JP2001250543A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001250543A
JP2001250543A JP2000062926A JP2000062926A JP2001250543A JP 2001250543 A JP2001250543 A JP 2001250543A JP 2000062926 A JP2000062926 A JP 2000062926A JP 2000062926 A JP2000062926 A JP 2000062926A JP 2001250543 A JP2001250543 A JP 2001250543A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
liquid
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000062926A
Other languages
Japanese (ja)
Other versions
JP3819663B2 (en
Inventor
Yasuyuki Kusumoto
靖幸 樟本
Masahisa Fujimoto
正久 藤本
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000062926A priority Critical patent/JP3819663B2/en
Publication of JP2001250543A publication Critical patent/JP2001250543A/en
Application granted granted Critical
Publication of JP3819663B2 publication Critical patent/JP3819663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery, capable of inhibiting the pulverization of a negative electrode with charging and discharging, which is superior in charge and discharge cycle characteristics and easy to produce. SOLUTION: The lithium secondary battery comprises a positive electrode 5 using as an active material a lithium contained transition metal oxide as a metal oxide, containing at least one type of transition metal element selected from Ni, Co and Mn and a negative electrode 1, using as an active material a liquid metal or a liquid alloy having a melting point of 60 degrees C or lower, containing gallium or an alloy containing gallium. The lithium secondary battery can recover its cycle characteristics after discharge, by keeping the negative electrode at a temperature higher than the melting point of the liquid metal or the liquid alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関するものである。
TECHNICAL FIELD The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、高出力でかつ高エネルギー密度を
示す二次電池として、リチウム二次電池が実用化されて
いるが、さらなる高エネルギー密度化を目指して研究開
発が盛んに行われている。リチウム二次電池用負極とし
て、リチウム金属を用いると、最も高い理論容量3.8
6Ah/gを得ることができる。
2. Description of the Related Art In recent years, lithium secondary batteries have been put into practical use as secondary batteries having high output and high energy density. However, research and development are being actively conducted with the aim of further increasing the energy density. . When lithium metal is used as the negative electrode for a lithium secondary battery, the highest theoretical capacity is 3.8.
6 Ah / g can be obtained.

【0003】しかしながら、負極にリチウム金属を用い
るリチウム二次電池の場合、充放電に伴うリチウム金属
の溶解析出過程で、負極上でのリチウム金属のデンドラ
イトの生成や、リチウム金属と電解質との反応が起こる
ため、充放電効率が悪く、充放電サイクル特性に劣ると
いう問題があった。このような問題を解決するため、負
極活物質としてリチウム−アルミニウム合金を用いたリ
チウム二次電池が提案されているが、充放電を繰り返す
ことにより負極の体積が膨張収縮し、負極が微粉化する
ため、電池のサイクル特性が悪いという問題があった。
[0003] However, in the case of a lithium secondary battery using lithium metal for the negative electrode, the formation of lithium metal dendrites on the negative electrode and the reaction between the lithium metal and the electrolyte occur during the dissolution and deposition of lithium metal during charging and discharging. Therefore, there is a problem that the charge / discharge efficiency is poor and the charge / discharge cycle characteristics are inferior. In order to solve such a problem, a lithium secondary battery using a lithium-aluminum alloy as a negative electrode active material has been proposed. However, by repeating charge and discharge, the volume of the negative electrode expands and contracts, and the negative electrode is pulverized. Therefore, there is a problem that the cycle characteristics of the battery are poor.

【0004】特開昭57−98978号公報及び特開昭
58−111265号公報においては、このような問題
を解決するため、負極活物質としてリチウム−水銀合金
を用いたリチウム二次電池が提案されている。しかしな
がら、これらのリチウム二次電池においては、リチウム
を含まない化合物が正極活物質として用いられているた
め、大気中で扱うことができないリチウム−水銀合金を
負極活物質として用いなければならず、大気中での電池
の作製が不可能であるという問題があった。
In order to solve such a problem, Japanese Patent Application Laid-Open Nos. 57-98978 and 58-111265 propose a lithium secondary battery using a lithium-mercury alloy as a negative electrode active material. ing. However, in these lithium secondary batteries, since a compound containing no lithium is used as the positive electrode active material, a lithium-mercury alloy that cannot be handled in the air must be used as the negative electrode active material, There is a problem that it is impossible to manufacture a battery inside.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、充放
電に伴う負極の微粉化を抑制することができ、充放電サ
イクル特性に優れると共に、大気中での電池の作製が容
易なリチウム二次電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium secondary battery which can suppress the pulverization of the negative electrode due to charging and discharging, has excellent charge / discharge cycle characteristics, and is easy to manufacture a battery in the atmosphere. Another object is to provide a battery.

