JPH11273674A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH11273674A
JPH11273674A JP10070758A JP7075898A JPH11273674A JP H11273674 A JPH11273674 A JP H11273674A JP 10070758 A JP10070758 A JP 10070758A JP 7075898 A JP7075898 A JP 7075898A JP H11273674 A JPH11273674 A JP H11273674A
Authority
JP
Japan
Prior art keywords
organic electrolyte
lithium
positive electrode
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10070758A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Manabu Ochita
学 落田
Katsunori Suzuki
克典 鈴木
Yuichi Takatsuka
祐一 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10070758A priority Critical patent/JPH11273674A/en
Publication of JPH11273674A publication Critical patent/JPH11273674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an electric current cutoff mechanism or a safety valve from being actuated even if it is stored at a high temperature in a charging state by including a phosphorous compound in a positive electrode using a lithium nickel composite oxide of a secondary battery having the safety valve housed in a sealed vessel together with a negative electrode and an organic electrolyte, as an active material. SOLUTION: 0.1 to 15 wt.% of a phosphorous compound having the average particle size not more than 30 μm is included in a positive electrode active material composed of lithium nickel composite oxide expressed by the formula: LiNixMyO2 . In the formula, (x and y) are [0.9<(x+y)<1.1], and M is a metallic element other than Ni. Lithium phosphate is desirable as the phosphorous compound, and lithium metaphosphate and cobalt phosphate are also used. An electric current cutoff mechanism actuated by an increase in battery internal pressure is provided, and is desirably actuated by battery internal pressure lower than battery internal pressure for opening/actuating a safety valve. Internal pressure of an organic electrolyte secondary battery is not increased by being decomposed/gasified when the lithium nickel composite oxide in a charged state and an organic electrolyte react with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解液二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される有機電解
液二次電池は高エネルギー密度であるため、ビデオカメ
ラ、ノートパソコン、携帯電話等のポータブル機器に使
用されている。特に近年は負極に炭素粉末等のリチウム
を吸蔵、放出可能な材料を用いたリチウムイオン二次電
池が普及している。この電池の内部構造は通常、図1に
示されるような捲回式である。すなわち、正極活物質や
負極活物質を金属箔に塗着した電極をセパレータを挟ん
で捲回し、容器となる円筒形の缶に収納し、電解液を注
液した後、キャップをかぶせて封口している。
2. Description of the Related Art Organic electrolyte secondary batteries typified by lithium secondary batteries have a high energy density and are therefore used in portable devices such as video cameras, notebook computers, and mobile phones. Particularly in recent years, lithium ion secondary batteries using a material capable of occluding and releasing lithium such as carbon powder for the negative electrode have become widespread. The internal structure of this battery is usually of a wound type as shown in FIG. That is, an electrode obtained by applying a positive electrode active material or a negative electrode active material to a metal foil is wound with a separator interposed therebetween, housed in a cylindrical can serving as a container, injected with an electrolytic solution, covered with a cap, and sealed. ing.

【0003】これらの電池に用いられる正極活物質とし
てLiCoO2(コバルト酸リチウム)やLiNiO
2(ニッケル酸リチウム)が一般に用いられている。な
お、正極活物質としてLiNiO2を用いると、構成材
料であるNiがCoに比べて安価なため好ましい。な
お、放電容量密度を比較すると、LiCoO2が145
〜150mAh/gであるのに対して、LiNiO2は180
〜200mAh/gと高く、すぐれた特性を有している。し
かし、LiNiO2は充放電を繰り返すと結晶構造が崩
壊するため、充放電サイクル寿命が短いという問題点が
あった。この問題点を解決するために結晶構造中のNi
の一部をCo等の他の元素と置換したLiNixCoyO
2や、LiサイトやNiサイトの一部を1種類以上の他
の金属元素で置換する手段が提案され、サイクル寿命特
性の向上に効果が得られている。
As a positive electrode active material used in these batteries, LiCoO 2 (lithium cobaltate) or LiNiO
2 (Lithium nickelate) is commonly used. Note that it is preferable to use LiNiO 2 as the positive electrode active material because Ni, which is a constituent material, is less expensive than Co. When the discharge capacity densities were compared, LiCoO 2 was 145.
150150 mAh / g, whereas LiNiO 2 is 180
It is as high as 200 mAh / g and has excellent characteristics. However, LiNiO 2 has a problem that the charge / discharge cycle life is short because the crystal structure is destroyed when charge / discharge is repeated. To solve this problem, Ni in the crystal structure
LiNixCoyO in which a part of is replaced by another element such as Co
2, and a means for substituting a part of the Li site or Ni site with one or more kinds of other metal elements has been proposed, and the effect of improving the cycle life characteristics has been obtained.

