JP6238582B2 - Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte - Google Patents

Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte Download PDF

Info

Publication number
JP6238582B2
JP6238582B2 JP2013122504A JP2013122504A JP6238582B2 JP 6238582 B2 JP6238582 B2 JP 6238582B2 JP 2013122504 A JP2013122504 A JP 2013122504A JP 2013122504 A JP2013122504 A JP 2013122504A JP 6238582 B2 JP6238582 B2 JP 6238582B2
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
negative electrode
secondary battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013122504A
Other languages
Japanese (ja)
Other versions
JP2014241198A (en
Inventor
山田 淳夫
淳夫 山田
裕貴 山田
裕貴 山田
恵三 古川
恵三 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2013122504A priority Critical patent/JP6238582B2/en
Priority to PCT/JP2014/065428 priority patent/WO2014200012A1/en
Publication of JP2014241198A publication Critical patent/JP2014241198A/en
Application granted granted Critical
Publication of JP6238582B2 publication Critical patent/JP6238582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高濃度金属塩を含むアセトニトリル電解液、及び当該電解液を含む二次電池に関する。   The present invention relates to an acetonitrile electrolyte containing a high-concentration metal salt and a secondary battery containing the electrolyte.

リチウムイオン電池は、従来の二次電池と比較して大きな理論エネルギー密度を有していることから、携帯機器やノートパソコン、電気自動車用のバッテリーとして広く用いられている。近年はより小型・軽量の二次電池が求められるようになっているとともに、特に自動車用途では大電流での充電及び放電を行う必要があるため、現状よりも高速充放電可能な高レート特性を有するリチウムイオン電池の開発が求められている。   Lithium ion batteries have a larger theoretical energy density than conventional secondary batteries, and are therefore widely used as batteries for portable devices, notebook computers, and electric vehicles. In recent years, there has been a demand for smaller and lighter secondary batteries, and in particular for automobile applications, charging and discharging with large currents are necessary. There is a need for development of lithium ion batteries.

リチウムイオン電池の高レート化のためには、電解液材料の改善が必要であるが、現状では黒鉛負極の可逆性確保のために、非水電解液材料としては、環状エステルや鎖状エステル等のカーボネート系溶媒に限定されている。これは、一般に、リチウムイオン電池の負極におけるデンドライト析出の問題を解決するため負極活物質としてグラファイト等の炭素材料が採用されているが、かかる負極炭素材料への可逆的なリチウムイオンの挿入・離脱は、カーボネート系の溶媒の存在下でのみ達成できると考えられていたからである。しかしながら、かかるカーボネート系溶媒を用いる場合には、大幅なレート特性の改善は難しい。既往の研究により、充放電反応の速度が電解液溶媒の影響を強く受けることが明らかとなっている。すなわち、電解液バルクにおけるリチウムイオン伝導度だけでなく、電極へのリチウムイオン挿入反応の活性化障壁も電解液溶媒組成に強く依存する。特に現在主に用いられているエチレンカーボネートやプロピレンカーボネート等のカーボネート系溶媒では電極反応の活性化障壁が大きくなることが知られており(非特許文献1〜3等)、それゆえ充放電レートの改善のためには抜本的な電解液溶媒組成の見直しが必要である。   In order to increase the rate of lithium ion batteries, it is necessary to improve the electrolyte material, but at present, in order to ensure the reversibility of the graphite negative electrode, non-aqueous electrolyte materials include cyclic esters and chain esters, etc. It is limited to the carbonate type solvent. In general, a carbon material such as graphite is used as a negative electrode active material in order to solve the problem of dendrite precipitation in the negative electrode of a lithium ion battery, but reversible insertion / extraction of lithium ions into / from the negative electrode carbon material. This is because it was considered that it can be achieved only in the presence of a carbonate-based solvent. However, when such a carbonate solvent is used, it is difficult to significantly improve the rate characteristics. Previous studies have shown that the rate of charge / discharge reaction is strongly influenced by the electrolyte solvent. That is, not only the lithium ion conductivity in the electrolyte bulk, but also the activation barrier of the lithium ion insertion reaction into the electrode strongly depends on the electrolyte solvent composition. Particularly, carbonate solvents such as ethylene carbonate and propylene carbonate, which are currently mainly used, are known to increase the activation barrier of electrode reaction (Non-Patent Documents 1 to 3 and the like). In order to improve, it is necessary to fundamentally review the electrolyte solvent composition.

一方で、分解し難く融点も低いという性質を有するアセトニトリルは電解液溶媒の候補であるが、還元に弱くリチウムイオン挿入の電位まで耐えられないという問題等によりこれまでのところ実用化に至ってはいない。   On the other hand, acetonitrile, which has the property of being difficult to decompose and having a low melting point, is a candidate for an electrolyte solvent, but has not yet been put into practical use due to problems such as being weak against reduction and unable to withstand the potential of lithium ion insertion. .