【0006】[0006]

【課題を解決するための手段】本発明のリチウム二次電
池は、正極と負極と非水電解質を備えるリチウム二次電
池であり、正極活物質としてリチウム含有遷移金属酸化
物を含み、負極活物質として融点が60℃以下の液体金
属または液体合金を含むことを特徴としている。
A lithium secondary battery according to the present invention is a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The lithium secondary battery includes a lithium-containing transition metal oxide as a positive electrode active material, and includes a negative electrode active material. In addition, a liquid metal or a liquid alloy having a melting point of 60 ° C. or lower is included.

【0007】本発明では、負極活物質として融点が60
℃以下の液体金属または液体合金を含んでいるので、1
00%放電した際に負極からリチウムが抜け、負極が液
体金属または液体合金となるため、微粉化した負極が放
電時に液化し一体化する。このため、負極の微粉化によ
る劣化が抑制され、充放電効率を高めることができる。
In the present invention, the melting point of the negative electrode active material is 60.
Because it contains liquid metals or liquid alloys below ℃
Lithium escapes from the negative electrode when the battery is discharged by 00%, and the negative electrode becomes a liquid metal or a liquid alloy. For this reason, deterioration due to pulverization of the negative electrode is suppressed, and charge / discharge efficiency can be increased.

【0008】本発明においては、放電後、負極を液体金
属または液体合金の融点以上の温度に保つことにより、
負極の液体金属または液体合金を液化させ、電池のサイ
クル性能を回復することもできる。例えば放電状態にお
いて、外気温が低く、融点より低い場合には、例えば人
体の体温などの適切な低温熱源に電池を接触させ、電池
を加温することにより液体化できる。通常、民生用途に
用いられる電池は、−20℃〜60℃程度が使用温度の
範囲であるので、本発明においては、融点が60℃以下
の液体金属または液体合金を用いている。
In the present invention, after discharging, the negative electrode is maintained at a temperature equal to or higher than the melting point of the liquid metal or liquid alloy,
The liquid metal or liquid alloy of the negative electrode can be liquefied to recover the cycle performance of the battery. For example, in the discharge state, when the outside air temperature is low and lower than the melting point, the battery can be liquefied by bringing the battery into contact with an appropriate low-temperature heat source such as a human body temperature and heating the battery. Normally, a battery used for consumer use has a service temperature range of about -20 ° C to 60 ° C. Therefore, in the present invention, a liquid metal or liquid alloy having a melting point of 60 ° C or less is used.

【0009】携帯機器の大半は、動作時において内部で
発熱し、60℃程度の温度に達するものが多いので、融
点が60℃以下であれば、使用時に負極が液体化してサ
イクル特性を改善することができる。さらに、電池が用
いられる携帯機器は通常人間が持ち運ぶものであるの
で、体温以下の融点を有するものであれば、より好まし
い。
Most portable devices generate heat internally during operation and reach a temperature of about 60 ° C. Therefore, if the melting point is 60 ° C. or less, the negative electrode is liquefied during use and cycle characteristics are improved. be able to. Furthermore, since a portable device using a battery is usually carried by a human, it is more preferable that the device has a melting point equal to or lower than the body temperature.

【0010】このような液体金属または液体合金として
は、水銀やガリウムを含むものが挙げられるが、水銀は
環境適応性が乏しいため、ガリウムが好ましく用いられ
る。ガリウムは毒性がなく、融点が29.78℃であ
り、常温でも過冷却液体として存在するので実用的であ
る。また、インジウム(In)や錫(Sn)などの金属
と合金化することにより、融点を制御することが可能で
ある。例えば、15.7℃(Ga−Sn−Zn合金8
2:12:6)〜17℃(In−Ga合金24:76)
程度に融点を制御することができる。
Examples of such a liquid metal or liquid alloy include those containing mercury and gallium. However, since mercury has poor environmental adaptability, gallium is preferably used. Gallium is practical because it is nontoxic, has a melting point of 29.78 ° C., and exists as a supercooled liquid at room temperature. In addition, the melting point can be controlled by alloying with a metal such as indium (In) or tin (Sn). For example, 15.7 ° C. (Ga—Sn—Zn alloy 8
2: 12: 6) to 17 ° C (In-Ga alloy 24:76)
The melting point can be controlled to a certain degree.