【0004】しかしながら、上記リチウムニッケル複合
酸化物を正極活物質に用いた電池は、充電状態で高温貯
蔵をした場合において、電池の内部圧力が高くなり、電
流遮断機構が作動したり、安全弁が作動したりして、電
池としての機能が喪失するという問題点が認められてい
る。その原因として、充電された状態のリチウムニッケ
ル複合酸化物と有機電解液が反応して分解、ガス化し、
電池の内部圧力を上昇させるためと考えられている
However, in a battery using the above-mentioned lithium nickel composite oxide as a positive electrode active material, when stored at a high temperature in a charged state, the internal pressure of the battery increases, and the current cutoff mechanism operates and the safety valve operates. For example, the problem that the function as a battery is lost has been recognized. As the cause, the charged lithium nickel composite oxide and the organic electrolyte react to decompose and gasify,
It is thought to increase the internal pressure of the battery

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、リチ
ウムニッケル複合酸化物を正極活物質に用いた電池にお
いて、充電状態で高温貯蔵をした場合においても、電流
遮断機構が作動したり、安全弁が作動しないことを目的
としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery using a lithium nickel composite oxide as a positive electrode active material. Is intended to not work.

【0006】[0006]

【課題を解決するための手段】上述した課題を解決する
ために、第一の発明では、一般式LiNixMyO2(0.9<(x
+y)<1.1、Mはニッケル以外の、少なくとも1種類
以上の金属元素)で示されるリチウムニッケル複合酸化
物を主体とする正極、負極、リチウムイオンの移動が可
能な有機電解液とが密閉容器に収納され、所定圧力より
も高い電池内圧で作動する安全弁を有する有機電解液二
次電池において、前記正極が燐化合物を含有しているこ
とを特徴とし、第二の発明では前記燐化合物の含有量
が、正極活物質重量に対して0.1〜15%であること
を特徴とし、第三の発明では前記燐化合物の平均粒子径
が30μm以下であることを特徴とし、第四の発明で
は、電池内圧上昇で作動する電流を遮断する機構(以
下、電流遮断機構と略す)を備え、前記電流遮断機構は
安全弁が開放作動する電池内圧より低い電池内圧で作動
することを特徴としている。第五の発明では、正極に含
まれる燐化合物が燐酸リチウムであることを特徴とし、
第六の発明では、負極が充電、放電に伴い、リチウムを
吸蔵、放出することのできる炭素材料であることを特徴
し、第七の発明では、負極がリチウム金属、リチウム合
金の中から選ればれることを特徴としている。
Means for Solving the Problems In order to solve the above-mentioned problems, in the first invention, a general formula LiNixMyO 2 (0.9 <(x
+ Y) <1.1, M is a positive electrode, a negative electrode, and an organic electrolyte capable of moving lithium ions, mainly composed of a lithium-nickel composite oxide represented by the following formula: In the organic electrolyte secondary battery which is housed and has a safety valve which operates at a battery internal pressure higher than a predetermined pressure, the positive electrode contains a phosphorus compound, and in the second invention, the content of the phosphorus compound is Is characterized by being 0.1 to 15% based on the weight of the positive electrode active material, the third invention is characterized in that the average particle diameter of the phosphorus compound is 30 μm or less, and the fourth invention is characterized by: A mechanism for interrupting a current that is activated by an increase in battery internal pressure (hereinafter abbreviated as a current interrupt mechanism) is provided, wherein the current interrupt mechanism operates at a battery internal pressure lower than the battery internal pressure at which the safety valve opens and operates. In the fifth invention, the phosphorus compound contained in the positive electrode is lithium phosphate,
The sixth invention is characterized in that the negative electrode is a carbon material capable of occluding and releasing lithium with charging and discharging, and in the seventh invention, the negative electrode is selected from lithium metal and lithium alloy. Is characterized by

【0007】[0007]