T.Abe et al., J.Electrochem.Soc., 151,A1120−A1123(2004).T.A. Abe et al. , J. et al. Electrochem. Soc. 151, A1120-A1123 (2004). T.Abe et al., J.Electrochem.Soc., 152,A2151−A2154(2005).T.A. Abe et al. , J. et al. Electrochem. Soc. , 152, A2151-A2154 (2005). Y.Yamada et al., Langmuir,25,12766−12770(2009).Y. Yamada et al. , Langmuir, 25, 12766-12770 (2009). J.T.Dudley et al., J.Power Sources,35,59−82(1991).J. et al. T.A. Dudley et al. , J. et al. Power Sources, 35, 59-82 (1991). K.Xu et al., J.Phys.Chem.C,111,7411−7421(2007).K. Xu et al. , J. et al. Phys. Chem. C, 111, 7411-7421 (2007). K.Xu,J.Electrochem.Soc.,154,A162−A167(2007).K. Xu, J .; Electrochem. Soc. , 154, A162-A167 (2007). M.S.Ding et al., J.Electrochem.Soc.,150,A620−A628(2003).M.M. S. Ding et al. , J. et al. Electrochem. Soc. , 150, A620-A628 (2003).

本発明は、黒鉛負極の可逆性を維持した上で、現状のカーボネート系電解液を上回るレート特性を発揮する電解液を提供することを課題とする。   This invention makes it a subject to provide the electrolyte solution which exhibits the rate characteristic which surpasses the present carbonate type electrolyte solution, maintaining the reversibility of a graphite negative electrode.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、高濃度のリチウム塩を含むことによりアセトニトリル電解液中において負極炭素材料へのリチウムイオンの可逆的な挿入脱離反応が可能となること、及び、当該電解液によって優れたレート特性が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention enable reversible insertion / extraction reaction of lithium ions to / from the negative electrode carbon material in acetonitrile electrolyte by containing a high concentration of lithium salt. And the inventors have found that excellent rate characteristics can be obtained by the electrolytic solution, and have completed the present invention.

すなわち、本発明は、
(1)アセトニトリルとLiN(SOF)を含むリチウム二次電池用電解液であって、当該電解液中における前記LiN(SOF)の体積モル濃度が3.0mol/L以上であることを特徴とする、電解液;
(2)前記LiN(SOF)の体積モル濃度が3.0〜5.5mol/Lの範囲である、上記(1)に記載の電解液;
(3)前記LiN(SOF)の体積モル濃度が3.5〜5.0mol/Lの範囲である、上記(1)に記載の電解液
に関する。
That is, the present invention
(1) An electrolyte solution for a lithium secondary battery containing acetonitrile and LiN (SO 2 F) 2 , wherein the molar concentration of LiN (SO 2 F) 2 in the electrolyte solution is 3.0 mol / L or more. An electrolyte, characterized by:
(2) The electrolytic solution according to (1), wherein the volume molar concentration of the LiN (SO 2 F) 2 is in the range of 3.0 to 5.5 mol / L;
(3) molarity of the LiN (SO 2 F) 2 is in the range of 3.5~5.0mol / L, about electrolytic solution according to the above (1).

別の態様において、本発明は、
(4)正極活物質を含む正極と、リチウムイオンを吸蔵及び放出可能な負極活物質を含む負極と、上記(1)〜(3)のいずれか1項に記載のリチウム二次電池用電解液を有する二次電池;
(5)前記負極活物質が炭素材料、金属リチウム、リチウム合金、又は金属酸化物である、上記(4)に記載の二次電池;
(6)前記正極活物質がリチウム元素を有する金属酸化物、ポリアニオン系化合物、又は硫黄系化合物である、上記(4)に記載の二次電池;
に関する。
In another aspect, the invention provides:
(4) A positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and the electrolyte for a lithium secondary battery according to any one of (1) to (3) above A secondary battery having:
(5) The secondary battery according to (4), wherein the negative electrode active material is a carbon material, metallic lithium, a lithium alloy, or a metal oxide;
(6) The secondary battery according to (4), wherein the positive electrode active material is a metal oxide having a lithium element, a polyanion compound, or a sulfur compound;
About.

本発明によれば、高濃度のリチウム塩を含むことによって、アセトニトリルの還元耐性を向上させ、従来はアセトニトリル電解液中では困難であった負極炭素材料へのリチウムイオンの可逆的な挿入脱離反応が可能となる。加えて、カーボネート系溶媒や添加剤を使用しないにもかかわらず、極めて良好な充放電サイクル特性が得られ、及びこれまでの商用電解液を大幅に上回るレート特性が得られるという優れた効果を奏する。   According to the present invention, by including a high concentration of lithium salt, the reduction resistance of acetonitrile is improved, and reversible insertion / extraction reaction of lithium ions to / from a negative electrode carbon material, which has been difficult in the conventional acetonitrile electrolyte. Is possible. In addition, despite the fact that no carbonate-based solvent or additive is used, excellent charge / discharge cycle characteristics can be obtained, and the rate characteristics significantly surpassing conventional commercial electrolytes can be obtained. .

また、比較的安価なアセトニトリルを電解液溶媒として用いることができるためコストの面でも有意義であるのみならず、低い融点を有している点で、現在、リチウムイオン電池で主に用いられているエチレンカーボネートよりも優れている。   In addition, since relatively inexpensive acetonitrile can be used as an electrolyte solvent, it is not only significant in terms of cost but also has a low melting point, and is currently used mainly in lithium ion batteries. It is superior to ethylene carbonate.