【0011】これらの液体金属及び液体合金は、Liを
含まない状態では、常温で液体であるが、Liと合金化
することにより、一般に固体となる。すなわち、完全に
放電した状態において液体となる。上述のように、液体
となることによって微粉化が抑制され、サイクル性能が
改善される。融点が比較的高い合金を用いる場合には、
放電後、融点よりやや高い温度(例えば+5℃以内)に
保つことにより、同様の効果を期待することができる。
但し、電池全体を融点以上の温度にする必要があるの
で、電解液などの他の電池構成材料の劣化が促進されな
い温度とする必要があり、このような観点から融点は6
0℃以下であることが望ましい。
[0011] These liquid metals and liquid alloys are liquid at room temperature when they do not contain Li, but generally become solid by alloying with Li. That is, it becomes liquid in a completely discharged state. As described above, by becoming a liquid, pulverization is suppressed, and cycle performance is improved. When using an alloy with a relatively high melting point,
The same effect can be expected by keeping the temperature slightly higher than the melting point (for example, within + 5 ° C.) after the discharge.
However, since the temperature of the entire battery needs to be higher than the melting point, it is necessary to set the temperature at which deterioration of other battery constituent materials such as the electrolytic solution is not promoted.
The temperature is desirably 0 ° C. or lower.

【0012】また、本発明においては、正極活物質とし
てリチウム含有遷移金属酸化物を含んでいる。正極活物
質がリチウムを含んでいるので、負極活物質中にはリチ
ウムを含有させる必要がなく、大気中で容易に電池を作
製することが可能となる。
Further, in the present invention, a lithium-containing transition metal oxide is contained as a positive electrode active material. Since the positive electrode active material contains lithium, there is no need to include lithium in the negative electrode active material, and a battery can be easily manufactured in the air.

【0013】また、正極活物質としてリチウム含有遷移
金属酸化物を含んでいるので、充放電電圧を高めること
ができ、高いエネルギー密度のリチウム二次電池とする
ことができる。
Further, since the lithium-containing transition metal oxide is contained as the positive electrode active material, the charge / discharge voltage can be increased, and a lithium secondary battery having a high energy density can be obtained.

【0014】リチウム含有遷移金属酸化物としては、N
i、Co、及びMnから選ばれる少なくとも1種の遷移
金属元素を含む金属酸化物が好ましく用いられる。この
ようなリチウム含有遷移金属酸化物としては、例えば、
LiCoO2 、LiNiO2、LiMn2 4 などが挙
げられる。
As the lithium-containing transition metal oxide, N
A metal oxide containing at least one transition metal element selected from i, Co, and Mn is preferably used. As such a lithium-containing transition metal oxide, for example,
LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like.

【0015】本発明において、非水電解質を構成する溶
媒は、リチウム二次電池に用いることができるものであ
れば特に限定されるものではないが、例えば、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、ジメチルカーボネート、ジエチルカーボネー
ト、スルホラン、ジメトキシエタン、テトラヒドロフラ
ン、ジオキソランなどを挙げることができ、これらを単
独であるいは複数成分を混合して使用することができ
る。
In the present invention, the solvent constituting the nonaqueous electrolyte is not particularly limited as long as it can be used for a lithium secondary battery. For example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, Examples thereof include carbonate, diethyl carbonate, sulfolane, dimethoxyethane, tetrahydrofuran, and dioxolan, and these can be used alone or as a mixture of a plurality of components.

【0016】本発明において、非水電解質を構成する溶
質は、リチウム二次電池に用いることができる溶質であ
れば特に限定されるものではないが、例えば、LiPF
6 ,LiBF4 ,LiClO4 ,LiAsF6 ,LiN
(CF3SO2)2 ,LiN(C25SO2)2 ,LiN
(CF3SO2)(C49SO2),LiC(CF3SO2)3
LiCF3(CF2)3SO3 などが挙げられ、これらを単
独あるいは複数成分を混合して使用することができる。
In the present invention, the solute constituting the nonaqueous electrolyte is not particularly limited as long as it is a solute that can be used in a lithium secondary battery.
6, LiBF 4, LiClO 4, LiAsF 6, LiN
(CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN
(CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 ,
LiCF 3 (CF 2 ) 3 SO 3 and the like, and these can be used alone or as a mixture of a plurality of components.