【発明の実施の形態】以下に本発明を実施の形態を説明
する。図1は本発明を実施した円筒形リチウム二次電池
の断面図である。 1.正極の作製 リチウムニッケル複合酸化物としてLiNi0.8Co0.2
2(平均粒径約20μm)、グラファイト(平均粒径約
0.5μm)、結着剤としてポリフッ化ビニリデン(商
品名:KF#1120、呉羽化学工業(株)製、以下、
PVDFと略す)とを80:10:10の重量比率で、
溶媒であるN−メチル−2−ピロリドン(以下、NMP
と略す)に分散させてスラリを作製する。そして、後述
する各種の燐化合物をこのスラリに添加して混練する。
このスラリを正極集電体1である厚みが20μmのアル
ミニウム箔の両面にロールtoロール法転写により塗布
し、乾燥した後、プレスして一体化する。正極の厚さは
155〜166μmとし、正極活物質層2の密度として
3.2g/cm3 とした。その後、幅が54mm、長
さが450mmに切断して短冊状の正極を作製した。
Embodiments of the present invention will be described below. FIG. 1 is a sectional view of a cylindrical lithium secondary battery embodying the present invention. 1. LiNi 0 as manufactured lithium nickel composite oxide of the positive electrode. 8 Co 0. 2
O 2 (average particle size: about 20 μm), graphite (average particle size: about 0.5 μm), polyvinylidene fluoride (trade name: KF # 112, manufactured by Kureha Chemical Industry Co., Ltd.)
PVDF) in a weight ratio of 80:10:10,
N-methyl-2-pyrrolidone (hereinafter referred to as NMP)
Abbreviated as above) to produce a slurry. Then, various phosphorus compounds described later are added to the slurry and kneaded.
The slurry is applied to both surfaces of a 20 μm thick aluminum foil serving as the positive electrode current collector 1 by roll-to-roll transfer, dried, and then pressed to integrate. The thickness of the positive electrode was 155 to 166 μm, and the density of the positive electrode active material layer 2 was 3.2 g / cm 3 . Thereafter, the strip was cut into a width of 54 mm and a length of 450 mm to produce a strip-shaped positive electrode.

【0008】2.負極の作製 平均粒径20μmの黒鉛粉末、結着剤としてPVDFを
重量比で90:10で混合し、そこへ分散溶媒となるN
MPを適量加え、十分に混練、分散させてスラリにす
る。このスラリを負極集電体3である厚みが10μmの
銅箔の両面にロールtoロール法転写により塗布、乾燥
後、プレスして一体化する。負極の厚さは179〜19
0μmであり、負極活物質層の密度は約1.4g/cm
3である。その後、幅が56mm、長さが490mmに
切断して短冊状の負極を作製した。 3.電池の組立て及び試験 作製した短冊状の正極と負極とを、厚さが25μm、幅
が58mmのポリエチレン多孔膜からなるセパレータ5
を介して渦巻き状に巻いて電極群を作製する。なお、正
極と負極の厚さの和は340〜345μmとした。34
5μmを超えると、捲回体の直径が電池缶6の内径より
も大きくなって挿入できない。一方、340μm未満で
あれば逆に捲回体の直径が電池缶6の内径よりも小さく
なって、電池としての容量が十分得られないからであ
る。この電極群を電池缶6に挿入し、負極集電体3の端
子を電池缶6の底部に溶接した。炭酸エチレンと炭酸ジ
メチルと炭酸ジエチルを体積比で30:50:20で混
合し、1M LiPF6が溶解して電解液とした。この
電解液を電池缶6内に5ml注液した。
[0008] 2. Preparation of Negative Electrode A graphite powder having an average particle diameter of 20 μm and PVDF as a binder were mixed at a weight ratio of 90:10, and N was used as a dispersion solvent.
An appropriate amount of MP is added, sufficiently kneaded and dispersed to form a slurry. The slurry is applied to both surfaces of a copper foil having a thickness of 10 μm as the negative electrode current collector 3 by a roll-to-roll method transfer, dried, and then pressed to be integrated. The thickness of the negative electrode is 179 to 19
0 μm, and the density of the negative electrode active material layer is about 1.4 g / cm.
3 Thereafter, the resultant was cut into a width of 56 mm and a length of 490 mm to produce a strip-shaped negative electrode. 3. Battery assembly and test The prepared strip-shaped positive electrode and negative electrode were separated by a separator 5 made of a polyethylene porous film having a thickness of 25 µm and a width of 58 mm.
To form an electrode group. Note that the sum of the thicknesses of the positive electrode and the negative electrode was 340 to 345 μm. 34
If it exceeds 5 μm, the diameter of the wound body becomes larger than the inner diameter of the battery can 6 and cannot be inserted. On the other hand, if it is less than 340 μm, the diameter of the wound body is smaller than the inner diameter of the battery can 6, so that sufficient capacity as a battery cannot be obtained. This electrode group was inserted into the battery can 6, and the terminal of the negative electrode current collector 3 was welded to the bottom of the battery can 6. Ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 30:50:20, and 1 M LiPF 6 was dissolved to prepare an electrolyte. 5 ml of this electrolytic solution was injected into the battery can 6.

【0009】正極集電体1に正極タブ端子8の一方を溶
接した後、正極タブ端子8の他の一方を正極キャップ7
に溶接する。正極キャップ7を絶縁性のガスケット9を
介して電池缶6の上部に配置し、この部分をかしめて密
閉する。ここで、正極キャップ7内には、電池内圧の上
昇に応じて作動する電流遮断機構(圧力スイッチ)とこ
の圧力よりも高い圧力に応じて開放作動する安全弁が組
み込まれている。本実施例では作動圧が9kgf/cm
2の電流遮断機構と、作動圧が20kgf/cm2の安全
弁の2種類を用いた。作製した有機電解液二次電池は周
囲温度25℃、4.2Vの定電圧(ただし、制限電流3
20mA)で8時間充電した後、1Aの定電流で終止電
圧2.5Vまで放電して容量を確認した。その後、同じ
条件で再び充電した状態で60℃、30日間貯蔵し、電
流遮断機構や安全弁の作動状況の有無を確認した。
After welding one of the positive electrode tab terminals 8 to the positive electrode current collector 1, the other one of the positive electrode tab terminals 8 is connected to the positive electrode cap 7.
To weld. The positive electrode cap 7 is arranged on the upper part of the battery can 6 via the insulating gasket 9, and this portion is caulked and sealed. Here, in the positive electrode cap 7, a current cutoff mechanism (pressure switch) that operates in response to an increase in battery internal pressure and a safety valve that opens in response to a pressure higher than this pressure are incorporated. In this embodiment, the operating pressure is 9 kgf / cm
2 types of current interrupt mechanism and a safety valve having an operating pressure of 20 kgf / cm 2 were used. The produced organic electrolyte secondary battery was operated at an ambient temperature of 25 ° C. and a constant voltage of 4.2 V (however, the limiting current was 3
After charging at 20 mA) for 8 hours, the battery was discharged at a constant current of 1 A to a final voltage of 2.5 V to check the capacity. Thereafter, the battery was stored at 60 ° C. for 30 days while being charged again under the same conditions, and the presence or absence of the operation state of the current cutoff mechanism and the safety valve was confirmed.

【0010】[0010]

【実施例】(実施例1〜5、比較例1)正極活物質重量
(LiNi0.8Co0.22)に対して、平均粒子径が1
0μmの燐酸リチウム(Li3PO4)をそれぞれ、0.
05、0.1、2、15、18%含有させた電池につい
て放電容量、放置後の電流遮断機構や安全弁の作動状況
の有無を測定した結果を表1に示す。なお、比較例1と
して正極活物質に燐酸リチウムを含有しない電池を作製
した。燐酸リチウムの添加によって、安全弁の作動がな
く、効果が認められる。一方、燐酸リチウムの含有量が
0.1%未満では、電流遮断機構が作動している。しか
し、燐酸リチウムの含有量が18%では放電容量が少な
くなるため好ましくない。
EXAMPLES (Examples 1-5, Comparative Example 1) the positive electrode active material weight (LiNi 0. 8 Co 0. 2 O 2) with respect to an average particle size of 1
0 μm of lithium phosphate (Li 3 PO 4 ) was added to each of 0.1 μm.
Table 1 shows the results obtained by measuring the discharge capacity of the batteries containing 05, 0.1, 2, 15, and 18%, and the presence or absence of the operating state of the current cutoff mechanism and the safety valve after standing. As Comparative Example 1, a battery containing no lithium phosphate in the positive electrode active material was manufactured. By adding lithium phosphate, the safety valve does not operate and the effect is recognized. On the other hand, when the content of lithium phosphate is less than 0.1%, the current cutoff mechanism operates. However, when the content of lithium phosphate is 18%, the discharge capacity decreases, which is not preferable.

【0011】[0011]

【表1】 [Table 1]

【0012】(実施例6〜10)正極活物質重量に対し
て燐酸リチウムを2%添加し、燐酸リチウムの平均粒子
径をそれぞれ2、10、20、30、40μmとした電
池の放電容量、放置後の電流遮断機構や安全弁の作動状
況を表2に示す。燐酸リチウムを含む実施例6〜10は
電流遮断機構や安全弁が作動していない。なお、燐酸リ
チウムの平均粒子径が30μmを超えると放電容量の低
下が大となるため好ましくない。詳細は不明であるが、
平均粒子径の大きい絶縁物質が入ると、正極活物質の分
散が悪くなるためと考えられる。
(Examples 6 to 10) Discharge capacity of a battery in which lithium phosphate was added at 2% based on the weight of the positive electrode active material and the average particle diameter of lithium phosphate was 2, 10, 20, 30, and 40 μm, respectively, was left. Table 2 shows the operating states of the current cutoff mechanism and the safety valve later. In Examples 6 to 10 containing lithium phosphate, the current cutoff mechanism and the safety valve were not operated. In addition, it is not preferable that the average particle diameter of lithium phosphate exceeds 30 μm because the discharge capacity is greatly reduced. Details are unknown,
It is considered that when an insulating material having a large average particle diameter enters, the dispersion of the positive electrode active material deteriorates.

【0013】[0013]

【表2】 [Table 2]

【0014】(実施例11〜15)正極活物質重量(L
iNi0.8Co0.22)に対して、平均粒子径が10μ
mのメタ燐酸リチウムをそれぞれ、0.05、0.1、
2、15、18%含有させた電池について放電容量、放
置後の電流遮断機構や安全弁の作動状況の有無を測定し
た結果を表3に示す。メタ燐酸リチウムの添加によっ
て、安全弁の作動がなく、効果が認められる。一方、メ
タ燐酸リチウムの含有量が0.1%未満では、電流遮断
機構が作動している。しかし、メタ燐酸リチウムの含有
量が18%では放電容量が少なくなるため好ましくな
い。
(Examples 11 to 15) Weight of positive electrode active material (L
iNi 0. 8 Co 0 against. 2 O 2), an average particle diameter of 10μ
m of lithium metaphosphate, respectively, 0.05, 0.1,
Table 3 shows the results obtained by measuring the discharge capacity of the batteries containing 2, 15, and 18%, and the presence or absence of the operating state of the current cutoff mechanism and the safety valve after standing. By adding lithium metaphosphate, the safety valve is not operated, and the effect is recognized. On the other hand, when the content of lithium metaphosphate is less than 0.1%, the current cutoff mechanism operates. However, when the content of lithium metaphosphate is 18%, the discharge capacity decreases, which is not preferable.

【0015】[0015]

【表3】 [Table 3]

【0016】(実施例16〜20)正極活物質重量に対
して燐酸リチウムを2%添加し、メタ燐酸リチウムの平
均粒子径をそれぞれ2、10、20、30、40μmと
した電池の放電容量、放置後の電流遮断機構や安全弁の
作動状況を表4に示す。メタ燐酸リチウムを含む実施例
16〜20は電流遮断機構や安全弁が作動していない。
なお、メタ燐酸リチウムの平均粒子径が30μmを超え
ると放電容量の低下が大となるため好ましくない。詳細
は不明であるが、平均粒子径の大きい絶縁物質が入る
と、正極活物質が分散が悪くなるためと考えられる。
(Examples 16 to 20) Discharge capacity of a battery in which lithium phosphate was added at 2% based on the weight of the positive electrode active material and the average particle diameter of lithium metaphosphate was 2, 10, 20, 30, and 40 μm, respectively. Table 4 shows the operating states of the current cutoff mechanism and the safety valve after the standing. In Examples 16 to 20 including lithium metaphosphate, the current cutoff mechanism and the safety valve were not operated.
It is not preferable that the average particle diameter of lithium metaphosphate exceeds 30 μm, because the discharge capacity is greatly reduced. Although details are unknown, it is considered that when an insulating material having a large average particle diameter enters, the positive electrode active material is poorly dispersed.

【0017】[0017]

【表4】 [Table 4]

【0018】(実施例21〜25)正極活物質重量(L
iNi0.8Co0.22)に対して、平均粒子径が10μ
mの燐酸コバルトをそれぞれ、0.05、0.1、2、
15、18%含有させた電池について放電容量、放置後
の電流遮断機構や安全弁の作動状況の有無を測定した結
果を表5に示す。燐酸コバルトの添加によって、安全弁
の作動がなく、効果が認められる。一方、燐酸コバルト
の含有量が0.1%未満では、電流遮断機構が作動して
いる。しかし、燐酸コバルトの含有量が18%では放電
容量が少なくなるため好ましくない。
(Examples 21 to 25) Weight of positive electrode active material (L
iNi 0. 8 Co 0 against. 2 O 2), an average particle diameter of 10μ
m of cobalt phosphate, respectively, 0.05, 0.1, 2,
Table 5 shows the results obtained by measuring the discharge capacity of the batteries containing 15% and 18%, and the presence / absence of the operation state of the current cutoff mechanism and the safety valve after standing. With the addition of cobalt phosphate, the safety valve was not operated and the effect was recognized. On the other hand, when the content of cobalt phosphate is less than 0.1%, the current cutoff mechanism operates. However, when the content of cobalt phosphate is 18%, the discharge capacity decreases, which is not preferable.

【0019】[0019]

【表5】 [Table 5]

【0020】(実施例26〜30)正極活物質重量に対
して燐酸コバルトを2%添加し、燐酸コバルトの平均粒
子径をそれぞれ2、10、20、30、40μmとした
電池の放電容量、放置後の電流遮断機構や安全弁の作動
状況を表6に示す。燐酸コバルトを含む実施例26〜3
0は電流遮断機構や安全弁が作動していない。なお、燐
酸コバルトの平均粒子径が30μmを超えると放電容量
の低下が大となるため好ましくない。詳細は不明である
が、平均粒子径の大きい絶縁物質が入ると、正極活物質
が分散が悪くなるためと考えられる。
(Examples 26 to 30) Discharge capacity of a battery in which 2% of cobalt phosphate was added to the weight of the positive electrode active material and the average particle diameter of cobalt phosphate was 2, 10, 20, 30, and 40 μm, respectively, was left. Table 6 shows the operating states of the current cut-off mechanism and the safety valve later. Examples 26-3 containing cobalt phosphate
0 indicates that the current cutoff mechanism and the safety valve are not operating. If the average particle size of cobalt phosphate exceeds 30 μm, the discharge capacity is greatly reduced, which is not preferable. Although details are unknown, it is considered that when an insulating material having a large average particle diameter enters, the positive electrode active material is poorly dispersed.

【0021】[0021]

【表6】 [Table 6]

【0022】(実施例31〜35)正極活物質重量(L
iNi0.8Co0.22)に対して、平均粒子径が10μ
mの燐化コバルトをそれぞれ、0.05、0.1、2、
15、18%含有させた電池について放電容量、放置後
の電流遮断機構や安全弁の作動状況の有無を測定した結
果を表7に示す。燐化コバルトの添加によって、安全弁
の作動がなく、効果が認められる。一方、燐化コバルト
の含有量が0.1%未満では、電流遮断機構が作動して
いる。しかし、燐化コバルトの含有量が18%では放電
容量が少なくなるため好ましくない。
(Examples 31 to 35) Weight of positive electrode active material (L
iNi 0. 8 Co 0 against. 2 O 2), an average particle diameter of 10μ
m, 0.05, 0.1, 2,
Table 7 shows the results obtained by measuring the discharge capacity of the batteries containing 15 and 18%, and the presence or absence of the operating state of the current interrupting mechanism and the safety valve after being left. By adding cobalt phosphide, there is no operation of the safety valve, and the effect is recognized. On the other hand, when the content of cobalt phosphide is less than 0.1%, the current cutoff mechanism operates. However, when the content of cobalt phosphide is 18%, the discharge capacity decreases, which is not preferable.

【0023】[0023]

【表7】 [Table 7]

【0024】(実施例36〜40)正極活物質に対して
燐化コバルトを2%添加し、燐化コバルトの平均粒子径
を2、10、20、30、40μmとした電池について
放電容量、電流遮断機構や安全弁の作動状況を表8に示
す。燐化コバルトを含む実施例26〜30は電流遮断機
構や安全弁が作動していない。なお、燐化コバルトの平
均粒子径が30μmを超えると放電容量が少なくなるた
め好ましくない。
(Examples 36 to 40) Discharge capacity and current of a battery in which 2% of cobalt phosphide was added to the positive electrode active material and the average particle diameter of cobalt phosphide was 2, 10, 20, 30, and 40 μm. Table 8 shows the operation status of the shutoff mechanism and the safety valve. In Examples 26 to 30 containing cobalt phosphide, the current cutoff mechanism and the safety valve were not operated. If the average particle diameter of cobalt phosphide exceeds 30 μm, the discharge capacity decreases, which is not preferable.

【0025】[0025]

【表8】 [Table 8]

【0026】なお、実施例として、燐酸リチウム、メタ
燐酸リチウム、燐酸コバルト及び燐化コバルトなどの塩
について示したが、このほか三燐酸の塩や四燐酸の塩な
どの燐化合物についても同様の効果を示した。
In the examples, salts such as lithium phosphate, lithium metaphosphate, cobalt phosphate and cobalt phosphide have been shown. In addition, the same effect can be obtained with phosphorus compounds such as triphosphate and tetraphosphate. showed that.

