己放電を補うために常に微弱電流を供給して充電状態に保持する、連続充電方法が用いられる。こうした連続充電方法では電極の活性が常に高い状態であるので、電池の容量低下が促進されたり、電解液の分解によりガスが発生しやすくなる。多量のガスが発生すると、過充電により内圧が異常に上昇したときにこれを感知して安全弁を作動させる円筒電池では、安全弁が作動してしまうことがある。また、安全弁のない角形電池では、発生したガスの圧力により電池が膨張したり、更には破裂することもある。   Further, when the battery is used as a backup power source in the event of a power failure or a power source for a portable device, a continuous charging method is used in which a weak current is always supplied and held in a charged state in order to compensate for the self-discharge of the battery. In such a continuous charging method, the activity of the electrode is always high, so that the capacity reduction of the battery is promoted or gas is easily generated due to decomposition of the electrolytic solution. When a large amount of gas is generated, a safety valve may be activated in a cylindrical battery that activates a safety valve by sensing when the internal pressure abnormally increases due to overcharging. Further, in a rectangular battery without a safety valve, the battery may expand or rupture due to the pressure of the generated gas.

したがって、リチウム二次電池においては、高容量、高温保存特性、サイクル特性だけでなく、連続充電特性についても改良が求められる。連続充電特性としては容量低下が少ないことに加えて、ガス発生を抑制することが強く求められている。
しかしながら、特許文献1の実施例に開示されている(1)エチレンカーボネート又はブチレンカーボネート、(2)メチルエチルカーボネート及び(3)ビニレンカーボネートからなる非水溶媒にLiPF6を溶解させた電解液を用いたリチウム二次電池では、サイクル
特性は改善されるものの、連続充電による容量低下の防止及び連続充電時のガス発生量の低減には、殆どの場合において効果がなかった。
Therefore, in the lithium secondary battery, not only high capacity, high temperature storage characteristics and cycle characteristics but also continuous charge characteristics are required to be improved. In addition to a small capacity drop, continuous charging characteristics are strongly required to suppress gas generation.
However, an electrolytic solution in which LiPF 6 is dissolved in a non-aqueous solvent composed of (1) ethylene carbonate or butylene carbonate, (2) methyl ethyl carbonate, and (3) vinylene carbonate, disclosed in Examples of Patent Document 1, is used. In the lithium secondary battery, the cycle characteristics were improved, but in most cases, there was no effect in preventing the capacity drop due to continuous charging and reducing the amount of gas generated during continuous charging.

また、特許文献2で開示されているリチウム化合物としてLiPF6とLiBF4を含有する電解液を用いた二次電池では、80℃以上の高温条件で保存した場合に電池特性が低下したり、サイクル特性の面で不十分であった。 Moreover, in the secondary battery using the electrolytic solution containing LiPF 6 and LiBF 4 as the lithium compound disclosed in Patent Document 2, the battery characteristics are deteriorated when stored under a high temperature condition of 80 ° C. or higher, and the cycle It was insufficient in terms of characteristics.

本発明者らは、上記課題を解決すべく検討を重ねた結果、LiPF6とLiBF4を特定の濃度で含有し、かつ、非水溶媒として3種類のカーボネートを主成分とする電解液を用いることによって、高い容量を維持しつつ、連続充電後の放電特性が改善され、さらに連続充電時のガス発生量も低減できることを見出し、本発明を完成させるに至った。
すなわち、本発明の要旨は、リチウムを吸蔵、放出することが可能な負極として、炭素質材料を用いることを特徴とするリチウム二次電池に用いられるリチウム塩とこれを溶解する非水溶媒とから主としてなる非水系電解液であって、リチウム塩として、LiPF6を0.2〜2モル/リットル、LiBF4をLiPF6対して0.005〜0.4のモル比で含有し、かつ、非水溶媒が、(1)エチレンカーボネート及び/又はプロピレンカーボネート、(2)鎖状カーボネート、及び(3)ビニレンカーボネートを主成分とし、リチウム塩を除く非水系電解液中に占めるビニレンカーボネートの割合が0.1〜8重量%であることを特徴とする非水系電解液(但し、非水溶媒中に環状カルボン酸エステルを10体積%以上含有する場合を除く)に存する。
As a result of repeated studies to solve the above problems, the present inventors use an electrolytic solution containing LiPF 6 and LiBF 4 at a specific concentration and containing three types of carbonate as a main component as a non-aqueous solvent. As a result, it was found that the discharge characteristics after continuous charging were improved while maintaining a high capacity, and that the amount of gas generated during continuous charging could be reduced, and the present invention was completed.
That is, the gist of the present invention is that a lithium salt used in a lithium secondary battery using a carbonaceous material as a negative electrode capable of inserting and extracting lithium and a non-aqueous solvent that dissolves the lithium salt. A non-aqueous electrolyte mainly comprising LiPF 6 in a molar ratio of 0.2 to 2 mol / liter and LiBF 4 to LiPF 6 in a molar ratio of 0.005 to 0.4 as a lithium salt; The aqueous solvent has (1) ethylene carbonate and / or propylene carbonate, (2) chain carbonate, and (3) vinylene carbonate as a main component, and the proportion of vinylene carbonate in the non-aqueous electrolyte solution excluding lithium salt is 0. nonaqueous electrolyte, characterized in that .1~8 in weight percent (unless containing cyclic carboxylic acid ester 10 vol% or more in a non-aqueous solvent It resides in.

本発明によれば、高容量で、保存特性、サイクル特性、連続充電特性に優れ、更にガス発生量の少ない電池を作製することができ、非水系電解液電池の小型化、高性能化を達成することができる。 According to the present invention, a battery having a high capacity, excellent storage characteristics, cycle characteristics, continuous charge characteristics, and a small amount of gas generation can be produced, and a non-aqueous electrolyte battery can be reduced in size and performance. can do.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。
本発明に係る非水系電解液は、常用の非水系電解液と同じく、主としてリチウム塩およびこれを溶解する非水溶媒からなるが、その第一の特徴は、リチウム塩として、LiPF6とLiBF4を特定の濃度で含有する点にある。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of constituent elements described below is an example (representative example) of an embodiment of the present invention, and is not specified by these contents.
The non-aqueous electrolyte solution according to the present invention is mainly composed of a lithium salt and a non-aqueous solvent that dissolves the lithium salt, as in the case of a conventional non-aqueous electrolyte solution. The first feature is that LiPF 6 and LiBF 4 are used as lithium salts. Is contained at a specific concentration.

LiPF6の非水系電解液中の濃度は、0.2〜2モル/リットルである。LiPF6の濃度が高すぎても、低すぎても、電解液の電気伝導率が低くなり、電池性能が低下することがある。LiPF6の濃度は、0.3モル/リットル以上、特に0.6モル/リットル
以上であるのが好ましく、また、1.8モル/リットル以下、特に1.5モル/リットル以下であるのが好ましい。
The concentration of LiPF 6 in the non-aqueous electrolyte is 0.2 to 2 mol / liter. If the concentration of LiPF 6 is too high or too low, the electric conductivity of the electrolytic solution may be lowered, and the battery performance may be lowered. The concentration of LiPF 6 is preferably 0.3 mol / liter or more, particularly 0.6 mol / liter or more, and is 1.8 mol / liter or less, particularly 1.5 mol / liter or less. preferable.

LiBF4の非水系電解液中の濃度は、0.001〜0.3モル/リットルである。L
iBF4の濃度が低すぎると連続充電時のガス発生や容量劣化を十分抑えるのが困難にな
る。高すぎると高温保存後の電池特性が低下する傾向にある。LiBF4の濃度は、0.
01モル/リットル以上、特に0.02モル/リットル以上であるのが好ましく、0.05モル/リットル以上とするのが最も好ましい。また、上限値としては0.25モル/リットル以下、特に0.18モル/リットル以下であるのが好ましい。
The concentration of LiBF 4 in the non-aqueous electrolyte is 0.001 to 0.3 mol / liter. L
If the concentration of iBF 4 is too low, it will be difficult to sufficiently suppress gas generation and capacity deterioration during continuous charging. If it is too high, battery characteristics after high-temperature storage tend to deteriorate. The concentration of LiBF 4 is 0.
It is preferably 01 mol / liter or more, particularly preferably 0.02 mol / liter or more, and most preferably 0.05 mol / liter or more. Further, the upper limit is preferably 0.25 mol / liter or less, particularly preferably 0.18 mol / liter or less.

LiPF6に対するLiBF4のモル比は、通常0.005以上、好ましくは0.01以上、特に好ましくは0.05以上であり、通常0.4以下、好ましくは0.2以下、より好ましくは0.15以下である。このモル比が大きすぎると、高温保存後の電池特性が低下する傾向にあり、逆に小さすぎると、連続充電時のガス発生や容量劣化を十分に抑えるのが困難である。 The molar ratio of LiBF 4 to LiPF 6 is usually 0.005 or more, preferably 0.01 or more, particularly preferably 0.05 or more, and usually 0.4 or less, preferably 0.2 or less, more preferably 0. .15 or less. If this molar ratio is too large, battery characteristics after high-temperature storage tend to be lowered. Conversely, if it is too small, it is difficult to sufficiently suppress gas generation and capacity deterioration during continuous charging.