【0017】また、本発明においては、固体電解質ある
いはゲル状電解質として多く用いられているポリエチレ
ンオキシドを含む非水電解質を使用してもよい。
In the present invention, a non-aqueous electrolyte containing polyethylene oxide which is widely used as a solid electrolyte or a gel electrolyte may be used.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施例に基づいて
説明するが、本発明は以下の実施例に限定されるもので
はなく、その要旨を変更しない範囲において、適宜変更
して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to examples, but the present invention is not limited to the following examples, and may be carried out with appropriate changes within the scope of the gist of the present invention. It is possible.

【0019】(実施例1及び2)本発明に従うコイン型
リチウム二次電池を作製した。図1は、作製したコイン
型リチウム二次電池を示す模式的断面図である。
(Examples 1 and 2) A coin-type lithium secondary battery according to the present invention was manufactured. FIG. 1 is a schematic sectional view showing the manufactured coin-type lithium secondary battery.

【0020】図1に示すように、負極1及び正極5は、
非水電解質を含浸した隔膜8及びセパレータ6を介して
対向しており、負極缶2及び正極缶3からなる電池ケー
ス内に収納されている。負極缶2及び正極缶3は、ステ
ンレス鋼から形成されている。セパレータ6としては、
ポリエチレンやポリプロピレンなどの、電解液や電極と
反応しない微多孔膜や不織布を用いることができ、電池
容量の観点からは薄い程望ましいものである。本実施例
では、ポリエチレン製の不織布を用いている。隔膜8
は、負極1が放電時に液化した際に負極の拡散を抑制す
るための膜である。隔膜8としては、セパレータ6とし
て用いることができる材料を使用することができるが、
液化した負極を遮断する性能を考慮すれば、微多孔性の
ものが望ましく用いられる。本実施例では、ポリエチレ
ン製の微多孔膜を用いている。
As shown in FIG. 1, the negative electrode 1 and the positive electrode 5
It faces each other with a diaphragm 8 impregnated with a non-aqueous electrolyte and a separator 6 interposed therebetween, and is housed in a battery case composed of a negative electrode can 2 and a positive electrode can 3. The negative electrode can 2 and the positive electrode can 3 are formed from stainless steel. As the separator 6,
A microporous film or nonwoven fabric that does not react with an electrolyte or an electrode, such as polyethylene or polypropylene, can be used, and the thinner the better, from the viewpoint of battery capacity. In this embodiment, a non-woven fabric made of polyethylene is used. Diaphragm 8
Is a film for suppressing diffusion of the negative electrode 1 when the negative electrode 1 is liquefied during discharge. As the diaphragm 8, a material that can be used as the separator 6 can be used.
Considering the performance of blocking the liquefied negative electrode, a microporous material is desirably used. In this embodiment, a microporous film made of polyethylene is used.

【0021】正極5は、アルミニウムからなる正極集電
体4を介して正極缶3に接続され、負極1は、直接負極
2に接続され、電池内部に生じた化学エネルギーを正極
缶3及び負極缶2の両端子から電気エネルギーとして外
部へ取り出し得るようになっている。負極缶2と正極缶
3との間には、電池内部を密閉するためのポリプロピレ
ンからなる絶縁パッキング7が設けられている。
The positive electrode 5 is connected to the positive electrode can 3 via a positive electrode current collector 4 made of aluminum, and the negative electrode 1 is directly connected to the negative electrode 2 so that the chemical energy generated inside the battery can be transferred to the positive electrode can 3 and the negative electrode can. 2 can be taken out as electric energy from both terminals. An insulating packing 7 made of polypropylene for sealing the inside of the battery is provided between the negative electrode can 2 and the positive electrode can 3.