【0027】[0027]

【発明の効果】上述したように、リチウムニッケル複合
酸化物を正極活物質に用いた正極に隣化合物を含有する
ことによって、充電状態で高温貯蔵しても電流遮断機構
が作動したり、安全弁が作動したりして電池としての機
能が喪失するという問題が解決できるため、極めて有効
である。
As described above, by including a neighboring compound in the positive electrode using the lithium nickel composite oxide as the positive electrode active material, the current cutoff mechanism can be operated even when the battery is stored at a high temperature in a charged state, or the safety valve can be operated. This is extremely effective because it can solve the problem that the function as a battery is lost due to operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した円筒形有機電解液二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a cylindrical organic electrolyte secondary battery embodying the present invention.

【符号の説明】[Explanation of symbols]

1:正極集電体、 2:正極活物質層、 3:負極集電
体、4:負極活物質層、 5:セパレータ、 6:電池
缶、 7:正極キャップ、8:正極タブ端子、 9:ガ
スケット。
1: positive electrode current collector, 2: positive electrode active material layer, 3: negative electrode current collector, 4: negative electrode active material layer, 5: separator, 6: battery can, 7: positive electrode cap, 8: positive electrode tab terminal, 9: gasket.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z (72)発明者 高塚 祐一 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内Continuation of the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z (72) Inventor Yuichi Takatsuka 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Shin-Kobe Electric Machinery Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一般式LiNixMyO2(0.9<(x+y)<1.
1;ただし、Mはニッケル以外の少なくとも1種類以上
の金属元素)で示されるリチウムニッケル複合酸化物を
活物質とする正極、負極、リチウムイオンの移動が可能
な有機電解液とが密閉容器に収納され、所定圧力よりも
高い電池内圧で作動する安全弁を有する有機電解液二次
電池において、前記正極が燐化合物を含有することを特
徴とする有機電解液二次電池。
(1) The general formula LiNixMyO 2 (0.9 <(x + y) <1.
1; however, M is a positive electrode, a negative electrode, and an organic electrolyte capable of moving lithium ions, which contain a lithium-nickel composite oxide represented by the following formula: An organic electrolyte secondary battery having a safety valve operated at a battery internal pressure higher than a predetermined pressure, wherein the positive electrode contains a phosphorus compound.
【請求項2】前記燐化合物の含有量が、正極活物質重量
に対して0.1〜15%であることを特徴とする請求項
1記載の有機電解液二次電池。
2. The organic electrolyte secondary battery according to claim 1, wherein the content of the phosphorus compound is 0.1 to 15% based on the weight of the positive electrode active material.
【請求項3】前記燐化合物の平均粒子径が30μm以下
であることを特徴とする請求項1又は請求項2記載の有
機電解液二次電池。
3. The organic electrolyte secondary battery according to claim 1, wherein the phosphorus compound has an average particle size of 30 μm or less.
【請求項4】電池内圧上昇で作動する電流を遮断する機
構(以下、電流遮断機構と略す)を備え、前記電流遮断
機構は安全弁が開放作動する電池内圧より低い電池内圧
で作動することを特徴とする請求項1、2又は3記載の
有機電解液二次電池。
4. A mechanism for interrupting a current activated by an increase in battery internal pressure (hereinafter abbreviated as a current interrupt mechanism), wherein the current interrupt mechanism operates at a battery internal pressure lower than the battery internal pressure at which the safety valve opens. The organic electrolyte secondary battery according to claim 1, 2, or 3.
【請求項5】前記燐化合物が燐酸リチウムであることを
特徴とする請求項1〜4のいずれか1項に記載の有機電
解液二次電池。
5. The organic electrolyte secondary battery according to claim 1, wherein the phosphorus compound is lithium phosphate.
【請求項6】負極が充電、放電に伴い、リチウムを吸
蔵、放出することのできる炭素材料であることを特徴と
する請求項1〜5のいずれか1項に記載の有機電解液二
次電池。
6. The organic electrolyte secondary battery according to claim 1, wherein the negative electrode is a carbon material capable of inserting and extracting lithium with charge and discharge. .
【請求項7】負極がリチウム金属、リチウム合金の中か
ら選ばれることを特徴とする請求項1〜5のいずれか1
項に記載の有機電解液二次電池。
7. The method according to claim 1, wherein the negative electrode is selected from lithium metal and lithium alloy.
The organic electrolyte secondary battery according to the above item.
JP10070758A 1998-03-19 1998-03-19 Organic electrolyte secondary battery Pending JPH11273674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10070758A JPH11273674A (en) 1998-03-19 1998-03-19 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10070758A JPH11273674A (en) 1998-03-19 1998-03-19 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11273674A true JPH11273674A (en) 1999-10-08