本発明に係る非水系電解液は、本発明の効果を妨げない範囲で、LiPF6及びLiB
4の以外のこの用途に用い得ることが知られているリチウム塩を含んでいてもよい。こ
れらのリチウム塩としてはLiClO4等の無機リチウム塩;LiN(CF3SO22、LiN(C25SO22、LiCF3SO3、LiC(CF3SO23、LiPF4(CF32、LiPF4(C252、LiPF4(CF3SO22、LiPF4(C25SO22、L
iBF2(CF32、LiBF2(C252、LiBF2(CF3SO22およびLiBF2(C25SO22等の含フッ素有機酸リチウム塩などが挙げられる。これらの濃度は、通常0.5モル/リットル以下であり、0.2モル/リットル以下が好ましい。
The non-aqueous electrolyte solution according to the present invention is LiPF 6 and LiB within a range that does not hinder the effects of the present invention.
Lithium salts known to be usable for this application other than F 4 may be included. These lithium salts include inorganic lithium salts such as LiClO 4 ; LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiCF 3 SO 3 , LiC (CF 3 SO 2 ) 3 , LiPF 4. (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , L
Fluorine-containing organic acid lithium salts such as iBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2, and LiBF 2 (C 2 F 5 SO 2 ) 2 It is done. These concentrations are usually 0.5 mol / liter or less, preferably 0.2 mol / liter or less.

これらのなかでも、LiN(CF3SO22、LiN(C25SO22及びLiCF3SO3から選ばれるもの、特にLiN(CF3SO22を0.001〜0.2モル/リットルの濃度で含有すると、連続充電時のガス発生をさらに抑制できる。濃度が低すぎるとこの効果は発現しない。これらの濃度は、0.003モル/リットル以上、特に0.005モル/リットル以上とするのが好ましく、0.008モル/リットル以上とするのが最も好ましい。また、上限値としては0.15モル/リットル以下、特に0.1モル/リットル以下とするのが好ましい。 Among these, a material selected from LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiCF 3 SO 3 , particularly LiN (CF 3 SO 2 ) 2 is preferably 0.001 to 0.00. When contained at a concentration of 2 mol / liter, gas generation during continuous charging can be further suppressed. This effect does not appear if the concentration is too low. These concentrations are preferably 0.003 mol / liter or more, more preferably 0.005 mol / liter or more, and most preferably 0.008 mol / liter or more. The upper limit is preferably 0.15 mol / liter or less, particularly preferably 0.1 mol / liter or less.

本発明に係る非水系電解液の非水溶媒は、(1)エチレンカーボネート及び/又はプロピレンカーボネート、(2)鎖状カーボネート及び(3)ビニレンカーボネートを主成分とする。
(1)エチレンカーボネート及び/又はプロピレンカーボネート
エチレンカーボネート及びプロピレンカーボネートは、それぞれを単独で用いても、両者を併用してもよいが、エチレンカーボネートを単独で用いるか又はこれとプロピレンカーボネートを併用するのが好ましい。
The non-aqueous solvent of the non-aqueous electrolyte solution according to the present invention contains (1) ethylene carbonate and / or propylene carbonate, (2) chain carbonate and (3) vinylene carbonate as main components.
(1) Ethylene carbonate and / or propylene carbonate Ethylene carbonate and propylene carbonate may be used alone or in combination, but either ethylene carbonate is used alone or propylene carbonate is used in combination. Is preferred.

エチレンカーボネートとプロピレンカーボネートを併用する場合には、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の容量比(EC:PC)は、通常99:1以下、好ましくは95:5以下であり、通常40:60以上、好ましくは50:50以上である。プロピレンカーボネートが多すぎると、特に、負極に黒鉛を用いた場合に、プロピレンカーボネートが黒鉛表面で分解しやすくなるので好ましくない。なお、本明細書において、非水溶媒の容量は25℃での値であるが、エチレンカーボネートの容量は融点での値である。   When ethylene carbonate and propylene carbonate are used in combination, the volume ratio (EC: PC) of ethylene carbonate (EC) to propylene carbonate (PC) is usually 99: 1 or less, preferably 95: 5 or less, usually 40 : 60 or more, preferably 50:50 or more. Too much propylene carbonate is not preferable, especially when graphite is used for the negative electrode, since propylene carbonate tends to decompose on the graphite surface. In this specification, the capacity of the non-aqueous solvent is a value at 25 ° C., whereas the capacity of ethylene carbonate is a value at the melting point.

(2)鎖状カーボネート
鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート
、エチル−n−プロピルカーボネート等が挙げられる。なかでも炭素数5以下の鎖状カーボネートが好ましく、特に好ましいのは、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。これらの鎖状カーボネートは、単独で用いても、2種以上を併用してもよい。
(2) Chain carbonate Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. Of these, chain carbonates having 5 or less carbon atoms are preferable, and dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are particularly preferable. These chain carbonates may be used alone or in combination of two or more.

本発明に係る非水系電解液おいては、(1)エチレンカーボネート及び/又はプロピレンカーボネートと(2)鎖状カーボネートとが合わさって、非水溶媒の主体となっているものが好ましい。通常、リチウム塩を除く非水系電解液に占めるエチレンカーボネート、プロピレンカーボネート及び鎖状カーボネートの合計が80重量%以上となるようにする。この合計が85重量%以上、特に90重量%以上である非水系電解液は、サイクル特性と大電流放電特性のバランスがよいので好ましい。   In the non-aqueous electrolyte solution according to the present invention, it is preferable that (1) ethylene carbonate and / or propylene carbonate and (2) chain carbonate are combined to be a main component of the non-aqueous solvent. Usually, the total of ethylene carbonate, propylene carbonate and chain carbonate in the non-aqueous electrolyte solution excluding lithium salt is 80% by weight or more. A non-aqueous electrolyte having a total of 85% by weight or more, particularly 90% by weight or more is preferable because the balance between cycle characteristics and large current discharge characteristics is good.

非水系電解液中のエチレンカーボネートとプロピレンカーボネートの合計と、鎖状カーボネートの容量比は、通常10:90〜70:30である。好ましくは10:90〜50:50、特に好ましくは15:85〜40:60である。鎖状カーボネートが少なすぎると電解液の粘度が上昇し、多すぎるとリチウム塩の解離度が低下して、電解液の電気伝導率が低下する恐れがある。   The volume ratio of the total of ethylene carbonate and propylene carbonate in the non-aqueous electrolyte and the chain carbonate is usually 10:90 to 70:30. Preferably it is 10: 90-50: 50, Most preferably, it is 15: 85-40: 60. If the amount of chain carbonate is too small, the viscosity of the electrolytic solution increases. If the amount is too large, the degree of dissociation of the lithium salt decreases, and the electrical conductivity of the electrolytic solution may decrease.

本発明における、エチレンカーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。これらのエチレンカーボネートと鎖状カーボネートとの組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。これらの中で、非対称鎖状カーボネートであるエチルメチルカーボネートを含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートのエチレンカーボネートと対称鎖状カーボネートと非対称鎖状カーボネートを含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。   Specific examples of preferred combinations of ethylene carbonate and chain carbonate in the present invention include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate and diethyl carbonate, and ethylene carbonate. Examples thereof include dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. A combination in which propylene carbonate is further added to the combination of ethylene carbonate and chain carbonate is also a preferable combination. Among these, those containing ethyl methyl carbonate, which is an asymmetric chain carbonate, are more preferable, in particular, ethylene carbonate and dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate and diethyl carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate, Diethyl carbonate and ethyl methyl carbonate containing ethylene carbonate, symmetric chain carbonate, and asymmetric chain carbonate are preferred because of a good balance between cycle characteristics and large current discharge characteristics.

(3)ビニレンカーボネート
リチウム塩を除く非水系電解液に占めるビニレンカーボネートの割合は、通常0.01重量%以上、好ましくは0.1重量%以上、特に好ましくは0.3重量%以上、最も好ましくは0.5重量%以上であり、8重量%以下、好ましくは5重量%以下、特に好ましくは3重量%以下である。ビニレンカーボネートは負極表面に被膜を形成して、サイクル特性を向上させると考えられており、ビニレンカーボネートの割合が小さすぎると、十分にサイクル特性を向上させることができない。一方、割合が大きすぎると、高温保存時に、ガス発生により電池の内圧が上昇することがあるため、実用上好ましくない。
(3) Vinylene carbonate The proportion of vinylene carbonate in the non-aqueous electrolyte solution excluding lithium salt is usually 0.01% by weight or more, preferably 0.1% by weight or more, particularly preferably 0.3% by weight or more, and most preferably Is 0.5% by weight or more, 8% by weight or less, preferably 5% by weight or less, particularly preferably 3% by weight or less. Vinylene carbonate is considered to improve the cycle characteristics by forming a film on the negative electrode surface. If the proportion of vinylene carbonate is too small, the cycle characteristics cannot be sufficiently improved. On the other hand, if the ratio is too large, the internal pressure of the battery may increase due to gas generation during high temperature storage, which is not preferable in practice.