【0022】電池を組み立てる順序としては、負極缶2
の上に、ガリウム(Ga)または水銀(Hg)の液体金
属からなる負極を載せ、この上に隔膜8を覆うように載
せた後、絶縁パッキング7を嵌め込む。これにより液体
金属からなる負極1は、隔膜8と絶縁パッキング7によ
って押し付けられ、直径18mmの円板状負極となる。
次に、隔膜8の上に、非水電解質を含浸したセパレータ
6、正極集電体4の上に形成した正極5、及び正極缶3
を順次積み重ね、封口金型によって正極缶3の端部を内
側にかしめて封口し、電池を作製する。
The order of assembling the batteries is as follows.
A negative electrode made of a liquid metal such as gallium (Ga) or mercury (Hg) is placed on the substrate, and placed on the negative electrode so as to cover the diaphragm 8, and then the insulating packing 7 is fitted. As a result, the negative electrode 1 made of liquid metal is pressed by the diaphragm 8 and the insulating packing 7 to become a disk-shaped negative electrode having a diameter of 18 mm.
Next, the separator 6 impregnated with the non-aqueous electrolyte on the diaphragm 8, the positive electrode 5 formed on the positive electrode current collector 4, and the positive electrode can 3
Are sequentially stacked, and the end of the positive electrode can 3 is caulked inward with a sealing die to seal the battery, thereby producing a battery.

【0023】上記正極5としては、LiCoO2 を活物
質とした正極を用いた。具体的には、正極活物質として
のLiCoO2 と、導電剤としての人造黒鉛と、結着剤
としてのフッ素樹脂粉末とを85:10:5の重量比で
混合し、これを直径18mm、厚み1mmにプレス加工
し、150℃で2時間真空乾燥したものを用いた。
As the positive electrode 5, a positive electrode using LiCoO 2 as an active material was used. Specifically, LiCoO 2 as a positive electrode active material, artificial graphite as a conductive agent, and fluororesin powder as a binder were mixed at a weight ratio of 85: 10: 5, and this was mixed with a diameter of 18 mm and a thickness of 18 mm. What was press-processed to 1 mm and vacuum-dried at 150 ° C. for 2 hours was used.

【0024】上記非水電解質としては、エチレンカーボ
ネート(EC)とジエチルカーボネート(DEC)とを
体積比1:1の割合で混合させた混合溶媒にLiPF6
を1.0mol/kgの割合で溶解させたものを使用し
た。
As the non-aqueous electrolyte, LiPF 6 is used in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1.
Was dissolved at a rate of 1.0 mol / kg.

【0025】(比較例1)負極1としてアルミニウム板
を用い、隔膜8を設けないこと以外は、上記実施例と同
様にしてコイン型リチウム二次電池を作製した。
Comparative Example 1 A coin-type lithium secondary battery was manufactured in the same manner as in the above example, except that an aluminum plate was used as the negative electrode 1 and the diaphragm 8 was not provided.

【0026】〔充放電特性の評価〕以上のようにして作
製した実施例1及び2並びに比較例1の各電池につい
て、充放電電流1.0mA、充電終止電圧4.2V、放
電終止電圧1.0Vとして充放電試験を行い、50サイ
クル目の容量残存率を測定した。なお、サイクル試験中
は放電後、34℃にて5分間放置した後充電を行い、充
電後すぐに放電した。50サイクル目の放電容量を1サ
イクル目の放電容量で除し、50サイクル目の容量残存
率(%)とした。測定結果を表1に示す。
[Evaluation of Charging / Discharging Characteristics] With respect to the batteries of Examples 1 and 2 and Comparative Example 1 produced as described above, the charging / discharging current was 1.0 mA, the charging end voltage was 4.2 V, and the discharging end voltage was 1. A charge / discharge test was performed at 0 V, and the capacity remaining rate at the 50th cycle was measured. During the cycle test, after discharging, the battery was allowed to stand at 34 ° C. for 5 minutes, charged, and then discharged immediately after charging. The discharge capacity at the 50th cycle was divided by the discharge capacity at the 1st cycle to obtain the remaining capacity ratio (%) at the 50th cycle. Table 1 shows the measurement results.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示す結果から明らかなように、本発
明に従う実施例1及び2の各電池は、比較例1の電池に
比べ、高い容量残存率を示している。このように、本発
明によれば、良好な充放電サイクル特性が得られる。
As is clear from the results shown in Table 1, the batteries of Examples 1 and 2 according to the present invention show a higher remaining capacity ratio than the battery of Comparative Example 1. As described above, according to the present invention, good charge / discharge cycle characteristics can be obtained.