図1は、4.5MのLiFSA/アセトニトリル電解液を用いた場合の黒鉛電極における充放電曲線を示すグラフである。FIG. 1 is a graph showing a charge / discharge curve in a graphite electrode when a 4.5 M LiFSA / acetonitrile electrolyte is used. 図2は、3.0Mと4.5MのLiFSA/アセトニトリル電解液を用いた場合の充放電曲線の比較を示すグラフである。FIG. 2 is a graph showing a comparison of charge and discharge curves when 3.0M and 4.5M LiFSA / acetonitrile electrolytes are used. 図3は、LiFSA/アセトニトリル電解液とカーボネート系電解液を用いた場合の充放電曲線の比較を示すグラフである。FIG. 3 is a graph showing a comparison of charge / discharge curves when LiFSA / acetonitrile electrolyte and carbonate electrolyte are used. 図4は、LiFSA/アセトニトリル電解液とカーボネート系電解液を用いた場合のレート特性の比較を示すグラフである。FIG. 4 is a graph showing a comparison of rate characteristics when LiFSA / acetonitrile electrolyte and carbonate electrolyte are used.

以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。   Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.

1.電解液
(1)溶媒
本発明の電解液において用いられる溶媒は、アセトニトリル(AN)が最も好ましい。しかし、その他の非水溶媒を用いることもでき、例えば、エチルメチルエーテル、ジプロピルエーテル等のエーテル類;メトキシプロピオニトリルのニトリル類;酢酸メチル等のエステル類;トリエチルアミン等のアミン類;メタノール等のアルコール類;アセトン等のケトン類;含フッ素アルカン等が挙げられる。これらのうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、これらに限定されるものではない。
1. Electrolytic Solution (1) Solvent The solvent used in the electrolytic solution of the present invention is most preferably acetonitrile (AN). However, other non-aqueous solvents can also be used, for example, ethers such as ethyl methyl ether and dipropyl ether; nitriles of methoxypropionitrile; esters such as methyl acetate; amines such as triethylamine; methanol and the like Alcohols; ketones such as acetone; and fluorine-containing alkanes. Among these, one type may be used alone, or two or more types may be used in combination. However, it is not limited to these.

上記非水溶媒は、非プロトン性有機溶媒であることが好ましく、そのような例として、上記アセトニトリルの他に、1,2−ジメトキシエタン、テトラヒドロフラン、ジメチルスルホキシド、γ−ブチロラクトン、及びスルホランが挙げられる。これらに加えて、その他の非水溶媒を含む混合溶媒とすることも可能である。   The non-aqueous solvent is preferably an aprotic organic solvent, and examples thereof include 1,2-dimethoxyethane, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolactone, and sulfolane in addition to the acetonitrile. . In addition to these, it is also possible to use a mixed solvent including other nonaqueous solvents.

(2)アルカリ金属塩
本発明の電解液において支持電解質として用いられるアルカリ金属塩は、LiN(SOF)(リチウムビス(フルオロスルホニル)。以下、「LiFSA」と呼ぶこともある。)が最も好ましい。しかしながら、電解液中で解離してリチウムイオンを供給するものであれば、他のリチウム塩も用いることができる。そのようなリチウム塩は、特に限定されるものではないが、例えば、LiN(CFSO(以下、「LiTFSA」「LiTFSI」と呼ぶこともある。)、LiN(CSO(以下、「LiBETI」と呼ぶこともある。)、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、LiPF、LiBF、LiClO、及びこれらの任意の組み合わせから選択されるものが挙げられる。なお、本発明の電解液が適用される二次電池が、ナトリウムイオン電池、カリウムイオン電池である場合には、上記リチウム塩と同様のアニオンよりなるナトリウム塩又はカリウム塩を用いることもできる。また、本発明の電解液が適用される二次電池が、マグネシウムイオン電池、カルシウムイオン電池である場合には、上記リチウム塩と同様のアニオンよりなるマグネシウム塩又はカルシウム塩を用いることもできる。
(2) Alkali Metal Salt The alkali metal salt used as the supporting electrolyte in the electrolytic solution of the present invention is LiN (SO 2 F) 2 (lithium bis (fluorosulfonyl). Hereinafter, it may be referred to as “LiFSA”). Most preferred. However, other lithium salts can be used as long as they can be dissociated in the electrolytic solution to supply lithium ions. Such a lithium salt is not particularly limited. For example, LiN (CF 3 SO 2 ) 2 (hereinafter sometimes referred to as “LiTFSA” or “LiTFSI”), LiN (C 2 F 5 SO 2 ) 2 (hereinafter sometimes referred to as “LiBETI”), LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) (C 2 F 5 SO 2), LiN (CF 3 SO 2) (C 3 F 7 SO 2), LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiPF 6, LiBF 4, LiClO 4, and any of these What is selected from the combination is mentioned. In addition, when the secondary battery to which the electrolytic solution of the present invention is applied is a sodium ion battery or a potassium ion battery, a sodium salt or potassium salt made of the same anion as the above lithium salt can also be used. Moreover, when the secondary battery to which the electrolytic solution of the present invention is applied is a magnesium ion battery or a calcium ion battery, a magnesium salt or a calcium salt made of an anion similar to the above lithium salt can also be used.

上記電解液中におけるアルカリ金属塩の濃度範囲は、当該アルカリ金属塩の析出等が発生しない限り、負極炭素材料への金属イオンの可逆的な挿入脱離反応を可能とする高い濃度であることができる。例えば、リチウム二次電池においてLiFSAを用いる場合、電解液中のLiFSAの体積モル濃度が3.0mol/L以上となる塩濃度が好ましい。より好ましくは、3.0〜5.5mol/Lの範囲、更に好ましくは、3.5〜5.0mol/Lの範囲の塩濃度である。   The concentration range of the alkali metal salt in the electrolyte solution should be a high concentration that allows a reversible insertion / desorption reaction of the metal ion to / from the negative electrode carbon material unless precipitation of the alkali metal salt occurs. it can. For example, when LiFSA is used in a lithium secondary battery, a salt concentration at which the volume molar concentration of LiFSA in the electrolytic solution is 3.0 mol / L or more is preferable. More preferably, the salt concentration is in the range of 3.0 to 5.5 mol / L, and still more preferably in the range of 3.5 to 5.0 mol / L.

(3)その他の成分
また、本発明の電解液は、その機能の向上等の目的で、必要に応じて他の成分を含むこともできる。他の成分としては、例えば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。
(3) Other components Moreover, the electrolytic solution of the present invention may contain other components as necessary for the purpose of improving the function thereof. Examples of the other components include conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintenance characteristics after high-temperature storage, and property improvement aids for improving cycle characteristics.

過充電防止剤としては、例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソールおよび2,6−ジフルオロアニオール等の含フッ素アニソール化合物が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the overcharge inhibitor include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroaniol Compounds. An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.

電解液が過充電防止剤を含有する場合、電解液中の過充電防止剤の含有量は、0.01〜5質量%であることが好ましい。電解液に過充電防止剤を0.1質量%以上含有させることにより、過充電による二次電池の破裂・発火を抑制することがさらに容易になり、二次電池をより安定に使用できる。   When electrolyte solution contains an overcharge inhibitor, it is preferable that content of the overcharge inhibitor in electrolyte solution is 0.01-5 mass%. By containing 0.1% by mass or more of the overcharge inhibitor in the electrolytic solution, it becomes easier to suppress the rupture / ignition of the secondary battery due to overcharge, and the secondary battery can be used more stably.

脱水剤としては、例えば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウム等が挙げられる。本発明の電解液に用いる溶媒は、前記脱水剤で脱水を行った後に精留を行ったものを使用することもできる。また、精留を行わずに前記脱水剤による脱水のみを行った溶媒を使用してもよい。   Examples of the dehydrating agent include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like. As the solvent used in the electrolytic solution of the present invention, a solvent obtained by performing rectification after dehydrating with the above dehydrating agent may be used. Moreover, you may use the solvent which performed only the dehydration by the said dehydrating agent, without performing rectification.

高温保存後の容量維持特性やサイクル特性を改善するための特性改善助剤としては、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物が挙げられる。これら特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。電解液が特性改善助剤を含有する場合、電解液中の特性改善助剤の含有量は、0.01〜5質量%であることが好ましい。 Examples of the characteristic improvement aid for improving capacity maintenance characteristics and cycle characteristics after high-temperature storage include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, dihydrate Carboxylic anhydride such as glycolic acid, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methanesulfonic acid Methyl, busulfan, sulfolane, sulfolene, dimethylsulfone, diphenylsulfone, methylphenylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-dimethylmethanesulfonamide, N, N-diethylmethanes Sulfur-containing compounds such as honamide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide, etc. Nitrogen compounds; hydrocarbon compounds such as heptane, octane and cycloheptane; and fluorine-containing aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride. These characteristic improvement aids may be used alone or in combination of two or more. When the electrolytic solution contains a property improving aid, the content of the property improving aid in the electrolytic solution is preferably 0.01 to 5% by mass.

2.二次電池
本発明の二次電池は、正極及び負極と、本発明の電解液を備えるものである。
2. Secondary battery The secondary battery of this invention is equipped with a positive electrode and a negative electrode, and the electrolyte solution of this invention.

(1)負極
本発明の二次電池における負極としては、電気化学的にリチウムイオンを吸蔵・放出できる負極活物質を含む電極が挙げられる。このような負極活物質としては、公知のリチウムイオン二次電池用負極活物質を用いることができ、例えば、天然グラファイト(黒鉛)、高配向性グラファイト(Highly Oriented Pyrolytic Graphite;HOPG)、非晶質炭素等の炭素質材料が挙げられる。さらに他の例として、リチウム金属、又はリチウム元素を含む合金、金属酸化物、金属硫化物、金属窒化物のような金属化合物が挙げられる。例えば、リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を有する金属酸化物としては、例えばチタン酸リチウム(LiTi512等)等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
(1) Negative electrode As a negative electrode in the secondary battery of this invention, the electrode containing the negative electrode active material which can occlude / release lithium ion electrochemically is mentioned. As such a negative electrode active material, known negative electrode active materials for lithium ion secondary batteries can be used. For example, natural graphite (graphite), highly oriented graphite (HOPG), amorphous Examples thereof include carbonaceous materials such as carbon. Still other examples include metal compounds such as lithium metal or alloys containing lithium elements, metal oxides, metal sulfides, and metal nitrides. For example, examples of the alloy having a lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy. The metal oxide having a lithium element can be, for example, lithium titanate (Li 4 Ti 5 O 12, etc.) and the like. Examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

なかでも、負極活物質としては、グラファイト等の炭素質材料が好ましい。また、炭素質材料としては、黒鉛、および黒鉛の表面を該黒鉛に比べて非晶質の炭素で被覆した炭素質材料が特に好ましい。   Especially, as a negative electrode active material, carbonaceous materials, such as a graphite, are preferable. Further, as the carbonaceous material, graphite and a carbonaceous material in which the surface of graphite is coated with amorphous carbon as compared with the graphite are particularly preferable.

上記負極は、負極活物質のみを含有するものであってもよく、負極活物質の他に、導電性材料および結着材(バインダ)の少なくとも一方を含有し、負極合材として負極集電体に付着させた形態であるものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極とすることができる。一方、負極活物質が粉末状である場合は、負極活物質および結着材(バインダ)を有する負極とすることができる。粉末状の負極活物質を用いて負極を形成する方法としては、ドクターブレード法や圧着プレスによる成型方法等を用いることができる。   The negative electrode may contain only a negative electrode active material. In addition to the negative electrode active material, the negative electrode contains at least one of a conductive material and a binder, and a negative electrode current collector as a negative electrode mixture. It may be in the form of being attached to. For example, when the negative electrode active material has a foil shape, a negative electrode containing only the negative electrode active material can be obtained. On the other hand, when the negative electrode active material is in a powder form, a negative electrode having a negative electrode active material and a binder (binder) can be obtained. As a method for forming a negative electrode using a powdered negative electrode active material, a doctor blade method, a molding method using a pressure press, or the like can be used.

導電性材料としては、例えば、炭素材料、金属繊維等の導電性繊維、銅、銀、ニッケル、アルミニウム等の金属粉末、ポリフェニレン誘導体等の有機導電性材料を使用することができる。炭素材料として、黒鉛、ソフトカーボン、ハードカーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンファイバー等を使用することができる。また、芳香環を含む合成樹脂、石油ピッチ等を焼成して得られたメソポーラスカーボンを使用することもできる。   Examples of the conductive material that can be used include carbon materials, conductive fibers such as metal fibers, metal powders such as copper, silver, nickel, and aluminum, and organic conductive materials such as polyphenylene derivatives. As the carbon material, graphite, soft carbon, hard carbon, carbon black, ketjen black, acetylene black, graphite, activated carbon, carbon nanotube, carbon fiber and the like can be used. In addition, mesoporous carbon obtained by firing a synthetic resin containing an aromatic ring, petroleum pitch, or the like can also be used.

結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂、或いは、ポリエチレン、ポリプロピレンなどを好ましく用いることができる。負極集電体としては、銅、ニッケル、アルミニウム、ステンレススチール等を主体とする棒状体、板状体、箔状体、網状体等を使用することができる。   As the binder, for example, fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylenetetrafluoroethylene (ETFE), polyethylene, polypropylene, or the like can be preferably used. As the negative electrode current collector, a rod-like body, a plate-like body, a foil-like body, a net-like body or the like mainly composed of copper, nickel, aluminum, stainless steel, or the like can be used.

(2)正極
本発明の二次電池の正極では、公知のリチウムイオン二次電池用正極活物質を用いることができ、例えば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等の1種類以上の遷移金属を含むリチウム含有遷移金属酸化物、遷移金属硫化物、金属酸化物、リン酸鉄リチウム(LiFePO)やピロリン酸鉄リチウム(LiFeP)などの1種類以上の遷移金属を含むリチウム含有ポリアニオン系化合物、硫黄系化合物(LiS)などが挙げられる。当該正極には、導電性材料や結着剤を含有してもよく、酸素の酸化還元反応を促進する触媒を含有してもよい。
(2) Positive electrode In the positive electrode of the secondary battery of the present invention, a known positive electrode active material for a lithium ion secondary battery can be used. For example, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ) Lithium-containing transition metal oxides, transition metal sulfides, metal oxides, lithium iron phosphate (LiFePO 4 ), and lithium iron pyrophosphate (Li 2 ), including one or more transition metals such as lithium nickelate (LiNiO 2 ) Examples thereof include lithium-containing polyanion compounds containing one or more transition metals such as FeP 2 O 7 ), sulfur compounds (Li 2 S), and the like. The positive electrode may contain a conductive material or a binder, or may contain a catalyst that promotes an oxidation-reduction reaction of oxygen.

導電性材料及び結着剤(バインダ)としては、上記負極と同様のものを用いることができる。   As the conductive material and the binder (binder), the same materials as the negative electrode can be used.

触媒として、MnO2、Fe23、NiO、CuO、Pt、Co等を用いることができる。また、結着剤(バインダ)としては、上記負極と同様のバインダを用いることができる。 As the catalyst, MnO 2 , Fe 2 O 3 , NiO, CuO, Pt, Co, or the like can be used. Further, as the binder (binder), the same binder as that of the negative electrode can be used.

(3)セパレータ
本発明の二次電池において用いられるセパレータとしては、正極層と負極層とを電気的に分離する機能を有するものであれば特に限定されるものではないが、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シートや、不織布、ガラス繊維不織布等の不織布等の多孔質絶縁材料等を挙げることができる。
(3) Separator The separator used in the secondary battery of the present invention is not particularly limited as long as it has a function of electrically separating the positive electrode layer and the negative electrode layer. For example, polyethylene (PE) Examples thereof include a porous sheet made of a resin such as polypropylene (PP), polyester, cellulose, and polyamide, and a porous insulating material such as a nonwoven fabric such as a nonwoven fabric and a glass fiber nonwoven fabric.

(4)形状等
本発明の二次電池の形状は、正極、負極、及び電解液を収納することができれば特に限定されるものではないが、例えば、円筒型、コイン型、平板型、ラミネート型等を挙げることができる。
(4) Shape, etc. The shape of the secondary battery of the present invention is not particularly limited as long as it can accommodate a positive electrode, a negative electrode, and an electrolytic solution. For example, a cylindrical type, a coin type, a flat plate type, a laminate type Etc.

なお、本発明の電解液及び二次電池は、二次電池としての用途に好適ではあるが、一次電池として用いることを除外するものではない。   In addition, although the electrolyte solution and secondary battery of this invention are suitable for the use as a secondary battery, using as a primary battery is not excluded.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.

1.黒鉛電極における可逆的充放電反応の評価(充放電試験)
4.5MのLiFSAを含む電解液を用いて、黒鉛電極における単極電位を測定し、C/10レートで充放電挙動の比較を行った。測定は、作用極にポリフッ化ビニリデン(PVdF)を10重量%含む天然黒鉛結合剤電極(平均粒径10μm)、対極及び参照電極に金属リチウムを備えたハーフセルを用いて、充放電測定装置(BioLogic社製、VMP−3)により行った。温度は25℃である。得られた結果を図1に示す。
1. Evaluation of reversible charge-discharge reaction at graphite electrode (charge-discharge test)
Using an electrolytic solution containing 4.5 M LiFSA, the monopolar potential at the graphite electrode was measured, and the charge / discharge behavior was compared at the C / 10 rate. The measurement was carried out using a natural graphite binder electrode (average particle size 10 μm) containing 10% by weight of polyvinylidene fluoride (PVdF) as a working electrode, and a half cell equipped with metallic lithium as a counter electrode and a reference electrode. VMP-3) manufactured by the company. The temperature is 25 ° C. The obtained results are shown in FIG.

図1の結果から、4.5MのLiFSAを含むアセトニトリル溶液では、高い塩濃度とすることにより、還元耐性の低いアセトニトリル溶媒を用いても、黒鉛への可逆なリチウム挿入脱離反応が得られることが実証された。また、サイクル数が増えても放電容量の減少はほぼ見られず、サイクル劣化も生じていないことが示された。良好なサイクル特性が得られることが分かった。黒鉛電極の理論容量(372mAhg−1)に近い放電容量で可逆的な充放電が得られており、これはリチウムイオン電池において慣用されているエチレンカーボネート溶媒や添加剤としてビニレンカーボネートを含まない電解液としては、従来にない高性能といえるものである。 From the results shown in FIG. 1, in an acetonitrile solution containing 4.5 M LiFSA, a reversible lithium insertion and desorption reaction to graphite can be obtained even when an acetonitrile solvent having low reduction resistance is used by setting a high salt concentration. Has been demonstrated. Further, it was shown that even when the number of cycles increased, the discharge capacity was hardly decreased, and cycle deterioration did not occur. It was found that good cycle characteristics can be obtained. Reversible charge / discharge is obtained with a discharge capacity close to the theoretical capacity (372 mAhg −1 ) of a graphite electrode, and this is an electrolyte solution that does not contain vinylene carbonate as an ethylene carbonate solvent or additive commonly used in lithium ion batteries. It can be said that the performance is unprecedented.

また、同様の測定を3.0MのLiFSAを含むアセトニトリル溶液について行った結果を図2に示す。ここでは、比較のため初回サイクルのリチウム挿入曲線のみ表示し、100mAhg−1までの領域を拡大してある。上述のように4.5MのLiFSA濃度の電解液では理論容量に近い量のLiを挿入することができた一方で、3.0Mでは10mAhg−1以下であり、可逆な充放電は不可能であった。このことより、4.5MのLiFSA濃度で得られた放電容量は、高濃度のリチウム塩の存在に起因するものであるといえる。逆に、黒鉛電極の反応可逆性を確保するためは、3.0M以上のLiFSA濃度にする必要があることが示唆される。 Moreover, the result of having performed the same measurement about the acetonitrile solution containing 3.0M LiFSA is shown in FIG. Here, only the lithium insertion curve of the first cycle is displayed for comparison, and the region up to 100 mAhg −1 is enlarged. As described above, an electrolyte solution with a 4.5 M LiFSA concentration could insert Li in an amount close to the theoretical capacity, while at 3.0 M, it was 10 mAhg -1 or less, and reversible charge / discharge was impossible. there were. From this, it can be said that the discharge capacity obtained at a LiFSA concentration of 4.5 M is due to the presence of a high concentration of lithium salt. Conversely, it is suggested that a LiFSA concentration of 3.0 M or higher is necessary to ensure the reaction reversibility of the graphite electrode.

これらの結果は、高濃度のリチウム塩を含む本発明の電解液による負極反応の有効性を実証するものである。   These results demonstrate the effectiveness of the negative electrode reaction with the electrolyte of the present invention containing a high concentration of lithium salt.

2.レート特性の評価
実施例1のセルを用いて、放電容量におけるレート特性の評価を行った。4.5MのLiFSAを含むアセトニトリル溶液を用いて、2Cレートで黒鉛にリチウムを挿入したときの電圧曲線を図3に示す。下限電圧は、リチウム金属の析出が起こる前の0Vに設定した。比較例として、1.0MのLiPFを含むエチレンカーボネート/ジメチルカーボネート(EC/DMC)電解液において得られた結果を併せて図3に示す。カーボネート系電解液では100mAhg−1程度しかリチウムを挿入できなかったが、本発明のLiFSA/アセトニトリル電解液では300mAhg−1以上のリチウムを挿入することが明らかとなった。
2. Evaluation of Rate Characteristics Using the cell of Example 1, the rate characteristics in the discharge capacity were evaluated. FIG. 3 shows a voltage curve when lithium is inserted into graphite at a 2C rate using an acetonitrile solution containing 4.5 M LiFSA. The lower limit voltage was set to 0 V before lithium metal deposition occurred. As a comparative example, the results obtained in an ethylene carbonate / dimethyl carbonate (EC / DMC) electrolyte solution containing 1.0 M LiPF 6 are also shown in FIG. In the carbonate electrolyte, only about 100 mAhg −1 could be inserted, but in the LiFSA / acetonitrile electrolyte of the present invention, it became clear that 300 mAhg −1 or more lithium was inserted.

同様に、4.5MのLiFSAを含むアセトニトリル電解液とEC/DMC電解液について、C/20〜5Cの範囲の種々のレートにおける放電容量を測定した。黒鉛へのリチウム挿入方向・脱離方向ともに同じレート(電流値)としたものを各3サイクルずつ同条件で測定し、得られた脱離方向の容量をプロットした結果を図4に示す(なお、可逆性を確認するため、22及び23サイクル目は、再びC/20で行っている)。   Similarly, the discharge capacity at various rates in the range of C / 20 to 5C was measured for an acetonitrile electrolyte containing 4.5 M LiFSA and an EC / DMC electrolyte. FIG. 4 shows the results of plotting the capacity in the desorption direction obtained by measuring the same rate (current value) in both the lithium insertion direction and the desorption direction in graphite under the same conditions for each of three cycles. In order to confirm reversibility, the 22nd and 23rd cycles are performed again at C / 20).

図4の結果より、いずれのレートにおいても、本発明のLiFSA/アセトニトリル電解液の方が高い可逆容量を示した。加えて、レートが高くなるにつれ、比較例のEC/DMC電解液では容量が大幅に減少しているのに対し、本発明の電解液では、2Cまでほぼ変わらない容量を示し、5Cにおいてもほぼ300mAhg−1の容量を維持できることが分かった。 From the results in FIG. 4, the LiFSA / acetonitrile electrolyte of the present invention showed a higher reversible capacity at any rate. In addition, as the rate increased, the capacity of the EC / DMC electrolyte of the comparative example decreased significantly, whereas the electrolyte of the present invention showed a capacity that remained almost unchanged up to 2C, and was almost the same even at 5C. It was found that a capacity of 300 mAhg −1 can be maintained.

リチウムイオン電池においては、黒鉛負極へのリチウム挿入の速度が充電レートを決定しているため、当該結果から、本発明の電解液を用いることによりリチウムイオン電池の高速充電が可能となることが明らかとなった。 In lithium ion batteries, the rate of lithium insertion into the graphite negative electrode determines the charging rate, and it is clear from the results that the lithium ion battery can be charged at high speed by using the electrolytic solution of the present invention. It became.

以上の実施例は、本発明の高濃度のLiFSAを含むアセトニトリル電解液が、従来のアセトニトリル系電解液のリチウム金属負極における問題を解決するとともに、現在商用されているカーボネート系電解液よりも優れたレート特性を有し、好適な電解液として機能し得ることを実証するものである。   In the above examples, the acetonitrile electrolytic solution containing the high concentration LiFSA of the present invention solves the problems in the lithium metal negative electrode of the conventional acetonitrile-based electrolytic solution, and is superior to the carbonate-based electrolytic solution currently on the market. It demonstrates that it has rate characteristics and can function as a suitable electrolyte.

以上、本発明の具体的態様を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。また、特許請求の範囲に記載の発明には、以上の例示した具体的態様を種々変更したものが含まれ得る。   Although specific embodiments of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. In addition, the invention described in the claims may include various modifications of the specific embodiments described above.

Claims (6)

アセトニトリルとLiN(SOF)を含むリチウム二次電池用電解液であって、当該電解液中における前記LiN(SOF)の体積モル濃度が3.0mol/L以上であることを特徴とする、電解液。 An electrolytic solution for a lithium secondary battery containing acetonitrile and LiN (SO 2 F) 2 , wherein a volume molar concentration of the LiN (SO 2 F) 2 in the electrolytic solution is 3.0 mol / L or more. Characteristic electrolyte. 前記LiN(SOF)の体積モル濃度が3.0〜5.5mol/Lの範囲である、請求項1に記載の電解液。 The electrolytic solution according to claim 1, wherein the volume molar concentration of LiN (SO 2 F) 2 is in the range of 3.0 to 5.5 mol / L. 前記LiN(SOF)の体積モル濃度が3.5〜5.0mol/Lの範囲である、請求項1に記載の電解液。 The electrolytic solution according to claim 1, wherein the volume molar concentration of LiN (SO 2 F) 2 is in the range of 3.5 to 5.0 mol / L. 正極活物質を含む正極と、リチウムイオンを吸蔵及び放出可能な負極活物質を含む負極と、請求項1〜3のいずれか1項に記載のリチウム二次電池用電解液を有する二次電池。 The secondary battery which has the positive electrode containing a positive electrode active material, the negative electrode containing the negative electrode active material which can occlude and discharge | release lithium ion, and the electrolyte solution for lithium secondary batteries of any one of Claims 1-3. 前記負極活物質が炭素材料、金属リチウム、リチウム合金、又は金属酸化物である、請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein the negative electrode active material is a carbon material, metallic lithium, a lithium alloy, or a metal oxide. 前記正極活物質がリチウム元素を有する金属酸化物、ポリアニオン系化合物、又は硫黄系化合物である、請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein the positive electrode active material is a metal oxide containing lithium element, a polyanion compound, or a sulfur compound.
JP2013122504A 2013-06-11 2013-06-11 Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte Active JP6238582B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013122504A JP6238582B2 (en) 2013-06-11 2013-06-11 Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte
PCT/JP2014/065428 WO2014200012A1 (en) 2013-06-11 2014-06-11 Acetonitrile electrolyte solution containing high-concentration metal salt, and secondary battery comprising said electrolyte solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013122504A JP6238582B2 (en) 2013-06-11 2013-06-11 Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte

Publications (2)

Publication Number Publication Date
JP2014241198A JP2014241198A (en) 2014-12-25
JP6238582B2 true JP6238582B2 (en) 2017-11-29

Family

ID=52022303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013122504A Active JP6238582B2 (en) 2013-06-11 2013-06-11 Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte

Country Status (2)

Country Link
JP (1) JP6238582B2 (en)
WO (1) WO2014200012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203969A1 (en) * 2018-04-16 2019-10-24 Ec Power, Llc Systems and methods of battery charging assisted by heating

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6770295B2 (en) * 2015-01-19 2020-10-14 株式会社日本触媒 Non-aqueous electrolyte and storage device equipped with it
JP6620367B2 (en) * 2015-03-10 2019-12-18 株式会社豊田自動織機 Lithium ion secondary battery
DE112016001116T5 (en) * 2015-03-10 2017-11-30 The University Of Tokyo ELECTROLYTE SOLUTION
WO2016147811A1 (en) 2015-03-16 2016-09-22 日本電気株式会社 Electricity storage device
WO2016159117A1 (en) 2015-03-31 2016-10-06 旭化成株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JP6346989B2 (en) 2015-03-31 2018-06-20 旭化成株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
JP2016207313A (en) * 2015-04-16 2016-12-08 株式会社カネカ Nonaqueous electrolyte secondary battery and battery pack thereof
JP6767151B2 (en) * 2016-04-12 2020-10-14 旭化成株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
JP6966760B2 (en) * 2017-01-23 2021-11-17 学校法人東京理科大学 Electrolyte for potassium ion battery, potassium ion battery, electrolytic solution for potassium ion capacitor, and potassium ion capacitor
FI130182B (en) * 2017-03-17 2023-03-31 Broadbit Batteries Oy Electrolyte for supercapacitor and high-power battery use
US11374258B2 (en) 2017-06-27 2022-06-28 Nippon Shokubai Co., Ltd. Electrolyte composition, electrolyte membrane, electrode, cell and method for evaluating electrolyte composition
US10938070B2 (en) 2018-02-20 2021-03-02 Samsung Sdi Co., Ltd. Non-aqueous electrolyte solution for rechargeable battery, rechargeable battery having the same and method of preparing the same
US11444328B2 (en) 2018-02-20 2022-09-13 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same
JP7131923B2 (en) 2018-02-20 2022-09-06 三星エスディアイ株式会社 Electrolyte for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111342138B (en) * 2020-03-12 2023-01-31 河南电池研究院有限公司 Application method of lithium ion battery electrolyte for improving film forming property
CN113140801A (en) * 2021-03-25 2021-07-20 华南师范大学 Low-temperature quick-charging lithium ion battery electrolyte and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140205909A1 (en) * 2011-08-23 2014-07-24 Nippon Shokubai Co., Ltd. Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte
JP5883120B2 (en) * 2012-03-26 2016-03-09 国立大学法人 東京大学 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY CONTAINING THE ELECTROLYTE SOLUTION

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203969A1 (en) * 2018-04-16 2019-10-24 Ec Power, Llc Systems and methods of battery charging assisted by heating
CN111971847A (en) * 2018-04-16 2020-11-20 美国电化学动力公司 System and method for assisting battery charging through heating
US11367910B2 (en) 2018-04-16 2022-06-21 Ec Power, Llc Systems and method of battery charging assisted by heating

Also Published As

Publication number Publication date
WO2014200012A1 (en) 2014-12-18
JP2014241198A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP6238582B2 (en) Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte
JP5883120B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY CONTAINING THE ELECTROLYTE SOLUTION
JP6398985B2 (en) Lithium ion secondary battery
JP5610052B2 (en) Nonaqueous electrolyte for lithium battery and lithium battery using the same
JP5356374B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP5378367B2 (en) Non-aqueous electrolyte and electrochemical device including the same
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
WO2017183696A1 (en) Lithium secondary cell and method for manufacturing lithium secondary cell
JP4963780B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP6558694B2 (en) Flame retardant electrolyte solution for secondary battery, and secondary battery containing the electrolyte solution
WO2011030832A1 (en) Non-aqueous electrolytic solution for power storage device, and power storage device
JP5357517B2 (en) Lithium ion secondary battery
JP6036697B2 (en) Non-aqueous secondary battery
JP2016051600A (en) Nonaqueous electrolytic solution for power storage device
JP2004363086A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2004273448A (en) Non-aqueous electrolyte solution and lithium secondary battery
JP5375816B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2017224410A (en) Nonaqueous electrolyte secondary battery
JP5853662B2 (en) Method of using nonaqueous electrolyte battery and plug-in hybrid vehicle equipped with nonaqueous electrolyte battery
JP2019133837A (en) Secondary battery with electrolyte including nonpolar solvent
JP2003100345A (en) Nonaqueous electrolyte solution and secondary cell using the same
JP4017368B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2023055107A (en) Electrolyte for metallic lithium secondary batteries

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250