リチウム塩を除く非水系電解液に占めるエチレンカーボネート、プロピレンカーボネート、鎖状カーボネート及びビニレンカーボネートの合計は、80重量%以上となるようにするのが好ましい。この合計が、90重量%、特に93重量%以上であると更に好ましい。
なお本発明に係る非水系電解液には、本発明の効果を妨げない範囲で、他の非水溶媒を含んでいてもよい。このような非水溶媒としては、例えば、ブチレンカーボネート等の炭素数5以上の環状カーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン等
の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル等の鎖状カルボン酸エステルなどが挙げられる。これらは1種類を用いても、2種類以上を併用してもよい。非水系電解液がこれらの非水溶媒を含有する場合、リチウム塩を除く非水系電解液に占める割合は、通常20重量%以下である。
The total of ethylene carbonate, propylene carbonate, chain carbonate, and vinylene carbonate in the non-aqueous electrolyte solution excluding the lithium salt is preferably 80% by weight or more. The total is more preferably 90% by weight, particularly 93% by weight or more.
The nonaqueous electrolytic solution according to the present invention may contain other nonaqueous solvents as long as the effects of the present invention are not hindered. Examples of such non-aqueous solvents include cyclic carbonates having 5 or more carbon atoms such as butylene carbonate, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; chain ethers such as dimethoxyethane and dimethoxymethane; γ-butyrolactone, γ -Cyclic carboxylic acid esters such as valerolactone; and chain carboxylic acid esters such as methyl acetate, methyl propionate, ethyl propionate, and methyl butyrate. These may be used alone or in combination of two or more. When the non-aqueous electrolyte solution contains these non-aqueous solvents, the proportion of the non-aqueous electrolyte solution excluding the lithium salt is usually 20% by weight or less.

本発明に係る非水系電解液が連続充電による放電特性の低下が少ない理由は明かではないが、次のように推察される。
まず、ビニレンカーボネートは負極表面に安定な被膜を形成してサイクル特性を向上させる。しかし、ビニレンカーボネートは充電状態の正極材と反応しやすく、一定電圧で充電を継続する連続充電では、正極の活性が常に高い状態であるので、正極材との反応が進行し、正極活物質の劣化が促進されたり、ガスの発生量を増加させる恐れがある。更に、負極表面に形成された被膜成分は、その一部が電解液中に溶解し、溶解物が正極表面で反応して、正極活物質の劣化を促進したりガスを発生する原因となる。
The reason why the nonaqueous electrolytic solution according to the present invention has a small decrease in discharge characteristics due to continuous charging is not clear, but is presumed as follows.
First, vinylene carbonate forms a stable film on the negative electrode surface to improve cycle characteristics. However, vinylene carbonate is likely to react with the positive electrode material in a charged state, and in continuous charging in which charging is continued at a constant voltage, the activity of the positive electrode is always high. Deterioration may be promoted or the amount of gas generated may be increased. Furthermore, a part of the coating component formed on the surface of the negative electrode is dissolved in the electrolytic solution, and the dissolved material reacts on the surface of the positive electrode to promote deterioration of the positive electrode active material or generate gas.

これに対し、LiBF4塩由来の分解物は、正極での上記の反応を抑制し、しかもこの
ものは、負極表面でのビニレンカーボネート由来の被膜形成を阻害せず、逆にこの塩の一部が負極表面で還元されて、負極上に形成されたビニレンカーボネートとLiBF4由来
の複合被膜成分が、熱的に安定で、リチウムイオンの透過性に優れると共に、負極の被膜成分の溶解が抑制され、結果として電池内部の副反応が抑制されることにより、電極活物質の劣化が抑制され、良好な放電特性を達成できる。
On the other hand, the decomposition product derived from the LiBF 4 salt suppresses the above reaction at the positive electrode, and this does not inhibit the formation of a film derived from vinylene carbonate on the negative electrode surface. Is reduced on the negative electrode surface, and the composite film component derived from vinylene carbonate and LiBF 4 formed on the negative electrode is thermally stable and excellent in lithium ion permeability, and dissolution of the negative electrode film component is suppressed. As a result, the side reaction inside the battery is suppressed, so that the deterioration of the electrode active material is suppressed and good discharge characteristics can be achieved.

また、LiBF4はLiPF6に比べて、充電状態の負極材と反応しやすく、ビニレンカーボネートを含有しない場合には、負極材との副反応が進行して、電池特性を低下させるが、ビニレンカーボネートと共存することにより負極表面に安定な被膜が形成され、負極材との副反応を抑制することができる。
このようにビニレンカーボネートとLiBF4との相互作用により、サイクル特性の向
上と連続充電後の放電特性の改善とを達成することができる。
In addition, LiBF 4 is easier to react with the negative electrode material in a charged state than LiPF 6 , and when it does not contain vinylene carbonate, side reaction with the negative electrode material proceeds and battery characteristics are deteriorated. By coexisting with, a stable film is formed on the negative electrode surface, and side reactions with the negative electrode material can be suppressed.
Thus, by the interaction between vinylene carbonate and LiBF 4 , improvement of cycle characteristics and improvement of discharge characteristics after continuous charging can be achieved.

特に、リチウム塩を除く非水系電解液に占めるビニレンカーボネートの割合が0.3重量%以上であり、LiBF4の非水系電解液中の濃度が、0.02モル/リットル以上で
ある場合に、本発明の効果が顕著になるので好ましい。
なお、本発明に係る非水系電解液には、必要に応じて他の成分、例えば従来公知の過充電防止剤、脱水剤、脱酸剤などの助剤を含有させてもよい。
In particular, when the proportion of vinylene carbonate in the non-aqueous electrolyte excluding lithium salt is 0.3% by weight or more, and the concentration of LiBF 4 in the non-aqueous electrolyte is 0.02 mol / liter or more, Since the effect of this invention becomes remarkable, it is preferable.
In addition, you may make the non-aqueous electrolyte solution which concerns on this invention contain other components, for example, adjuvants, such as a conventionally well-known overcharge inhibitor, a dehydrating agent, and a deoxidizer, as needed.

過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香
族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソールおよび2,6−ジフルオロアニソール等の含フッ素アニソール化合物などが挙げられる。これらの中でもフッ素で置換されていない芳香族化合物が好ましい。これらは1種類を用いても、2種類以上併用して用いてもよい。2種以上併用する場合は、特に、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含まない芳香族化合物から選ばれるものと、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれるものとを併用するのが好ましい。非水系電解液が過充電防止剤を含有する場合、その濃度は、通常0.1〜5重量%である。
非水系電解液に過充電防止剤を含有させることは、過充電による電池の破裂・発火を抑制
することができ、電池の安全性が向上するので好ましい。
As an overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partially fluorinated products of the aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroanisole, etc. Can be mentioned. Of these, aromatic compounds not substituted with fluorine are preferred. These may be used alone or in combination of two or more. When two or more kinds are used in combination, they are selected from aromatic compounds that do not contain oxygen, such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, and t-amylbenzene. It is preferable to use those in combination with those selected from oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran. When the non-aqueous electrolyte contains an overcharge inhibitor, the concentration is usually 0.1 to 5% by weight.
It is preferable to include an overcharge inhibitor in the non-aqueous electrolyte because the battery can be prevented from being ruptured or ignited by overcharging and the safety of the battery is improved.

一般にこれらの過充電防止剤は、非水系電解液を構成する溶媒成分よりも正極および負極上で反応しやすいために、連続充電時や高温保存時においても電極の活性の高い部位で反応してしまい、これらの化合物が反応すると電池の内部抵抗が大きく上昇したり、ガス発生によって、連続充電後の放電特性や、高温保存後の放電特性を著しく低下させる原因となっていたが、本発明の電解液に添加した場合は、放電特性の低下を抑制することができるので好ましい。   In general, these overcharge inhibitors react more easily on the positive electrode and the negative electrode than the solvent components that make up the non-aqueous electrolyte solution, so that they react at sites with high electrode activity even during continuous charging or storage at high temperatures. Thus, when these compounds react, the internal resistance of the battery is greatly increased, or due to gas generation, the discharge characteristics after continuous charging and the discharge characteristics after high-temperature storage are significantly reduced. When added to the electrolytic solution, it is preferable because a decrease in discharge characteristics can be suppressed.

高温保存後の容量維持特性やサイクル特性を改善するための助剤としては、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、エリスリタンカーボネートおよびスピロ−ビス−ジメチレンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物およびフェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N−ジメチルメタンスルホンアミド及びN,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノンおよびN−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物などが挙げられる。これらは1種類を用いても、2種類以上併用して用いてもよい。非水系電解液がこれらの助剤を含有する場合、その濃度は、通常0.1〜5重量%である。   As auxiliary agents for improving capacity maintenance characteristics and cycle characteristics after high-temperature storage, vinyl ethylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, erythritan carbonate, spiro-bis-dimethylene carbonate, etc. Carbonate compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic acid Carboxylic anhydrides such as anhydrides; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyls Sulfur-containing compounds such as phon, diphenylsulfone, methylphenylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-dimethylmethanesulfonamide and N, N-diethylmethanesulfonamide; 1-methyl-2- Nitrogen-containing compounds such as pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide; heptane, octane, cycloheptane, etc. Examples thereof include hydrocarbon compounds, fluorine-containing aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene, and benzotrifluoride. These may be used alone or in combination of two or more. When the non-aqueous electrolyte contains these auxiliaries, the concentration is usually 0.1 to 5% by weight.