【0029】上記実施例では、コイン型リチウム二次電
池を例にして示したが、本発明はこのようなタイプのリ
チウム二次電池に限定されるものではなく、円筒型電池
やその他の各種形状の電池にも適用することができる。
In the above embodiment, a coin-type lithium secondary battery is described as an example. However, the present invention is not limited to such a type of lithium secondary battery, but may be a cylindrical battery or other various shapes. It can also be applied to batteries.

【0030】[0030]

【発明の効果】本発明によれば、充放電に伴う負極の微
粉化を抑制することができ、充放電サイクル特性に優れ
ると共に、大気中での電池の作製が容易なリチウム二次
電池とすることができる。
According to the present invention, it is possible to suppress the pulverization of the negative electrode due to charge / discharge, to provide a lithium secondary battery which has excellent charge / discharge cycle characteristics and is easy to manufacture in the air. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う実施例において作製したコイン型
リチウム二次電池を示す模式的断面図。
FIG. 1 is a schematic cross-sectional view showing a coin-type lithium secondary battery manufactured in an example according to the present invention.

【符号の説明】[Explanation of symbols]

1…負極 2…負極缶 3…正極缶 4…正極集電体 5…正極 6…セパレータ 7…絶縁パッキング 8…隔膜 DESCRIPTION OF SYMBOLS 1 ... Negative electrode 2 ... Negative electrode can 3 ... Positive electrode can 4 ... Positive electrode collector 5 ... Positive electrode 6 ... Separator 7 ... Insulating packing 8 ... Diaphragm

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ05 AJ14 AK03 AL11 AM03 AM04 AM05 AM07 AM16 BJ03 BJ12 DJ18 EJ01 HJ14 5H031 AA00 EE01 HH06 KK00 5H050 AA07 AA19 BA17 CA08 CA09 CB11 FA02 FA20 HA14  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ05 AJ14 AK03 AL11 AM03 AM04 AM05 AM07 AM16 BJ03 BJ12 DJ18 EJ01 HJ14 5H031 AA00 EE01 HH06 KK00 5H050 AA07 AA19 BA17 CA08 CA09 CB11 FA02 FA20 HA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と非水電解質を備えるリチウ
ム二次電池において、正極活物質としてリチウム含有遷
移金属酸化物を含み、負極活物質として融点が60℃以
下の液体金属または液体合金を含むことを特徴とするリ
チウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, comprising a lithium-containing transition metal oxide as a positive electrode active material and a liquid metal or liquid alloy having a melting point of 60 ° C. or less as a negative electrode active material. A lithium secondary battery, characterized in that:
【請求項2】 前記液体金属または液体合金がガリウム
あるいはガリウムを含む合金であることを特徴とする請
求項1に記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the liquid metal or the liquid alloy is gallium or an alloy containing gallium.
【請求項3】 前記リチウム含有遷移金属酸化物が、N
i、Co、及びMnから選ばれる少なくとも1種の遷移
金属元素を含む金属酸化物であることを特徴とする請求
項1または2に記載のリチウム二次電池。
3. The method according to claim 1, wherein the lithium-containing transition metal oxide is N
The lithium secondary battery according to claim 1 or 2, wherein the lithium secondary battery is a metal oxide containing at least one transition metal element selected from i, Co, and Mn.
【請求項4】 放電後、負極を前記液体金属または液体
合金の融点以上の温度に保つことにより、電池のサイク
ル特性を回復することを特徴とする請求項1〜3のいず
れか1項に記載のリチウム二次電池。
4. The battery according to claim 1, wherein the cycle characteristics of the battery are recovered by maintaining the negative electrode at a temperature equal to or higher than the melting point of the liquid metal or liquid alloy after discharging. Lithium secondary battery.
JP2000062926A 2000-03-08 2000-03-08 Lithium secondary battery charge / discharge method and lithium secondary battery Expired - Fee Related JP3819663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062926A JP3819663B2 (en) 2000-03-08 2000-03-08 Lithium secondary battery charge / discharge method and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062926A JP3819663B2 (en) 2000-03-08 2000-03-08 Lithium secondary battery charge / discharge method and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001250543A true JP2001250543A (en) 2001-09-14
JP3819663B2 JP3819663B2 (en) 2006-09-13