Family

ID=13440738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10070758A Pending JPH11273674A (en) 1998-03-19 1998-03-19 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11273674A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324235A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100788257B1 (en) 2007-02-27 2007-12-27 한국전기연구원 Lithium secondary battery comprising electrode composition for high voltage
JP2008123972A (en) * 2006-11-16 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary cell
JP2008251434A (en) * 2007-03-30 2008-10-16 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
CN102906909A (en) * 2010-05-08 2013-01-30 株式会社Lg化学 Positive electrode active material for a secondary battery
CN103098267A (en) * 2010-09-01 2013-05-08 株式会社Lg化学 Cathode active material for secondary battery
WO2013129032A1 (en) * 2012-03-02 2013-09-06 三洋電機株式会社 Positive electrode for non-aqueous electrolyte rechargeable battery, method for producing same, and non-aqueous electrolyte rechargeable battery
JP2014225457A (en) * 2008-06-30 2014-12-04 エルジー・ケム・リミテッド Lithium secondary battery
WO2015028869A1 (en) * 2013-08-29 2015-03-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
CN109119678A (en) * 2017-06-22 2019-01-01 丰田自动车株式会社 Nonaqueous electrolytic solution secondary battery
US11437613B2 (en) 2017-07-21 2022-09-06 Panasonic Intellectual Property Management Co., Ltd. Secondary battery positive electrode and secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324235A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008123972A (en) * 2006-11-16 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary cell
KR100788257B1 (en) 2007-02-27 2007-12-27 한국전기연구원 Lithium secondary battery comprising electrode composition for high voltage
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
JP2008251434A (en) * 2007-03-30 2008-10-16 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
JP2014225457A (en) * 2008-06-30 2014-12-04 エルジー・ケム・リミテッド Lithium secondary battery
CN102906909A (en) * 2010-05-08 2013-01-30 株式会社Lg化学 Positive electrode active material for a secondary battery
US20130040186A1 (en) * 2010-05-08 2013-02-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery
US9123958B2 (en) 2010-05-08 2015-09-01 Lg Chem, Ltd. Cathode active material for lithium secondary battery
CN103098267A (en) * 2010-09-01 2013-05-08 株式会社Lg化学 Cathode active material for secondary battery
US20130171518A1 (en) * 2010-09-01 2013-07-04 Lg Chem, Ltd. Cathode active material for secondary batteries
US9276264B2 (en) * 2010-09-01 2016-03-01 Lg Chem, Ltd. Cathode active material for secondary batteries
US9444097B2 (en) 2012-03-02 2016-09-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2013129032A1 (en) * 2012-03-02 2013-09-06 三洋電機株式会社 Positive electrode for non-aqueous electrolyte rechargeable battery, method for producing same, and non-aqueous electrolyte rechargeable battery
JPWO2013129032A1 (en) * 2012-03-02 2015-07-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, method for producing the same, and non-aqueous electrolyte secondary battery
WO2015028869A1 (en) * 2013-08-29 2015-03-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
CN105518908A (en) * 2013-08-29 2016-04-20 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
US10431826B2 (en) 2013-08-29 2019-10-01 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
US10833369B2 (en) 2015-12-02 2020-11-10 Nec Corporation Positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and methods for producing these
CN109119678A (en) * 2017-06-22 2019-01-01 丰田自动车株式会社 Nonaqueous electrolytic solution secondary battery
JP2019008925A (en) * 2017-06-22 2019-01-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US11437613B2 (en) 2017-07-21 2022-09-06 Panasonic Intellectual Property Management Co., Ltd. Secondary battery positive electrode and secondary battery

Similar Documents

Publication Publication Date Title
US7326493B2 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
JP5100143B2 (en) Battery unit
JP3358478B2 (en) Organic electrolyte secondary battery
JP6139776B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
CN101485034B (en) Lithium rechargeable battery
JPH11283588A (en) Sealed battery
JPH11273674A (en) Organic electrolyte secondary battery
JP2002216755A (en) Nonaqueous electrolyte secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2001250543A (en) Lithium secondary battery
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP2005347222A (en) Electrolyte liquid and battery
JP2008243659A (en) Nonaqueous electrolyte battery
JP2000215909A (en) Nonaqueous electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP5107751B2 (en) Organic electrolyte secondary battery
JP4951923B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2001015168A (en) Lithium secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP4752126B2 (en) Non-aqueous electrolyte secondary battery
JP2000058065A (en) Nonaqueous electrolyte secondary battery
JPH10116628A (en) Lithium secondary battery
JP2001345081A (en) Nonaqueous electrolyte secondary battery