本発明に係る非水系電解液は、(1)エチレンカーボネート及び/又はプロピレンカーボネート、(2)鎖状カーボネート、及び(3)ビニレンカーボネートを主成分とする非水系有機溶媒に、LiPF6及びLiBF4、並びに必要に応じて他の化合物を溶解することにより調製することができる。非水系電解液を調製するに際して、各原料は、予め、脱水しておくのが好ましい。通常50ppm以下、好ましくは30ppm以下まで脱水するのがよい。 The non-aqueous electrolyte solution according to the present invention includes (1) ethylene carbonate and / or propylene carbonate, (2) chain carbonate, and (3) a non-aqueous organic solvent mainly composed of vinylene carbonate, LiPF 6 and LiBF 4. In addition, it can be prepared by dissolving other compounds as necessary. When preparing the non-aqueous electrolyte solution, it is preferable to dehydrate each raw material in advance. Usually, it is good to dehydrate to 50 ppm or less, preferably 30 ppm or less.

本発明に係る非水系電解液は、二次電池特にリチウム二次電池の電解液として用いるのに好適である。以下、この電解液を用いた本発明に係るリチウム二次電池について説明する。
本発明に係るリチウム二次電池は、電解液以外は従来公知のリチウム二次電池と同様であり、通常、正極と負極とが、本発明に係る電解液が含浸されている多孔膜を介して、ケースに収納された構造を有している。したがって、本発明に係る二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等のいずれであってもよい。
The non-aqueous electrolyte solution according to the present invention is suitable for use as an electrolyte solution for a secondary battery, particularly a lithium secondary battery. Hereinafter, a lithium secondary battery according to the present invention using this electrolytic solution will be described.
The lithium secondary battery according to the present invention is the same as the conventionally known lithium secondary battery except for the electrolytic solution. Usually, the positive electrode and the negative electrode are interposed through the porous film impregnated with the electrolytic solution according to the present invention. It has a structure housed in a case. Therefore, the shape of the secondary battery according to the present invention is arbitrary, and may be any of, for example, a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size.

本発明に係るリチウム二次電池は、前述のように連続充電状態におけるガス発生が少ないので、過充電等の異常時に電池内圧の上昇により作動する電流遮断装置を備えた電池の連続充電状態での電流遮断装置の異常作動を防止することができる。また、外装体の厚みが通常0.5mm以下、中でも0.4mm以下で、材質が金属アルミニウムまたはアルミニウム合金を主体とした電池や、体積容量密度が110mAh/cc以上、更には130mAh/cc以上、特に140mAh/cc以上の電池は、電池内圧の上昇による電池の
膨張という問題が生じやすいが、本発明に係る二次電池ではガス発生量が少ないので、このような問題が生ずるのを防止することができる。
Since the lithium secondary battery according to the present invention generates less gas in the continuous charge state as described above, the battery in the continuous charge state provided with a current interruption device that operates due to an increase in the internal pressure of the battery when an abnormality such as overcharge occurs. Abnormal operation of the current interrupt device can be prevented. Further, the thickness of the outer package is usually 0.5 mm or less, particularly 0.4 mm or less, and the material is mainly made of metal aluminum or aluminum alloy, the volume capacity density is 110 mAh / cc or more, further 130 mAh / cc or more, In particular, a battery of 140 mAh / cc or more is likely to have a problem of battery expansion due to an increase in battery internal pressure. However, since the secondary battery according to the present invention generates a small amount of gas, it is possible to prevent such a problem from occurring. Can do.

なかでも好ましいのは炭素質材料、特に、黒鉛や黒鉛の表面を黒鉛に比べて非晶質の炭素で被覆したものである。   Particularly preferred is a carbonaceous material, in particular, graphite or a surface of graphite coated with amorphous carbon as compared with graphite.

黒鉛は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.338nm、特に0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、30nm以上であるのが好ましく、50nm以上、特に100nm以上であるのが更に好ましい。灰分は、通常1重量%以下であるのが好ましく、0.5重量%以下、特に0.1重量%以下であるのが更に好ましい。   Graphite preferably has a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.338 nm, particularly 0.335 to 0.337 nm, as determined by X-ray diffraction using the Gakushin method. The crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more. The ash content is usually preferably 1% by weight or less, more preferably 0.5% by weight or less, and particularly preferably 0.1% by weight or less.

黒鉛の表面を非晶質の炭素で被覆したものとして好ましいのは、X線回折における格子面(002面)のd値が0.335〜0.338nmである黒鉛を核材とし、その表面に該核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料が付着しており、かつ核材と核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料との割合が重量比で99/1〜80/20であるものである。これを用いると、高い容量で、かつ電解液と反応しにくい負極を製造することができる。   The graphite surface coated with amorphous carbon is preferably graphite having a d-value of 0.335 to 0.338 nm on the lattice plane (002 plane) in X-ray diffraction as a core material. A carbonaceous material having a larger d-value on the lattice plane (002 plane) in X-ray diffraction than the core material is attached, and the d-value on the lattice plane (002 plane) in X-ray diffraction is greater than that of the core material and the core material. The ratio with respect to the carbonaceous material having a large is 99/1 to 80/20 by weight. When this is used, a negative electrode having a high capacity and hardly reacting with the electrolytic solution can be produced.

炭素質材料の粒径は、レーザー回折・散乱法によるメジアン径で、1μm以上であるのが好ましく、3μm以上、特に5μm以上であれば更に好ましく、最も好ましいのは7μm以上である。また、上限は、100μm以下が好ましく、50μm以下、特に40μm以下であれば更に好ましく、最も好ましいのは30μm以下である。
炭素質材料のBET法による比表面積は、0.3m2/g以上であるのが好ましく、0
.5m2/g以上、特に0.7m2/g以上であれば更に好ましい。最も好ましいのは0.8m2/g以上である。上限は25.0m2/g以下が好ましく、20.0m2/g以下、
特に15.0m2/g以下であるのが更に好ましく、最も好ましいのは10.0m2/g以下である。
The particle size of the carbonaceous material is preferably 1 μm or more, more preferably 3 μm or more, particularly preferably 5 μm or more, and most preferably 7 μm or more, as a median diameter by a laser diffraction / scattering method. Further, the upper limit is preferably 100 μm or less, more preferably 50 μm or less, particularly preferably 40 μm or less, and most preferably 30 μm or less.
The specific surface area of the carbonaceous material by the BET method is preferably 0.3 m 2 / g or more, and 0
. It is more preferable if it is 5 m 2 / g or more, particularly 0.7 m 2 / g or more. Most preferred is 0.8 m 2 / g or more. The upper limit is preferably at most 25.0m 2 / g, 20.0m 2 / g or less,
In particular, it is more preferably 15.0 m 2 / g or less, and most preferably 10.0 m 2 / g or less.

また、炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析したときに、1570〜1620cm-1の範囲にあるピークPAのピーク強度IAと、1300〜1400cm-1の範囲にあるピークPBのピーク強度IBとの比で表されるR値(=IB
/IA)が、0.01〜0.7の範囲であるものが好ましい。また、1570〜1620
cm-1の範囲にあるピークの半値幅が、26cm-1以下、特に25cm-1以下であるものが好ましい。
Further, the carbonaceous material, when analyzed by Raman spectrum using argon ion laser light and the peak intensity I A of the peak P A in the range of 1570~1620Cm -1, in the range of 1300~1400Cm -1 R value expressed by the ratio of the peak intensity I B of a peak P B (= I B
/ I A ) is preferably in the range of 0.01 to 0.7. Also, 1570-1620
the half-value width of the peak in the range of cm -1 is, 26cm -1 or less, are preferred in particular 25 cm -1 or less.

リチウムを吸蔵・放出可能な金属化合物としては、Ag、Zn、Al、Ga、In、Si、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等の金属を含有する化合物が挙げられ、これらの金属は単体、酸化物、リチウムとの合金などとして用いられる。本発明においては、Si、Sn、Ge及びAlから選ばれる元素を含有するものが好ましく、Si、Sn及びAlから選ばれる金属の酸化物又はリチウム合金がより好ましい。   Examples of metal compounds capable of inserting and extracting lithium include compounds containing metals such as Ag, Zn, Al, Ga, In, Si, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. These metals are used as simple substances, oxides, alloys with lithium, and the like. In the present invention, those containing an element selected from Si, Sn, Ge and Al are preferred, and oxides or lithium alloys of metals selected from Si, Sn and Al are more preferred.

リチウムを吸蔵・放出可能な金属化合物あるいはこの酸化物やリチウムとの合金は、一般に黒鉛に代表される炭素材料に比較し、単位重量あたりの容量が大きいので、より高エネルギー密度が求められるリチウムイオン二次電池において好適である。
正極活物質としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物や、これらの複合酸化物の遷移金属の一部を他の金属で置換した複合酸化物などのリチウムを吸蔵・放出可能な材料が挙げられる。これらの化合物は、LiXCoO2、LiXNiO2、LiXMnO2、LiXCo1-yy2
LiXNi1-yy2、LiXMn1-yy2等であり、ここでMはFe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、V、Sr、Tiから選ばれる少なくとも1種であり、0.4≦x≦1.2、0≦y≦0.6である。
Lithium ions that require higher energy density because metal compounds that can occlude and release lithium, or their oxides and alloys with lithium, generally have a larger capacity per unit weight than carbon materials typified by graphite. It is suitable for a secondary battery.
Examples of positive electrode active materials include lithium transition metal composite oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, and composite oxides obtained by substituting some of the transition metals of these composite oxides with other metals. Materials that can occlude and release lithium, such as materials. These compounds include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co 1- y My O 2 ,
Li X Ni 1-y M a y O 2, Li X Mn 1 -y M y O 2 , etc., where M is Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga , Cr, V, Sr, Ti, and 0.4 ≦ x ≦ 1.2 and 0 ≦ y ≦ 0.6.

特にLiXCo1-yy2、LiXNi1-yy2、LiXMn1-yy2等で表される、コバルト、ニッケル、マンガンの一部を他の金属で置き換えたものは、その構造を安定化させることができるので好ましい。正極活物質は単独で用いても、複数を併用しても良い。
活物質を結着する結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有するポリマー及びその共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体等のアクリル酸系ポリマー及びその共重合体などが挙げられる。
Especially represented by Li X Co 1-y M y O 2, Li X Ni 1-y M y O 2, Li X Mn 1-y M y O 2 , etc., cobalt, nickel, and other part of manganese A metal replacement is preferable because the structure can be stabilized. The positive electrode active materials may be used alone or in combination.
As the binder for binding the active material, any material can be used as long as it is a material that is stable with respect to the solvent and the electrolyte used in manufacturing the electrode. For example, fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof, ethylene-acrylic Examples thereof include acrylic acid polymers such as acid copolymers and ethylene-methacrylic acid copolymers, and copolymers thereof.

電極中には、機械的強度や電気伝導度を高めるために増粘剤、導電材、充填剤などを含有させてもよい。
増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等が挙げられる。
The electrode may contain a thickener, a conductive material, a filler and the like in order to increase mechanical strength and electrical conductivity.
Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.

導電材としては、銅またはニッケル等の金属材料、グラファイトまたはカーボンブラック等の炭素材料などが挙げられる。
電極の製造は、常法によればよい。例えば、負極または正極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥した後に、プレスすることによって形成することができる。
Examples of the conductive material include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.
The electrode may be manufactured by a conventional method. For example, it can be formed by adding a binder, a thickener, a conductive material, a solvent or the like to a negative electrode or a positive electrode active material to form a slurry, applying the slurry to a current collector, drying it, and then pressing it.

負極活物質層の乾燥、プレス後の密度は、通常1.45g/cm3以上であり、好まし
くは1.55g/cm3以上、特に好ましくは1.60g/cm3以上である。負極活物質層の密度が高いほど電池の容量が増加するので好ましい。また、正極物質層の乾燥、プレス後の密度は、通常3.0g/cm3以上である。正極活物質層の密度が低すぎると電池
の容量が不十分となる。
Drying of the negative electrode active material layer, the density after pressing is usually 1.45 g / cm 3 or more, preferably 1.55 g / cm 3 or more, particularly preferably 1.60 g / cm 3 or more. A higher density of the negative electrode active material layer is preferable because the battery capacity increases. The density of the positive electrode material layer after drying and pressing is usually 3.0 g / cm 3 or more. If the density of the positive electrode active material layer is too low, the battery capacity becomes insufficient.

また、活物質に結着剤や導電材などを加えたものをそのままロール成形してシート電極としたり、圧縮成形によりペレット電極としたり、蒸着・スパッタ・メッキ等の手法で集電体上に電極材料の薄膜形成をすることもできる。
集電体としては各種のものが用いることができるが、通常は金属や合金が用いられる。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、好ましいのは銅である。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属またはその合金が挙げられ、好ましいのはアルミニウムまたはその合金である。
In addition, a material obtained by adding a binder or a conductive material to an active material is roll-formed as it is to form a sheet electrode, a pellet electrode is formed by compression molding, and an electrode is formed on the current collector by a technique such as vapor deposition, sputtering, or plating. A thin film of material can also be formed.
Various types of current collectors can be used, but metals and alloys are usually used. Examples of the current collector for the negative electrode include copper, nickel, and stainless steel, and copper is preferred. Examples of the current collector for the positive electrode include metals such as aluminum, titanium, and tantalum, and alloys thereof, and aluminum or an alloy thereof is preferable.

正極と負極の間には、短絡を防止するために通常は多孔膜を介在させる。この場合、電解液は多孔膜に含浸させて用いる。多孔膜の材質や形状は、電解液に安定であり、かつ保液性に優れていれば、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布等が好ましい。
本発明に係る電池に使用する電池の外装体の材質も任意であり、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン等が用いられる。
A porous film is usually interposed between the positive electrode and the negative electrode in order to prevent a short circuit. In this case, the electrolytic solution is used by impregnating the porous membrane. The material and shape of the porous film are not particularly limited as long as it is stable to the electrolytic solution and excellent in liquid retention, and a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene is preferable.
The material of the battery casing used in the battery according to the present invention is also arbitrary, and nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.

以下に、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
[負極(1)の製造]
X線回折における格子面(002面)のd値が0.336nm、結晶子サイズ(Lc)が、652nm、灰分が0.07重量%、レーザー回折・散乱法によるメジアン径が12μm、BET法比表面積が7.5m2/g、アルゴンイオンレーザー光を用いたラマンス
ペクトル分析において1570〜1620cm-1の範囲のピークPA(ピーク強度IA)および1300〜1400cm-1の範囲のピークPB(ピーク強度IB)の強度比R=IB
Aが0.12、1570〜1620cm-1の範囲のピークの半値幅が19.9cm-1
ある天然黒鉛粉末94重量部とポリフッ化ビニリデン(呉羽化学社製、商品名「KF−1000」)6重量部を混合し、N−メチル−2−ピロリドンを加えスラリー状にした。このスラリーを厚さ18μmの銅箔の片面に均一に塗布、乾燥後、負極活物質層の密度が1.5g/cm3になるようにプレスして負極(1)を作製した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples unless it exceeds the gist.
[Production of negative electrode (1)]
The d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 652 nm, the ash content is 0.07 wt%, the median diameter by laser diffraction / scattering method is 12 μm, and the BET method ratio surface area of 7.5 m 2 / g, a peak P a (peak intensity I a) in the range of 1570~1620Cm -1 in the Raman spectrum analysis using an argon ion laser beam and scope of 1300~1400Cm -1 peak P B ( Intensity ratio of peak intensity I B ) R = I B /
I A natural graphite powder 94 parts by weight of polyvinylidene fluoride half width of a peak in the range of 0.12,1570~1620Cm -1 is 19.9cm -1 (Kureha Chemical Co., Ltd., trade name "KF-1000" ) 6 parts by weight were mixed, and N-methyl-2-pyrrolidone was added to form a slurry. This slurry was uniformly applied to one side of a 18 μm thick copper foil, dried, and then pressed so that the density of the negative electrode active material layer was 1.5 g / cm 3 to prepare a negative electrode (1).

[負極(2)の製造]
厚さ12μmの銅箔を用い、銅箔の両面にスラリーを均一に塗布、乾燥後、負極活物質層の密度が1.55g/cm3になるようにプレスした他は、負極(1)と同様に行って
、負極(2)を作製した。
[Production of negative electrode (2)]
A negative electrode (1) and a copper foil having a thickness of 12 μm were used except that the slurry was uniformly applied to both sides of the copper foil, dried and then pressed so that the density of the negative electrode active material layer was 1.55 g / cm 3. In the same manner, a negative electrode (2) was produced.

[正極(1)の製造]
LiCoO285重量部、カーボンブラック6重量部及びポリフッ化ビニリデン9重量
部を混合し、N−メチル−2−ピロリドンを加えスラリー状し、これを厚さ20μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が3.0g/cm3
になるようにプレスして正極(1)を作製した。
[Production of positive electrode (1)]
Mix 85 parts by weight of LiCoO 2 , 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride, add N-methyl-2-pyrrolidone to form a slurry, and apply it uniformly on both sides of an aluminum foil with a thickness of 20 μm. After drying, the density of the positive electrode active material layer is 3.0 g / cm 3
To produce a positive electrode (1).

[正極(2)の製造]
厚さ14μmのアルミニウム箔を用いた他は正極(1)と同様に行って、正極(2)を作製した。
[シート状リチウム二次電池の製造]
正極(1)、負極(1)、およびポリエチレン製のセパレーターを、負極、セパレーター、正極、セパレーター、負極の順に積層して電池要素を作製し、この電池要素を正極及び負極の端子が外部にでるようにして、アルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に収容した。次いで、これに、後述する電解液を注入したのち、真空封止を行い、シート状電池を作製した。
[Production of positive electrode (2)]
A positive electrode (2) was produced in the same manner as the positive electrode (1) except that an aluminum foil having a thickness of 14 μm was used.
[Manufacture of sheet-like lithium secondary batteries]
A positive electrode (1), a negative electrode (1), and a separator made of polyethylene are laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode to produce a battery element, and the positive and negative terminals of the battery element are exposed to the outside. Thus, it accommodated in the bag which consists of a laminate film which coat | covered both surfaces of aluminum (thickness 40 micrometers) with the resin layer. Subsequently, after injecting the electrolyte solution mentioned later into this, vacuum sealing was performed and the sheet-like battery was produced.

[シート状電池の容量評価]
シート状電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.2Vまで充電した後、0.2Cに相当する定電流で3Vまで放電した。これを3サイクル行って電池を安定させ、4サイクル目は、0.5Cの定電流で4.2Vまで充電し、さらに4.2Vの定電圧で電流値が0.05Cになるまで充電を行った後、0.2Cの定電流で3Vまで放電し、初期放電容量を求めた。
ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.2Cとはその1/5の電流値を表す。
[Capacity evaluation of sheet batteries]
The sheet-like battery is charged to 4.2 V at a constant current corresponding to 0.2 C at 25 ° C. in a state of being sandwiched between glass plates in order to enhance the adhesion between the electrodes, and then a constant value corresponding to 0.2 C is obtained. The current was discharged to 3V. This is done for 3 cycles to stabilize the battery. In the 4th cycle, the battery is charged to 4.2 V with a constant current of 0.5 C, and further charged to a current value of 0.05 C with a constant voltage of 4.2 V. Thereafter, the battery was discharged to 3 V at a constant current of 0.2 C, and the initial discharge capacity was determined.
Here, 1C represents a current value for discharging the reference capacity of the battery in one hour, and 0.2C represents a current value of 1/5 thereof.

[連続充電特性の評価](1)ガス発生量
容量評価の終了した電池を、エタノール浴中に浸して体積を測定した後、ガラス板に挟んだ状態で、60℃において、0.5Cの定電流で充電し、4.25Vに到達した後、定電圧充電に切り替え、1週間連続充電を行った。
電池を冷却させた後、エタノール浴中に浸して体積を測定し、連続充電前後の体積変化から発生したガス発生量を求めた。
[Evaluation of Continuous Charging Characteristics] (1) Amount of Gas Generated After the capacity evaluation of the battery was immersed in an ethanol bath and the volume was measured, the battery was sandwiched between glass plates at 60 ° C. at a constant temperature of 0.5C. After charging with current and reaching 4.25 V, switching to constant voltage charging was performed for one week continuously.
After the battery was cooled, it was immersed in an ethanol bath to measure the volume, and the amount of gas generated from the volume change before and after continuous charging was determined.

(2)連続充電後の残存容量
発生ガス量の測定後、25℃において、0.2Cの定電流で3Vまで放電させて、連続充電試験後の残存容量を測定し、連続充電試験前の放電容量を100とした場合の連続充電後の残存容量を求めた。
(2) Remaining capacity after continuous charge After measuring the amount of gas generated, discharge at 25C to 3V with a constant current of 0.2C, measure the remaining capacity after the continuous charge test, and discharge before the continuous charge test. The remaining capacity after continuous charging when the capacity was 100 was determined.

(3)連続充電後の高負荷放電容量
連続充電後の残存容量の測定後、0.5Cの定電流で4.2Vまで充電し、さらに4.2Vの定電圧で電流値が0.05Cになるまで充電を行った後、0.2Cの定電流で3Vまで放電し、連続充電試験後の放電容量を求めた。
次に、0.5Cの定電流で4.2Vまで充電し、さらに4.2Vの定電圧で電流値が0.05Cになるまで充電を行った後、1Cの定電流で3Vまで放電させて高負荷放電容量を測定し、連続充電試験前の放電容量を100とした場合の連続充電後の高負荷放電容量を求めた。
(3) High-load discharge capacity after continuous charge After measurement of the remaining capacity after continuous charge, the battery is charged to 4.2 V with a constant current of 0.5 C, and the current value is increased to 0.05 C with a constant voltage of 4.2 V. Then, the battery was discharged to 3 V with a constant current of 0.2 C, and the discharge capacity after the continuous charge test was obtained.
Next, the battery is charged to 4.2 V with a constant current of 0.5 C, and further charged to a current value of 0.05 C with a constant voltage of 4.2 V, and then discharged to 3 V with a constant current of 1 C. The high load discharge capacity was measured, and the high load discharge capacity after the continuous charge when the discharge capacity before the continuous charge test was taken as 100 was determined.

(実施例1)
乾燥アルゴン雰囲気下、エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0モル/リットル、LiBF4を0.15モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
Example 1
Under a dry argon atmosphere, 2 parts by weight of vinylene carbonate was added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 was added at 1.0 mol / liter, LiBF 4. Was dissolved to a rate of 0.15 mol / liter to obtain an electrolytic solution.
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(実施例2)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0
モル/リットル、LiBF4を0.075モル/リットルの割合となるように溶解して電
解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
(Example 2)
2 parts by weight of vinylene carbonate is added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 is added to 1.0 parts.
Mol / liter and LiBF 4 were dissolved at a ratio of 0.075 mol / liter to obtain an electrolytic solution.
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(実施例3)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0
モル/リットル、LiBF4を0.025モル/リットルの割合となるように溶解して電
解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
(Example 3)
2 parts by weight of vinylene carbonate is added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 is added to 1.0 parts.
Mol / liter and LiBF 4 were dissolved in a ratio of 0.025 mol / liter to obtain an electrolytic solution.
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(比較例1)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、十分に乾燥したLiPF6を1.0モル/
リットルの割合となるように溶解して電解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
(Comparative Example 1)
2 parts by weight of vinylene carbonate was added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and LiPF 6 sufficiently dried was added at 1.0 mol /
An electrolytic solution was prepared by dissolving to a liter ratio.
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(実施例4)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0
モル/リットル、LiBF4を0.15モル/リットル、LiN(CF3SO22を0.02モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を
表1および表2に示す。
Example 4
2 parts by weight of vinylene carbonate is added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 is added to 1.0 parts.
An electrolytic solution was prepared by dissolving at a rate of 0.15 mol / liter, LiN (CF 3 SO 2 ) 2 at a ratio of 0.12 mol / liter, mol / liter, LiBF 4 .
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(実施例5)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0
モル/リットル、LiBF4を0.075モル/リットル、LiN(CF3SO22を0.02モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
(Example 5)
2 parts by weight of vinylene carbonate is added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 is added to 1.0 parts.
An electrolytic solution was prepared by dissolving at a ratio of mol / liter, LiBF 4 at 0.075 mol / liter, and LiN (CF 3 SO 2 ) 2 at a ratio of 0.02 mol / liter.
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(実施例6)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0
モル/リットル、LiBF4を0.075モル/リットル、LiN(CF3SO22を0.01モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
(Example 6)
2 parts by weight of vinylene carbonate is added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 is added to 1.0 parts.
An electrolyte was prepared by dissolving at a ratio of mol / liter, LiBF 4 at 0.075 mol / liter, and LiN (CF 3 SO 2 ) 2 at a ratio of 0.01 mol / liter.
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

(実施例7)
エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)98重量部にビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0
モル/リットル、LiBF4を0.15モル/リットル、LiCF3SO3を0.02モル
/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いてシート状電池を作製し、連続充電特性の評価を行った。結果を表1および表2に示す。
(Example 7)
2 parts by weight of vinylene carbonate is added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then sufficiently dried LiPF 6 is added to 1.0 parts.
An electrolyte was prepared by dissolving at a rate of 0.15 mol / liter, and LiCF 3 SO 3 at a ratio of 0.15 mol / liter, mol / liter, LiBF 4 .
A sheet-like battery was produced using the obtained electrolytic solution, and the continuous charge characteristics were evaluated. The results are shown in Tables 1 and 2.

[円筒型リチウム二次電池の製造]
正極(2)と負極(2)を、正極と負極が直接接触しないように、ポリエチレン製のセパレーターとともに重ねて巻き取り、最外周をテープで止めて、渦巻き状電極体とした。次いで、図1に示すように、渦巻き状電極体4の上下に絶縁リング7を設置し、これを円筒状に成形した負極端子を兼ねるステンレス製の電池ケース内に挿入した。その後、渦巻き状電極体4の負極と接続されている負極端子6を電池ケース1の内部に溶接するとともに、電極体の正極と接続されている正極端子5を、電池内部のガス圧が所定以上に上昇すると作動する電流遮断装置8の底部と溶接した。この電流遮断装置と防爆弁とを封口板2の底部に取り付けた。電池ケース1内に後述する電解液を注入した後、電池ケース1の開口部を、封口板とポリプロピレン製の絶縁ガスケット3により封止し、体積容量密度が133mAh/ccの円筒型電池を作製した。
[Manufacture of cylindrical lithium secondary batteries]
The positive electrode (2) and the negative electrode (2) were rolled up with a polyethylene separator so that the positive electrode and the negative electrode were not in direct contact with each other, and the outermost periphery was stopped with a tape to obtain a spiral electrode body. Next, as shown in FIG. 1, insulating rings 7 were installed on the upper and lower sides of the spiral electrode body 4 and inserted into a stainless steel battery case that also served as a negative electrode terminal formed into a cylindrical shape. Thereafter, the negative electrode terminal 6 connected to the negative electrode of the spiral electrode body 4 is welded to the inside of the battery case 1, and the positive electrode terminal 5 connected to the positive electrode of the electrode body has a gas pressure inside the battery of a predetermined value or more. Welded to the bottom of the current interrupting device 8 which is activated when it is raised. The current interrupting device and the explosion-proof valve were attached to the bottom of the sealing plate 2. After injecting an electrolyte solution, which will be described later, into the battery case 1, the opening of the battery case 1 was sealed with a sealing plate and a polypropylene insulating gasket 3 to produce a cylindrical battery having a volume capacity density of 133 mAh / cc. .

[円筒型電池の容量評価]
円筒型電池を25℃において、0.2Cに相当する定電流で4.2Vまで充電した後、0.2Cに相当する定電流で3Vまで放電した。これを3サイクル行って電池を安定させ、4サイクル目は、0.5Cの定電流で4.2Vまで充電し、さらに4.2Vの定電圧で電流値が0.05Cになるまで充電を行った後、0.2Cの定電流で3Vまで放電し、初期放電容量を求めた。
[Capacity evaluation of cylindrical batteries]
The cylindrical battery was charged to 4.2 V with a constant current corresponding to 0.2 C at 25 ° C., and then discharged to 3 V with a constant current corresponding to 0.2 C. This is done for 3 cycles to stabilize the battery. In the 4th cycle, the battery is charged to 4.2 V with a constant current of 0.5 C, and further charged to a current value of 0.05 C with a constant voltage of 4.2 V. Thereafter, the battery was discharged to 3 V at a constant current of 0.2 C, and the initial discharge capacity was determined.

[円筒型電池の連続充電特性の評価]
容量評価の終了した円筒型電池を、60℃において、0.5Cの定電流で充電し4.2Vに到達した後、定電圧充電に切り替え、2週間連続充電を行った。
電池を冷却させた後、25℃において、0.2Cの定電流で3Vまで放電させて、連続充電試験後の残存容量を測定し、連続充電試験前の放電容量を100とした場合の連続充
電後の残存容量を求めた。
[Evaluation of continuous charge characteristics of cylindrical batteries]
The cylindrical battery for which the capacity evaluation was completed was charged at a constant current of 0.5 C at 60 ° C. and reached 4.2 V, and then switched to constant voltage charging, followed by continuous charging for 2 weeks.
After the battery is cooled, it is discharged to 3 V at a constant current of 0.2 C at 25 ° C., the remaining capacity after the continuous charge test is measured, and the continuous charge when the discharge capacity before the continuous charge test is set to 100 The remaining residual capacity was determined.

[円筒型電池のサイクル特性の評価]
容量評価の終了した円筒型電池を、25℃において、1Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電し、1Cの定電流で3Vまで放電をするサイクル試験を実施した。サイクル試験前の放電容量を100とした場合の100サイクル後の放電容量を求めた。
[Evaluation of cycle characteristics of cylindrical batteries]
After the capacity evaluation is completed, the cylindrical battery is charged to 4.2 V with a constant current of 1 C at 25 ° C., and then charged to a current value of 0.05 C with a constant voltage of 4.2 V, and with a constant current of 1 C. A cycle test was conducted to discharge to 3V. The discharge capacity after 100 cycles when the discharge capacity before the cycle test was taken as 100 was determined.

(実施例8)
乾燥アルゴン雰囲気下、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)98重量部に、ビニレンカーボネート2重量部を加え、次いで十分に乾燥したLiPF6を1.0モル/
リットルとLiBF4を0.05モル/リットルの割合となるように溶解して電解液とし
た。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
(Example 8)
Under a dry argon atmosphere, 2 parts by weight of vinylene carbonate was added to 98 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), and then fully dried LiPF 6 1.0 mol /
Lithium and LiBF 4 were dissolved at a rate of 0.05 mol / liter to obtain an electrolytic solution.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.

(比較例2)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)に十分に乾燥したLiPF6を1.0モ
ル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
(Comparative Example 2)
Dissolved LiPF 6 in a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, and diethyl carbonate (volume ratio 2: 4: 2: 2) to a ratio of 1.0 mol / liter is an electrolytic solution. It was.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.

(比較例3)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)98重量部に、ビニレンカーボネート2重量部を加え、十分に乾燥したLiPF6を1.0モル/リットルの割合となるように溶
解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
なお、この円筒型電池は、連続充電試験中に電池の内圧が上昇して電流遮断装置が作動したため、放電することはできなかった。
(Comparative Example 3)
To 98 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), 2 parts by weight of vinylene carbonate was added, and 1.0 mol / liter of LiPF 6 sufficiently dried was added. An electrolytic solution was prepared by dissolving to a liter ratio.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.
The cylindrical battery could not be discharged because the internal pressure of the battery increased during the continuous charge test and the current interrupting device was activated.

(実施例9)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)97重量部に、ビニレンカーボネート2重量部とシクロヘキシルベンゼン1重量部を加え、次いで十分に乾燥したLiPF6を1.
0モル/リットルとLiBF4を0.05モル/リットルの割合となるように溶解して電
解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
Example 9
To 97 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), 2 parts by weight of vinylene carbonate and 1 part by weight of cyclohexylbenzene are added, and then fully dried LiPF 6 to 1.
0 mol / liter and LiBF 4 were dissolved at a ratio of 0.05 mol / liter to obtain an electrolytic solution.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.

(比較例4)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)97重量部に、ビニレンカーボネート2重量部とシクロヘキシルベンゼン1重量部を加え、次いで十分に乾燥したLiPF6を1.
0モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
なお、この円筒型電池は、連続充電試験中に電池の内圧が上昇して電流遮断装置が作動したため、放電することはできなかった。
(Comparative Example 4)
To 97 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), 2 parts by weight of vinylene carbonate and 1 part by weight of cyclohexylbenzene are added, and then fully dried LiPF 6 to 1.
An electrolyte was prepared by dissolving at a rate of 0 mol / liter.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.
The cylindrical battery could not be discharged because the internal pressure of the battery increased during the continuous charge test and the current interrupting device was activated.

(実施例10)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)99重量部に、ビニレンカーボネート1重量部を加え、次いで十分に乾燥したLiPF6を1.0モル/リットルとLiBF4を0.05モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
(Example 10)
1 part by weight of vinylene carbonate is added to 99 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), and then 1.0 mol of fully dried LiPF 6 is added. / Liter and LiBF 4 were dissolved in a ratio of 0.05 mol / liter to obtain an electrolytic solution.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.

(実施例11)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)99.5重量部に、ビニレンカーボネート0.5重量部を加え、次いで十分に乾燥したLiPF6を1.0モル/リットルとLi
BF4を0.05モル/リットルの割合となるように溶解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
(Example 11)
To 99.5 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), 0.5 parts by weight of vinylene carbonate is added, and then LiPF 6 which has been sufficiently dried is added. 1.0 mol / liter and Li
BF 4 was dissolved at a rate of 0.05 mol / liter to obtain an electrolytic solution.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.

(比較例5)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)99重量部に、ビニレンカーボネート1重量部を加え、十分に乾燥したLiPF6を1.0モル/リットルの割合となるように溶
解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
なお、この円筒型電池は、連続充電試験中に電池の内圧が上昇して電流遮断装置が作動したため、放電することはできなかった。
(Comparative Example 5)
1 part by weight of vinylene carbonate is added to 99 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), and 1.0 mol / liter of fully dried LiPF 6 is added. An electrolytic solution was prepared by dissolving to a liter ratio.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.
The cylindrical battery could not be discharged because the internal pressure of the battery increased during the continuous charge test and the current interrupting device was activated.

(比較例6)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)99.5重量部に、ビニレンカーボネート0.5重量部を加え、十分に乾燥したLiPF6を1.0モル/リットルの割合となる
ように溶解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
なお、この円筒型電池は、連続充電試験中に電池の内圧が上昇して電流遮断装置が作動したため、放電することはできなかった。
(Comparative Example 6)
To 99.5 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), 0.5 part by weight of vinylene carbonate is added and 1 part of fully dried LiPF 6 is added. An electrolytic solution was prepared by dissolving at a rate of 0.0 mol / liter.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.
The cylindrical battery could not be discharged because the internal pressure of the battery increased during the continuous charge test and the current interrupting device was activated.

(比較例7)
エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとジエチルカーボネートの混合物(容量比2:4:2:2)99.9重量部に、ビニレンカーボネート0.1重量部を加え、十分に乾燥したLiPF6を1.0モル/リットルの割合となる
ように溶解して電解液とした。
得られた電解液を用いて、円筒型リチウム二次電池を作製し、連続充電後特性と、サイクル特性の評価を行った。結果を表3に示す。
(Comparative Example 7)
To 99.9 parts by weight of a mixture of ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 2: 4: 2: 2), 0.1 part by weight of vinylene carbonate is added and 1 part of fully dried LiPF 6 is added. An electrolytic solution was prepared by dissolving at a rate of 0.0 mol / liter.
Using the obtained electrolytic solution, a cylindrical lithium secondary battery was produced, and the characteristics after continuous charging and the cycle characteristics were evaluated. The results are shown in Table 3.

Figure 0004963780
Figure 0004963780

Figure 0004963780
Figure 0004963780

Figure 0004963780
Figure 0004963780

表1および表2から、本発明に係る電池は、連続充電した場合のガスの発生量が少なく、連続充電後の放電特性にも優れていることがわかる。
また、表3から明かなように、本発明に係る電池は、連続充電した場合のガスの発生量が少なく、サイクル特性にも優れていることがわかる。
From Table 1 and Table 2, it can be seen that the battery according to the present invention has a small amount of gas generated when continuously charged and is excellent in discharge characteristics after continuous charging.
Further, as is clear from Table 3, it can be seen that the battery according to the present invention has a small amount of gas generated when continuously charged and is excellent in cycle characteristics.

実施例で作製する円筒型電池の構造を示す概略断面図Schematic sectional view showing the structure of a cylindrical battery produced in the example

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 絶縁ガスケット
4 渦巻き状電極体
5 正極端子
6 負極端子
7 絶縁リング
8 電流遮断装置
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation gasket 4 Spiral electrode body 5 Positive electrode terminal 6 Negative electrode terminal 7 Insulation ring 8 Current interruption device

Claims (9)

リチウムを吸蔵、放出することが可能な負極として、炭素質材料を用いるリチウム二次電池に使用されるリチウム塩とこれを溶解する非水溶媒とから主としてなる非水系電解液であって、リチウム塩として、LiPF6を0.2〜2モル/リットル、LiBF4をLiPF6 対して0.005〜0.4のモル比で含有し、かつ非水溶媒が、(1)エチレンカーボネート及び/又はプロピレンカーボネート、(2)鎖状カーボネート、及び(3)ビニレンカーボネートを主成分とし、リチウム塩を除く非水系電解液中に占めるビニレンカーボネートの割合が0.1〜8重量%であることを特徴とする非水系電解液(但し、非水溶媒中に環状カルボン酸エステルを10体積%以上含有する場合を除く)A non-aqueous electrolyte mainly comprising a lithium salt used in a lithium secondary battery using a carbonaceous material as a negative electrode capable of inserting and extracting lithium and a non-aqueous solvent for dissolving the lithium salt, as a LiPF 6 0.2 to 2 mol / l, contained in a molar ratio of from 0.005 to 0.4 for the LiBF 4 to LiPF 6, and the nonaqueous solvent is, (1) ethylene carbonate and / or The main component is propylene carbonate, (2) chain carbonate, and (3) vinylene carbonate, and the proportion of vinylene carbonate in the non-aqueous electrolyte solution excluding lithium salt is 0.1 to 8% by weight. Non-aqueous electrolyte solution (except when the non-aqueous solvent contains 10% by volume or more of a cyclic carboxylic acid ester) . LiBF4を0.001〜0.3モル/リットルの濃度で含有することを特徴とする請求項1に記載の非水系電解液。 The nonaqueous electrolytic solution according to claim 1, containing LiBF 4 at a concentration of 0.001 to 0.3 mol / liter. 鎖状カーボネートが、対称鎖状カーボネートおよび非対称鎖状カーボネートからなることを特徴とする請求項1または2に記載の非水系電解液。 The non-aqueous electrolyte solution according to claim 1 or 2, wherein the chain carbonate comprises a symmetric chain carbonate and an asymmetric chain carbonate. リチウム塩を除く非水系電解液中に占めるエチレンカーボネート、プロピレンカーボネート、鎖状カーボネート、及びビニレンカーボネートの合計が80重量%以上であることを特徴とする請求項1ないし3のいずれかに記載の非水系電解液。 4. The non-aqueous electrolyte according to claim 1, wherein the total amount of ethylene carbonate, propylene carbonate, chain carbonate, and vinylene carbonate in the non-aqueous electrolyte solution excluding the lithium salt is 80% by weight or more. Aqueous electrolyte. 鎖状カーボネートがジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネートから選ばれるものであることを特徴とする請求項1ないし4のいずれかに記載の非水系電解液。 The non-aqueous electrolyte solution according to any one of claims 1 to 4, wherein the chain carbonate is selected from dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. (1)エチレンカーボネートとプロピレンカーボネートの合計と(2)鎖状カーボネートの合計容量比が、10:90〜70:30であることを特徴とする請求項1ないし5のいずれかに記載の非水系電解液。 The non-aqueous system according to any one of claims 1 to 5, wherein the total volume ratio of (1) ethylene carbonate and propylene carbonate and (2) chain carbonate is 10:90 to 70:30. Electrolytic solution. 非水溶媒が、更に、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、及び、ジベンゾフランから選ばれる芳香族化合物を含有することを特徴とする請求項1ないし6のいずれかに記載の非水系電解液。 The non-aqueous solvent further contains an aromatic compound selected from biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran. The nonaqueous electrolytic solution according to any one of claims 1 to 6, wherein リチウム塩として、更にLiN(CF3SO22、LiN(C25SO22及びLiCF3SO3から選ばれるものを0.001〜0.2モル/リットルの濃度で含有することを特徴とする請求項1ないし7のいずれかに記載の非水系電解液。 The lithium salt further contains a material selected from LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiCF 3 SO 3 at a concentration of 0.001 to 0.2 mol / liter. The nonaqueous electrolytic solution according to any one of claims 1 to 7, wherein リチウムを吸蔵、放出することが可能な負極及び正極並びに請求項1ないし8のいずれかに記載の非水系電解液からなることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and the non-aqueous electrolyte solution according to any one of claims 1 to 8.
JP2004048048A 2003-02-27 2004-02-24 Non-aqueous electrolyte and lithium secondary battery Expired - Lifetime JP4963780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048048A JP4963780B2 (en) 2003-02-27 2004-02-24 Non-aqueous electrolyte and lithium secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003051684 2003-02-27
JP2003051684 2003-02-27
JP2003174756 2003-06-19
JP2003174756 2003-06-19
JP2004048048A JP4963780B2 (en) 2003-02-27 2004-02-24 Non-aqueous electrolyte and lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010288069A Division JP5375816B2 (en) 2003-02-27 2010-12-24 Non-aqueous electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005032701A JP2005032701A (en) 2005-02-03
JP4963780B2 true JP4963780B2 (en) 2012-06-27

Family

ID=34222113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048048A Expired - Lifetime JP4963780B2 (en) 2003-02-27 2004-02-24 Non-aqueous electrolyte and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4963780B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612272B1 (en) 2003-07-31 2006-08-11 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
JP4955201B2 (en) * 2003-10-10 2012-06-20 三井化学株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
US8617745B2 (en) 2004-02-06 2013-12-31 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
JP4527605B2 (en) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
JP4703203B2 (en) * 2005-02-03 2011-06-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2007030816A2 (en) * 2005-09-09 2007-03-15 A123 Systems, Inc. Lithium secondary cell with high charge and discharge rate capability and low impedance growth
JP2007123242A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
EP3557684B1 (en) 2005-10-20 2024-01-24 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2014082220A (en) * 2005-10-28 2014-05-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2007165292A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and secondary battery using it
KR100771180B1 (en) 2006-03-17 2007-10-29 제일모직주식회사 Nonaqueous electrolyte comprising Lithium trifluoromethane-sulfonimide for Li-secondary battery
KR20140083054A (en) * 2006-06-02 2014-07-03 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP5094084B2 (en) 2006-09-28 2012-12-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
EP2320512B1 (en) * 2007-03-27 2012-09-12 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
JP4943242B2 (en) 2007-06-20 2012-05-30 ソニー株式会社 Lithium ion secondary battery
JP5334410B2 (en) * 2007-12-27 2013-11-06 株式会社豊田中央研究所 Lithium ion secondary battery
JP2009277597A (en) 2008-05-16 2009-11-26 Panasonic Corp Nonaqueous electrolyte secondary battery
JP5568853B2 (en) * 2008-11-06 2014-08-13 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5526073B2 (en) 2011-04-12 2014-06-18 株式会社日立製作所 Lithium ion secondary battery module, vehicle mounted with this, and power generation system
JP5655803B2 (en) * 2012-03-15 2015-01-21 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
JP2016042412A (en) * 2014-08-13 2016-03-31 旭化成株式会社 Lithium ion secondary battery
US10128529B2 (en) * 2015-11-13 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery, fabricating method therof, and electronic device
KR101750213B1 (en) * 2016-11-07 2017-06-22 주식회사 엘지화학 Lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249305B2 (en) * 1994-08-25 2002-01-21 三洋電機株式会社 Non-aqueous electrolyte battery
JP3661301B2 (en) * 1996-09-24 2005-06-15 宇部興産株式会社 Nonaqueous electrolyte for lithium secondary battery and nonaqueous electrolyte secondary battery
JP4056117B2 (en) * 1997-12-17 2008-03-05 三洋電機株式会社 Lithium secondary battery
JP4567822B2 (en) * 1999-03-24 2010-10-20 株式会社東芝 Square non-aqueous electrolyte secondary battery
JP4686801B2 (en) * 1999-10-13 2011-05-25 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP4915025B2 (en) * 1999-11-19 2012-04-11 住友化学株式会社 Nonaqueous electrolyte and lithium secondary battery
JP4153700B2 (en) * 2001-01-29 2008-09-24 松下電器産業株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005032701A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4963780B2 (en) Non-aqueous electrolyte and lithium secondary battery
US7083878B2 (en) Nonaqueous electrolytic solution and lithium secondary battery
JP5338151B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6238582B2 (en) Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte
JP5217200B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4910303B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2008262908A (en) Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP4433833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5343918B2 (en) Lithium secondary battery and non-aqueous electrolyte
JP4770118B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4910338B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5499542B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
EP2259375B1 (en) Nonaqueous electrolytic solution and lithium secondary battery
JP4655536B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4984373B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4608932B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4655537B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5375816B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4525177B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2010113951A (en) Non-aqueous electrolytic solution and nonaqueous electrolytic solution battery
JP5251174B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5103766B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5098240B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4835022B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5651931B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4963780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term