Family

ID=18582875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062926A Expired - Fee Related JP3819663B2 (en) 2000-03-08 2000-03-08 Lithium secondary battery charge / discharge method and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3819663B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660949B1 (en) 2005-03-09 2006-12-26 재단법인서울대학교산학협력재단 Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2010212130A (en) * 2009-03-11 2010-09-24 Toyota Motor Corp Secondary battery
JP2010267446A (en) * 2009-05-13 2010-11-25 Toyota Motor Corp Metal secondary battery
JP2011198494A (en) * 2010-03-17 2011-10-06 Toyota Motor Corp Gallium battery
WO2012035631A1 (en) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 Solid-state battery and regeneration method therefor
WO2017073075A1 (en) * 2015-10-30 2017-05-04 Sharp Kabushiki Kaisha Metal-ion rechargeable cell or battery
US9929408B2 (en) 2013-11-08 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrode member, secondary battery, and method for manufacturing electrode member
US10553854B2 (en) 2013-09-26 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
CN112349886A (en) * 2019-08-06 2021-02-09 北京梦之墨科技有限公司 Self-generating electrode material, negative electrode and self-generating structure
CN113972371A (en) * 2020-07-23 2022-01-25 比亚迪股份有限公司 Negative electrode material, preparation method thereof, negative electrode and all-solid-state lithium battery
CN114649502A (en) * 2020-12-18 2022-06-21 中国科学院物理研究所 Liquid metal coating, preparation method thereof and application thereof in lithium-free metal lithium battery
DE102012204613B4 (en) 2011-03-25 2023-09-14 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Negative liquid metal electrode for lithium ion batteries

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660949B1 (en) 2005-03-09 2006-12-26 재단법인서울대학교산학협력재단 Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2010212130A (en) * 2009-03-11 2010-09-24 Toyota Motor Corp Secondary battery
JP2010267446A (en) * 2009-05-13 2010-11-25 Toyota Motor Corp Metal secondary battery
JP2011198494A (en) * 2010-03-17 2011-10-06 Toyota Motor Corp Gallium battery
WO2012035631A1 (en) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 Solid-state battery and regeneration method therefor
CN103081215A (en) * 2010-09-16 2013-05-01 丰田自动车株式会社 Solid-state battery and regeneration method therefor
CN103081215B (en) * 2010-09-16 2015-07-22 丰田自动车株式会社 Solid-state battery and regeneration method therefor
DE102012204613B4 (en) 2011-03-25 2023-09-14 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Negative liquid metal electrode for lithium ion batteries
US11489148B2 (en) 2013-09-26 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
US10553854B2 (en) 2013-09-26 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
US9929408B2 (en) 2013-11-08 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrode member, secondary battery, and method for manufacturing electrode member
WO2017073075A1 (en) * 2015-10-30 2017-05-04 Sharp Kabushiki Kaisha Metal-ion rechargeable cell or battery
CN112349886A (en) * 2019-08-06 2021-02-09 北京梦之墨科技有限公司 Self-generating electrode material, negative electrode and self-generating structure
CN113972371A (en) * 2020-07-23 2022-01-25 比亚迪股份有限公司 Negative electrode material, preparation method thereof, negative electrode and all-solid-state lithium battery
CN113972371B (en) * 2020-07-23 2023-03-14 比亚迪股份有限公司 Negative electrode material, preparation method thereof, negative electrode and all-solid-state lithium battery
CN114649502A (en) * 2020-12-18 2022-06-21 中国科学院物理研究所 Liquid metal coating, preparation method thereof and application thereof in lithium-free metal lithium battery

Also Published As

Publication number Publication date
JP3819663B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
JP2004063432A (en) Battery
WO2008147751A1 (en) Non-aqueous electrolytes and electrochemical devices including the same
JP2004047180A (en) Nonaqueous electrolytic solution battery
KR20060128690A (en) Electrolytic solution and battery
JP2006032300A (en) Electrolyte and battery
JP2007042387A (en) Electrolyte, electrode, and battery
KR20040079316A (en) Battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP2008041366A (en) Battery
JP2005183384A (en) Electrochemical active material for positive electrode of lithium rechargeable electrochemical cell
JP2005317446A (en) Electrolyte and battery using the same
JPH06342673A (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP4701595B2 (en) Lithium ion secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP4192635B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2004311272A (en) Electrolyte and battery using it
JP2004363015A (en) Non-aqueous electrolyte secondary battery
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP2001160418A (en) Lithium ion rechargeable battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP2010080226A (en) Nonaqueous electrolyte secondary battery
JP2001291519A (en) Nonaqueous second battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees