JP3921836B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery Download PDF

Info

Publication number
JP3921836B2
JP3921836B2 JP27482198A JP27482198A JP3921836B2 JP 3921836 B2 JP3921836 B2 JP 3921836B2 JP 27482198 A JP27482198 A JP 27482198A JP 27482198 A JP27482198 A JP 27482198A JP 3921836 B2 JP3921836 B2 JP 3921836B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27482198A
Other languages
Japanese (ja)
Other versions
JP2000106210A (en
Inventor
賢治 中井
祐一 高塚
学 落田
靖 浦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP27482198A priority Critical patent/JP3921836B2/en
Publication of JP2000106210A publication Critical patent/JP2000106210A/en
Application granted granted Critical
Publication of JP3921836B2 publication Critical patent/JP3921836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機電解液二次電池の安全性の向上に関するものである。
【0002】
【従来の技術】
リチウム二次電池に代表される有機電解液二次電池は、高エネルギー密度であるため、VTR一体型カメラ、ノート型パソコン、携帯電話などのポータブル機器に使用されている。なお、負極に金属リチウムを用いたリチウム二次電池は、充電時にデンドライト状のリチウムイオンの負極に析出し、正極と内部短絡を起こすなどの問題点がある。そこで、リチウムイオンの吸蔵・放出が可能な炭素材料を負極に用いたリチウムイオン二次電池が普及している。
【0003】
最近では、前記したリチウムイオン二次電池の高容量化が強く要求されている。その要望に応じるべく、正極活物質材料及び負極活物質材料の高容量化が急ピッチで進められている。そして、正極活物質の容量として、従来から使用されていた145〜150mAh/g程度のコバルト酸リチウム(LiCoO2)に替わり、180〜200mAh/g程度のニッケル酸リチウム(LiNiO2)の開発が積極的に進められている。なお、LiNiO2は充放電を繰り返すと結晶構造が崩壊しやすいため、サイクル寿命が短いという問題点がある。この問題点を解決するために、結晶構造中のLiサイトやNiサイトの一部を、1種類以上の他の金属元素で置換する方法が提案されており、サイクル寿命特性の向上に効果が得られている。例えば特開平9-17430号公報、特開平10-27610号公報及び特開平8-185863号公報では、第1の置換元素としてSr、Mg、Baに代表されるようなアルカリ土類金属、第2の置換元素としてCoに代表されるような、Ni以外の遷移金属元素で置換することにより、充放電サイクル特性が向上することが開示されている。
【0004】
一方、放電特性、保存特性及び充放電サイクル寿命特性等の向上を目的とし、特開平4-95362号公報、特開平4-169075号公報、特開平6-84542号公報、特開平8-96852号公報等では電解液中にビニレンカーボネート(以下、VCと略す)を添加することが開示されており、効果が認められている。
【0005】
しかしながら、正極にLiNiO2を使用した有機電解液二次電池は、LiCoO2を使用したものに比べて、充電状態の電池を火中に投入した場合などの過酷な加熱試験や、釘刺し試験などにおいて発火しやすく、安全性の点で劣るという問題点がある。
【0006】
【発明が解決しようとする課題】
本発明はリチウムニッケル複合酸化物を正極用活物質に用いた場合において、発火しにくく、安全性の高い有機電解液二次電池を提供するものである。
【0007】
【課題を解決するための手段】
上記した課題を解決するために、第一の発明では一般式LiNixCoySrzO2(0.7≦x≦0.9、0.1≦y≦0.3、x+y≒1、0.001≦z≦0.02)で示されるリチウムイオンの吸蔵・放出が可能なリチウムニッケル複合酸化物を活物質とする正極と、リチウムイオンの吸蔵・放出が可能な負極と、リチウムイオンの移動が可能な有機電解液とが密閉容器内に収納されており、該密閉容器には所定圧力よりも高い内部圧力で作動する弁機構を有する有機電解液二次電池において、前記有機電解液にはビニレンカーボネートを1〜20重量%含有し、溶質として 0.75 2.5mol/l LiPF 6 を含有することを特徴とする。
【0009】
の発明では、前記正極に燐酸リチウムを0.5〜5重量%含有することを特徴とする。
【0010】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。図1は本発明を実施した円筒形リチウム二次電池の断面図である。
1.リチウムニッケル複合酸化物の調製
以下において、原材料として市販されている高純度試薬を用いた。水酸化リチウム(LiOH)、水酸化ニッケル(Ni(OH)2)及び水酸化コバルト(Co(OH)2)を混合する。この混合物に水酸化ストロンチウム・8水和物(Sr(OH)2・8H2O)、または水酸化マグネシウム(Mg(OH)2)のいずれかを混合した後、アルミナ製の皿に充填し、600℃の酸素気流中で10時間保持して予備焼成をする。そして、室温まで冷却した後、自動乳鉢で粉砕し、二次粒子の凝集を解きほぐした。この粉末を予備焼成に用いた、アルミナ製の皿に充填し、750℃の酸素気流中に12時間保持して本焼成をし、室温まで冷却する。そして、自動乳鉢で粉砕し、篩にかけ、粒径70μm以上の粒子は除去した。前記した原材料の配合比を変えることで、以下に示す12種類の組成の異なるリチウムニッケル複合酸化物を得た。なお、作成したリチウムニッケル複合酸化物の組成比はICP分析によって、ほぼ所望の組成比になっていることを確認した。
【0011】
(正極活物質A)LiNi0.65Co0.35Sr0.002O2
(正極活物質B)LiNi0.7Co0.3Sr0.002O2
(正極活物質C)LiNi0.8Co0.2Sr0.002O2
(正極活物質D)LiNi0.9Co0.1Sr0.002O2
(正極活物質E)LiNi0.95Co0.05Sr0.002O2
(正極活物質F)LiNi0.9Co0.1Sr0.0005O2
(正極活物質G)LiNi0.9Co0.1Sr0.001O2
(正極活物質H)LiNi0.9Co0.1Sr0.005O2
(正極活物質I)LiNi0.9Co0.1Sr0.01O2
(正極活物質J)LiNi0.9Co0.1Sr0.02O2
(正極活物質K)LiNi0.9Co0.1Sr0.03O2
(正極活物質L)LiNi0.9Co0.1Mg0.002O2
2.正極の作製
前記した正極活物質である各種のリチウムニッケル複合酸化物、導電剤として平均粒径約0.5μmのグラファイト、結着剤としてポリフッ化ビニリデン(商品名:KF#1120、呉羽化学工業(株)製、以下PVdFと略す)とを混合した後、後述する所定量のLi3PO4を加えて、溶媒であるN−メチル−2−ピロリドン(以下、NMPと略す)に分散させてスラリを作製する。このスラリを正極集電体1である厚みが20μmのアルミニウム箔の両面にロールtoロール法転写により塗布し、乾燥した後、プレスして一体化する。正極の厚さは144±4μmとし、正極活物質層2の密度を約3.2g/cm3 とした。その後、幅が55mm、長さが450mmに切断して短冊状の正極を作製した。以下、正極活物質、黒鉛、燐酸リチウム及びPVdFの混合物を正極合剤と呼ぶ。今回、以下に示す7種類の組成の正極合剤を用いた。
【0012】
(正極合剤A)正極活物質:黒鉛:燐酸リチウム:PVdF=83:10:0:7
(正極合剤B)正極活物質:黒鉛:燐酸リチウム:PVdF=82.7:10:0.3:7
(正極合剤C)正極活物質:黒鉛:燐酸リチウム:PVdF=82.5:10:0.5:7
(正極合剤D)正極活物質:黒鉛:燐酸リチウム:PVdF=82:10:1:7
(正極合剤E)正極活物質:黒鉛:燐酸リチウム:PVdF=80:10:3:7
(正極合剤F)正極活物質:黒鉛:燐酸リチウム:PVdF=78:10:5:7
(正極合剤G)正極活物質:黒鉛:燐酸リチウム:PVdF=77:10:6:7
3.負極の作製
リチウムイオンの吸蔵、放出が可能な平均粒径20μmの黒鉛粉末と、結着剤としてPVdFとを重量比で90:10で混合した後、溶媒であるNMPを適量加えて十分に混練してスラリにする。このスラリを負極集電体3として用いる厚みが10μmの銅箔の両面にロールtoロール法転写により塗布、乾燥後、プレスして一体化する。負極の厚さは190〜200μmであり、負極活物質層の密度は約1.4g/cm3である。その後、幅が56mm、長さが490mmに切断して短冊状の負極を作製した。なお、負極活物質の放電時の容量が280mAh/gとなるように、正極活物質量及び負極活物質量のバランスを調整した。
【0013】
4.電解液の調整
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)を30:50:20の体積比で混合した後、溶質として1 Mol/l(以下、濃度の単位であるmol/lを M と略す)のLiPF6を溶解させて電解液とする。この電解液に、後述する量のビニレンカーボネート(VC)を添加する。今回、以下の13種類の組成の異なる電解液を用いた。
【0014】
(電解液A)EC:DMC=1:1、VC添加なし、1M LiPF6
(電解液B)EC:DMC=1:1、VC:0.5重量%、1M LiPF6
(電解液C)EC:DMC=1:1、VC:1重量%、1M LiPF6
(電解液D)EC:DMC=1:1、VC:5重量%、1M LiPF6
(電解液E)EC:DMC=1:1、VC:10重量%、1M LiPF6
(電解液F)EC:DMC=1:1、VC:20重量%、1M LiPF6
(電解液G)EC:DMC=1:1、VC:25重量%、1M LiPF6
(電解液H)EC:DMC=1:1、VC:5重量%、0.5M LiPF6
(電解液I)EC:DMC=1:1、VC:5重量%、0.75M LiPF6
(電解液J)EC:DMC=1:1、VC:5重量%、1.5M LiPF6
(電解液K)EC:DMC=1:1、VC:5重量%、2M LiPF6
(電解液L)EC:DMC=1:1、VC:5重量%、2.5M LiPF6
(電解液M)EC:DMC=1:1、VC:5重量%、1M LiBF4
5.電池の組立て
作製した短冊状の正極と負極とを、厚さが25μm、幅が58mmのポリエチレン多孔膜からなるセパレータ5を介して渦巻き状に巻いて電極群を作製する。正極と負極の厚さの和は345±5μmとした。正極と負極の厚さの和が350μmを超えると、捲回体の径が大きくなり負極缶6に挿入できない。一方、正極と負極の厚さの和が340μm未満では、捲回体の直径が負極缶6の内径よりも小さくなり、電池としての容量が十分得られないためである。なお、後述する各種の電池を作製するにあたり、正極活物質となるリチウムニッケル複合酸化物と、負極活物質となる黒鉛の充電容量を実験セルにて予め測定した。そして、負極活物質1gあたりの充電容量と正極活物質1gあたりの充電容量の比率が1.1となるように正極活物質量と負極活物質量を調整した。
【0015】
この電極群を電池缶6に挿入し、負極集電体3の端子を電池缶6の底部に溶接した。電池缶6内に、前記した電解液のいずれかを5ml注液した。正極タブ端子8の一方を正極集電体1に溶接した後、他の一方を正極キャップ7に溶接する。正極キャップ7を絶縁性のガスケット9を介して電池缶6の上部に配置し、この部分をかしめて密閉する。正極キャップ7内には、電池の内部圧力の上昇に応じて作動する電流遮断機構(圧力スイッチ)と、この圧力よりも高い圧力で開放作動する安全弁が組み込まれている。本実施例では作動圧が9kgf/cm2の電流遮断機構と、作動圧が20kgf/cm2の安全弁の2種類を用いた。
【0016】
6.電池の試験
作製した有機電解液二次電池は、周囲温度25℃、4.2Vの定電圧(ただし、制限電流320mA)で8時間充電した後、1Aの定電流で終止電圧2.5Vまで放電して初期の放電容量を確認した。充放電サイクル寿命特性試験は、放電と充電の間に休止時間10分間を設け、前記した条件で行った。
【0017】
この電池を前記した条件で再び充電した後、UL1642規格に示されているプロジェクタイルテストに準拠し、バーナによる加熱試験で合否を判定した。すなわち、電池をバーナで加熱し、電池が発火しても、アルミニウム製の網から電池の部品等の構成物が飛び出さない状態を合格とした。安全性に劣る電池を、バーナで加熱試験を実施した場合には、電池が破裂して正極キャップ7や負極缶が網を突き破る可能性が高い。そこで今回は、前記した条件で合否を判定するだけでなく、試験体である電池から1m離れた場所での発火時における音量を測定した。すなわち、発火時の音量が大きい電池ほど網を突き破る可能性が高いと考えて、安全性に劣る電池と判断した。
【0018】
【実施例】
(実施例1〜7、比較例1〜5)
リチウムニッケル複合酸化物として前記した(正極活物質A〜L)を用い、正極合剤配合比A(正極活物質:黒鉛:燐酸リチウム:PVdF=83:10:0:7、すなわち、正極活物質層に燐酸リチウムを含まないもの)の正極を作製した。また、電解液の組成として、電解液D(EC:DMC=1:1、VC:5重量%、1M LiPF6)を用いた。そして、表1に示す仕様の電池を作成し、初期の放電容量と100サイクル目の容量保持率(初期の放電容量に対する、100サイクル目の放電容量の百分率)の測定及びバーナ加熱試験をした。初期の放電容量は、(実施例3)の電池の放電容量を100とした場合の比較で示した。
【0019】
(実施例1〜7)の電池においては、すべてバーナ加熱試験に合格し、初期の放電容量と100サイクル目の容量保持率が高い。
(比較例1)の電池は、バーナ加熱試験に合格しているものの、実施例3の電池に対して初期の放電容量が20%低い。したがって、正極活物質のNiの組成比が0.7未満となると初期の放電容量が低下することを示している。
(比較例2、3)の電池では、バーナ加熱試験に不合格(×印)であり、100サイクル目の容量保持率が低い。
(比較例4)の電池では、バーナ加熱試験に合格しているものの、初期の放電容量が18%低い。これは、Srの置換量が多いため、放電反応を阻害したためと推察している。
(比較例5)の電池では、Sr以外のMg等のアルカリ土類金属で置換すると、バーナ加熱試験に合格しないことを示している。
以上の結果から、一般式LiNixCoySrzO2(0.7≦x≦0.9、0.1≦y≦0.3、x+y≒1、0.001≦z≦0.02)で示されるリチウムニッケル複合酸化物を正極活物質に用いると安全性の高い電池が得られる。
【0020】
【表1】

Figure 0003921836
【0021】
Figure 0003921836
(実施例3、8〜10、比較例6〜8)
正極活物質として用いる、リチウムニッケル複合酸化物として正極活物質D(LiNi0.9Co0.1Sr0.002O2)を用いた。正極の活物質層として、正極合剤配合比A(正極活物質:黒鉛:燐酸リチウム:PVdF=83:10:0:7、すなわち、正極活物質層に燐酸リチウムを含まないもの)を用いた。そして電解液中のLiPF6量を1Mとし、表2に示すようにVC量の異なる電池を作成した。その他の試験条件等は、前述したものである。
【0022】
(実施例8、3、9、10)の電池は、バーナ加熱試験に合格し、初期の放電容量、100サイクル目の容量保持率が高い。
(比較例6、7)の電池は、バーナ加熱試験において不合格である。この理由は、電解液中にVC添加がないことや、また添加量が少なすぎるためと考えられる。
(比較例8)の電池は、バーナ加熱試験に合格しているものの、初期の放電容量が低い。この理由は、VCの過剰添加によって電解液の導電率が低下したためと考えられる。
【0023】
【表2】
Figure 0003921836
【0024】
Figure 0003921836
(実施例3、11〜16)
正極活物質として用いる、リチウムニッケル複合酸化物として正極活物質D(LiNi0.9Co0.1Sr0.002O2)を用いた。正極活物質層を形成する正極合剤配合比A(正極活物質:黒鉛:燐酸リチウム:PVdF=83:10:0:7、すなわち、正極活物質層に燐酸リチウムを含まないもの)を用いた。そして表3に示すように、電解液中のVC量を5重量%とし、LiPF6量の異なる電解液を用いた。その他の試験条件等は、前述したものである。
【0025】
表3では省略したが、これらの電池はすべてバーナ加熱試験に合格した。
(実施例12、3、13、14、15)、すなわち電解液の溶質がLiPF6を用い、かつLiPF6の濃度が0.75〜2.5Mの範囲のものが発火時の音量が小さく、初期放電容量や容量保持率が高い。
電解液の溶質にLiBF4を用いた実施例16の電池では、同濃度のLiPF6を用いた実施例3に比べて、初期放電容量が若干低いこと、100サイクル目の容量保持率の低下が大きく好ましくない。
【0026】
【表3】
Figure 0003921836
【0027】
(実施例3、17〜22)
正極活物質として用いる、リチウムニッケル複合酸化物として正極活物質D(LiNi0.9Co0.1Sr0.002O2)を用い、正極合剤に添加する燐酸リチウムの配合比を表4に示す変えた、7種類の仕様の電池を作成した。なお、電解液D(EC:DMC=1:1、VC:5重量%、1M LiPF6)を用いた。その他の試験条件等は、前述したものである。
【0028】
(実施例3、17〜22)のすべての電池でバーナ加熱試験に合格した。なお、(実施例18〜21)の電池、すなわち正極合剤中の燐酸リチウムの量が0.5〜5重量%の電池では、初期の放電容量の低下も少なく、発火時の音量も小さく好ましい。一方、燐酸リチウムの量が6重量%の(実施例22)では、初期の放電容量と100サイクル目の容量保持率の低下が認められた。
【0029】
【表4】
Figure 0003921836
【0030】
本発明において、正極合剤中の導電剤としてグラファイト、および負極活物質の炭素材として黒鉛を用いた実施例を示したが、これらに材料に限定されるものではない。
【0031】
【発明の効果】
本発明による電池では、初期の放電容量や100サイクル目の容量保持率が高く、火中投下などの加熱時において、安全性の高い有機電解液二次電池を提供できる点で優れている。
【図面の簡単な説明】
【図1】本発明を実施した円筒形有機電解液二次電池の断面図である。
【符号の説明】
1:正極集電体、 2:正極活物質、 3:負極集電体、 4:負極活物質、
5:セパレータ、 6:電池缶、 7:正極キャップ、 8:正極タブ端子、
9:ガスケット。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in safety of an organic electrolyte secondary battery.
[0002]
[Prior art]
Organic electrolyte secondary batteries typified by lithium secondary batteries have high energy density, and are therefore used in portable devices such as VTR integrated cameras, notebook computers, and mobile phones. In addition, the lithium secondary battery using metallic lithium for the negative electrode has a problem that it deposits on the negative electrode of dendritic lithium ions during charging and causes an internal short circuit with the positive electrode. Therefore, lithium ion secondary batteries using a carbon material capable of occluding and releasing lithium ions as a negative electrode have become widespread.
[0003]
Recently, there has been a strong demand for higher capacity of the lithium ion secondary battery. In order to meet the demand, higher capacities of the positive electrode active material and the negative electrode active material are being rapidly advanced. The positive electrode active material has a capacity of about 180 to 200 mAh / g lithium nickelate (LiNiO 2 ) instead of about 145 to 150 mAh / g lithium cobaltate (LiCoO 2 ). Is underway. In addition, LiNiO 2 has a problem that the cycle life is short because the crystal structure is likely to collapse when repeated charge and discharge are performed. In order to solve this problem, a method has been proposed in which part of the Li site or Ni site in the crystal structure is replaced with one or more other metal elements, which is effective in improving cycle life characteristics. It has been. For example, in Japanese Patent Application Laid-Open Nos. 9-17430, 10-27610, and 8-185863, alkaline earth metals such as Sr, Mg, and Ba are used as the first substitution element. It is disclosed that the charge / discharge cycle characteristics are improved by substituting with a transition metal element other than Ni, as represented by Co, as a replacement element.
[0004]
On the other hand, for the purpose of improving discharge characteristics, storage characteristics, charge / discharge cycle life characteristics, etc., JP-A-4-95362, JP-A-4-69075, JP-A-6-84542, JP-A-8-96852 The publications and the like disclose that vinylene carbonate (hereinafter abbreviated as VC) is added to the electrolytic solution, and the effect is recognized.
[0005]
However, organic electrolyte secondary batteries that use LiNiO 2 for the positive electrode are more severe than those using LiCoO 2 such as a harsh heating test when a charged battery is put into the fire, a nail penetration test, etc. It is easy to ignite and is inferior in safety.
[0006]
[Problems to be solved by the invention]
The present invention provides an organic electrolyte secondary battery that is difficult to ignite and has high safety when a lithium nickel composite oxide is used as a positive electrode active material.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, the first invention is represented by the general formula LiNi x Co y Sr z O 2 (0.7 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.3, x + y≈1, 0.001 ≦ z ≦ 0.02). A positive electrode using a lithium nickel composite oxide capable of occluding and releasing lithium ions as an active material, a negative electrode capable of occluding and releasing lithium ions, and an organic electrolyte capable of moving lithium ions are contained in a sealed container. An organic electrolyte secondary battery having a valve mechanism that is stored in the sealed container and operates at an internal pressure higher than a predetermined pressure. The organic electrolyte contains 1 to 20% by weight of vinylene carbonate, and is a solute. characterized in that it contains of LiPF 6 0.75 ~ 2.5 mol / l as.
[0009]
In the second invention, the positive electrode contains 0.5 to 5% by weight of lithium phosphate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery embodying the present invention.
1. Preparation of lithium nickel composite oxide In the following, a high-purity reagent commercially available as a raw material was used. Lithium hydroxide (LiOH), nickel hydroxide (Ni (OH) 2 ) and cobalt hydroxide (Co (OH) 2 ) are mixed. After mixing this mixture with either strontium hydroxide octahydrate (Sr (OH) 2 / 8H 2 O) or magnesium hydroxide (Mg (OH) 2 ), it is filled into an alumina dish, Pre-baking is held for 10 hours in an oxygen stream at 600 ° C. And after cooling to room temperature, it grind | pulverized with the automatic mortar and the aggregation of the secondary particle was loosened. This powder is filled in an alumina dish used for pre-baking, held in an oxygen stream at 750 ° C. for 12 hours for main baking, and cooled to room temperature. And it grind | pulverized with the automatic mortar, it sieved, and the particle | grains with a particle size of 70 micrometers or more were removed. By changing the mixing ratio of the raw materials described above, lithium nickel composite oxides having the following 12 different compositions were obtained. The composition ratio of the prepared lithium nickel composite oxide was confirmed to be almost the desired composition ratio by ICP analysis.
[0011]
(Positive electrode active material A) LiNi 0.65 Co 0.35 Sr 0.002 O 2
(Positive electrode active material B) LiNi 0.7 Co 0.3 Sr 0.002 O 2
(Positive electrode active material C) LiNi 0.8 Co 0.2 Sr 0.002 O 2
(Positive electrode active material D) LiNi 0.9 Co 0.1 Sr 0.002 O 2
(Positive electrode active material E) LiNi 0.95 Co 0.05 Sr 0.002 O 2
(Positive electrode active material F) LiNi 0.9 Co 0.1 Sr 0.0005 O 2
(Positive electrode active material G) LiNi 0.9 Co 0.1 Sr 0.001 O 2
(Positive electrode active material H) LiNi 0.9 Co 0.1 Sr 0.005 O 2
(Positive electrode active material I) LiNi 0.9 Co 0.1 Sr 0.01 O 2
(Positive electrode active material J) LiNi 0.9 Co 0.1 Sr 0.02 O 2
(Positive electrode active material K) LiNi 0.9 Co 0.1 Sr 0.03 O 2
(Positive electrode active material L) LiNi 0.9 Co 0.1 Mg 0.002 O 2
2. Production of Positive Electrode Various lithium nickel composite oxides which are the positive electrode active materials described above, graphite having an average particle size of about 0.5 μm as a conductive agent, and polyvinylidene fluoride as a binder (trade name: KF # 1120, Kureha Chemical Industry ( Co., Ltd., hereinafter abbreviated as PVdF), a predetermined amount of Li 3 PO 4 described later is added, and dispersed in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) as a solvent to prepare a slurry. Is made. This slurry is applied to both surfaces of a 20 μm thick aluminum foil as the positive electrode current collector 1 by roll-to-roll method transfer, dried, and then pressed to be integrated. The thickness of the positive electrode was 144 ± 4 μm, and the density of the positive electrode active material layer 2 was about 3.2 g / cm 3 . After that, a strip-shaped positive electrode was produced by cutting it to a width of 55 mm and a length of 450 mm. Hereinafter, a mixture of the positive electrode active material, graphite, lithium phosphate and PVdF is referred to as a positive electrode mixture. This time, a positive electrode mixture having the following seven compositions was used.
[0012]
(Positive electrode mixture A) Positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7
(Positive electrode mixture B) Positive electrode active material: Graphite: Lithium phosphate: PVdF = 82.7: 10: 0.3: 7
(Positive electrode mixture C) Positive electrode active material: Graphite: Lithium phosphate: PVdF = 82.5: 10: 0.5: 7
(Positive electrode mixture D) Positive electrode active material: Graphite: Lithium phosphate: PVdF = 82: 10: 1: 7
(Positive electrode mixture E) Positive electrode active material: Graphite: Lithium phosphate: PVdF = 80: 10: 3: 7
(Positive electrode mixture F) Positive electrode active material: Graphite: Lithium phosphate: PVdF = 78: 10: 5: 7
(Positive electrode mixture G) Positive electrode active material: Graphite: Lithium phosphate: PVdF = 77: 10: 6: 7
3. Preparation of negative electrode After mixing graphite powder with an average particle diameter of 20 μm capable of occlusion and release of lithium ions and PVdF as a binder at a weight ratio of 90:10, an appropriate amount of NMP as a solvent is added and kneaded sufficiently. And make it a slurry. This slurry is applied as a negative electrode current collector 3 on both sides of a 10 μm thick copper foil by roll-to-roll method transfer, dried, and then pressed to be integrated. The thickness of the negative electrode is 190 to 200 μm, and the density of the negative electrode active material layer is about 1.4 g / cm 3 . After that, a strip-shaped negative electrode was produced by cutting to a width of 56 mm and a length of 490 mm. The balance between the amount of the positive electrode active material and the amount of the negative electrode active material was adjusted so that the capacity of the negative electrode active material during discharge was 280 mAh / g.
[0013]
4). Preparation of electrolyte solution After mixing ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) in a volume ratio of 30:50:20, 1 mol / l (hereinafter referred to as a unit of concentration mol) as a solute. (Li is abbreviated as M) LiPF 6 is dissolved to obtain an electrolyte. An amount of vinylene carbonate (VC) described later is added to this electrolytic solution. At this time, the following 13 types of electrolytic solutions having different compositions were used.
[0014]
(Electrolyte A) EC: DMC = 1: 1, no VC added, 1M LiPF 6
(Electrolyte B) EC: DMC = 1: 1, VC: 0.5 wt%, 1M LiPF 6
(Electrolyte C) EC: DMC = 1: 1, VC: 1 wt%, 1M LiPF 6
(Electrolyte D) EC: DMC = 1: 1, VC: 5% by weight, 1M LiPF 6
(Electrolyte E) EC: DMC = 1: 1, VC: 10% by weight, 1M LiPF 6
(Electrolyte F) EC: DMC = 1: 1, VC: 20 wt%, 1M LiPF 6
(Electrolytic Solution G) EC: DMC = 1: 1, VC: 25% by weight, 1M LiPF 6
(Electrolytic Solution H) EC: DMC = 1: 1, VC: 5% by weight, 0.5M LiPF 6
(Electrolyte I) EC: DMC = 1: 1, VC: 5% by weight, 0.75M LiPF 6
(Electrolytic Solution J) EC: DMC = 1: 1, VC: 5% by weight, 1.5M LiPF 6
(Electrolyte K) EC: DMC = 1: 1, VC: 5% by weight, 2M LiPF 6
(Electrolyte L) EC: DMC = 1: 1, VC: 5 wt%, 2.5M LiPF 6
(Electrolyte M) EC: DMC = 1: 1, VC: 5% by weight, 1M LiBF 4
5. A strip-like positive electrode and negative electrode assembled and fabricated in a battery are spirally wound through a separator 5 made of a polyethylene porous film having a thickness of 25 μm and a width of 58 mm to produce an electrode group. The sum of the thickness of the positive electrode and the negative electrode was 345 ± 5 μm. When the sum of the thicknesses of the positive electrode and the negative electrode exceeds 350 μm, the diameter of the wound body increases and cannot be inserted into the negative electrode can 6. On the other hand, when the sum of the thicknesses of the positive electrode and the negative electrode is less than 340 μm, the diameter of the wound body becomes smaller than the inner diameter of the negative electrode can 6, and a sufficient capacity as a battery cannot be obtained. In preparing various types of batteries described later, the charge capacities of a lithium nickel composite oxide serving as a positive electrode active material and graphite serving as a negative electrode active material were measured in advance in an experimental cell. And the amount of positive electrode active materials and the amount of negative electrode active materials were adjusted so that the ratio of the charge capacity per gram of negative electrode active material and the charge capacity per gram of positive electrode active material was 1.1.
[0015]
This electrode group was inserted into the battery can 6, and the terminal of the negative electrode current collector 3 was welded to the bottom of the battery can 6. In the battery can 6, 5 ml of any one of the above electrolytes was injected. After welding one of the positive electrode tab terminals 8 to the positive electrode current collector 1, the other one is welded to the positive electrode cap 7. The positive electrode cap 7 is disposed on the upper part of the battery can 6 through an insulating gasket 9, and this portion is caulked and sealed. In the positive electrode cap 7, a current interrupt mechanism (pressure switch) that operates in response to an increase in the internal pressure of the battery and a safety valve that operates to open at a pressure higher than this pressure are incorporated. A current interrupt device operating pressure is 9 kgf / cm 2 in the present embodiment, actuation pressure using two kinds of safety valve 20 kgf / cm 2.
[0016]
6). Battery test Organic electrolyte secondary batteries were charged at an ambient temperature of 25 ° C and a constant voltage of 4.2V (limited current of 320mA) for 8 hours, and then discharged to a final voltage of 2.5V at a constant current of 1A. The initial discharge capacity was confirmed. The charge / discharge cycle life characteristic test was performed under the above-described conditions with a 10 minute rest period between discharge and charge.
[0017]
After recharging the battery under the above-mentioned conditions, the acceptance / rejection was determined by a heating test using a burner in accordance with the projectile test shown in the UL 1642 standard. That is, the battery was heated with a burner, and even when the battery ignited, a state where components such as battery parts did not jump out of the aluminum net was regarded as acceptable. When a battery with poor safety is subjected to a heating test with a burner, the battery is likely to burst and the positive electrode cap 7 and the negative electrode can break through the net. Therefore, this time, not only the pass / fail was determined under the above-mentioned conditions, but also the sound volume at the time of ignition in a place 1 m away from the battery as a test body was measured. That is, a battery with a louder volume at the time of ignition is considered to have a lower possibility of breaking through the net, and thus determined to be a battery with lower safety.
[0018]
【Example】
(Examples 1-7, Comparative Examples 1-5)
The above-described (positive electrode active materials A to L) were used as the lithium nickel composite oxide, and the positive electrode mixture mixture ratio A (positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7, that is, the positive electrode active material A positive electrode having no lithium phosphate in the layer was prepared. As the composition of the electrolytic solution, electrolytic solution D (EC: DMC = 1: 1, VC: 5% by weight, 1M LiPF 6 ) was used. Then, the batteries having the specifications shown in Table 1 were prepared, and the initial discharge capacity and the capacity retention ratio at the 100th cycle (percentage of the discharge capacity at the 100th cycle with respect to the initial discharge capacity) and the burner heating test were performed. The initial discharge capacity is shown as a comparison when the discharge capacity of the battery of Example 3 is 100.
[0019]
In the batteries of Examples 1 to 7, all passed the burner heating test, and the initial discharge capacity and the capacity retention rate at the 100th cycle were high.
Although the battery of (Comparative Example 1) passed the burner heating test, the initial discharge capacity was 20% lower than that of the battery of Example 3. Therefore, when the composition ratio of Ni of the positive electrode active material is less than 0.7, the initial discharge capacity is reduced.
In the battery of (Comparative Examples 2 and 3), the burner heating test was rejected (x mark), and the capacity retention rate at the 100th cycle was low.
In the battery of Comparative Example 4, although the burner heating test was passed, the initial discharge capacity was 18% lower. This is presumed to be because the discharge reaction was hindered because of the large amount of substitution of Sr.
In the battery of (Comparative Example 5), when the alkaline earth metal such as Mg other than Sr is substituted, it does not pass the burner heating test.
From the above results, the lithium nickel composite oxide represented by the general formula LiNi x Co y Sr z O 2 (0.7 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.3, x + y≈1, 0.001 ≦ z ≦ 0.02) is used as the positive electrode active material. A battery with high safety can be obtained when used for.
[0020]
[Table 1]
Figure 0003921836
[0021]
Figure 0003921836
(Examples 3, 8 to 10, Comparative Examples 6 to 8)
The positive electrode active material D (LiNi 0.9 Co 0.1 Sr 0.002 O 2 ) was used as the lithium nickel composite oxide used as the positive electrode active material. As the positive electrode active material layer, the positive electrode mixture mixture ratio A (positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7, ie, the positive electrode active material layer does not contain lithium phosphate) was used. . Then, the amount of LiPF 6 in the electrolytic solution was set to 1M, and batteries having different VC amounts were prepared as shown in Table 2. Other test conditions are as described above.
[0022]
The batteries of Examples 8, 3, 9, and 10 pass the burner heating test, and the initial discharge capacity and the capacity retention rate at the 100th cycle are high.
The batteries of (Comparative Examples 6 and 7) failed in the burner heating test. The reason for this is considered that there is no addition of VC in the electrolytic solution and that the addition amount is too small.
Although the battery of (Comparative Example 8) passed the burner heating test, the initial discharge capacity was low. The reason for this is considered that the electrical conductivity of the electrolytic solution was lowered by the excessive addition of VC.
[0023]
[Table 2]
Figure 0003921836
[0024]
Figure 0003921836
(Examples 3, 11 to 16)
The positive electrode active material D (LiNi 0.9 Co 0.1 Sr 0.002 O 2 ) was used as the lithium nickel composite oxide used as the positive electrode active material. A positive electrode material mixture ratio A (positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7, ie, the positive electrode active material layer does not contain lithium phosphate) was used to form the positive electrode active material layer. . Then, as shown in Table 3, the amount of VC in the electrolyte solution and 5 wt%, using different electrolyte of LiPF 6 amount. Other test conditions are as described above.
[0025]
Although omitted in Table 3, all of these batteries passed the burner heating test.
(Examples 12, 3, 13, 14, 15), that is, the electrolyte solute uses LiPF 6 and the concentration of LiPF 6 in the range of 0.75 to 2.5 M has a low volume during ignition, High initial discharge capacity and capacity retention.
In the battery of Example 16 using LiBF 4 as the solute of the electrolytic solution, the initial discharge capacity is slightly lower and the capacity retention rate at the 100th cycle is lower than Example 3 using LiPF 6 of the same concentration. Large and undesirable.
[0026]
[Table 3]
Figure 0003921836
[0027]
(Example 3, 17-22)
Seven types of cathode active material D (LiNi 0.9 Co 0.1 Sr 0.002 O 2 ) used as the positive electrode active material and the mixing ratio of lithium phosphate added to the positive electrode mixture as shown in Table 4 were used. A battery with specifications was created. Electrolyte D (EC: DMC = 1: 1, VC: 5% by weight, 1M LiPF 6 ) was used. Other test conditions are as described above.
[0028]
All the batteries of Examples 3 and 17 to 22 passed the burner heating test. In addition, in the batteries of Examples 18 to 21, that is, the battery in which the amount of lithium phosphate in the positive electrode mixture is 0.5 to 5% by weight, the initial discharge capacity is hardly decreased, and the volume during ignition is small and preferable. . On the other hand, when the amount of lithium phosphate was 6% by weight (Example 22), the initial discharge capacity and the capacity retention at the 100th cycle were reduced.
[0029]
[Table 4]
Figure 0003921836
[0030]
In the present invention, examples have been shown in which graphite is used as the conductive agent in the positive electrode mixture and graphite is used as the carbon material of the negative electrode active material. However, the present invention is not limited to these materials.
[0031]
【The invention's effect】
The battery according to the present invention is excellent in that it has a high initial discharge capacity and a capacity retention ratio at the 100th cycle, and can provide a highly safe organic electrolyte secondary battery during heating such as dropping in a fire.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical organic electrolyte secondary battery embodying the present invention.
[Explanation of symbols]
1: positive electrode current collector, 2: positive electrode active material, 3: negative electrode current collector, 4: negative electrode active material,
5: Separator, 6: Battery can, 7: Positive electrode cap, 8: Positive electrode tab terminal,
9: Gasket.

Claims (2)

一般式LiNixCoySrzO2(0.7≦x≦0.9、0.1≦y≦0.3、x+y≒1、0.001≦z≦0.02)で示されるリチウムイオンの吸蔵・放出が可能なリチウムニッケル複合酸化物を活物質とする正極と、リチウムイオンの吸蔵・放出が可能な負極と、リチウムイオンの移動が可能な有機電解液が密閉容器内に収納されており、該密閉容器には所定圧力よりも高い内部圧力で作動する弁機構を有する有機電解液二次電池において、前記有機電解液にはビニレンカーボネートを1〜20重量%含有し、溶質として 0.75 2.5mol/l LiPF 6 を含有することを特徴とする有機電解液二次電池。Lithium nickel composite oxide capable of occluding and releasing lithium ions represented by the general formula LiNi x Co y Sr z O 2 (0.7 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.3, x + y≈1, 0.001 ≦ z ≦ 0.02) A positive electrode using lithium as an active material, a negative electrode capable of occluding and releasing lithium ions, and an organic electrolyte capable of moving lithium ions are contained in a sealed container, and the sealed container has a pressure higher than a predetermined pressure. in the organic electrolyte secondary battery having a valve mechanism operated by the internal pressure, that said organic electrolytic solution contains vinylene carbonate 1-20 wt%, containing LiPF 6 of 0.75 ~ 2.5 mol / l as a solute An organic electrolyte secondary battery characterized. 前記正極に燐酸リチウムを0.5〜5重量%含有することを特徴とする請求項1記載の有機電解液二次電池。The organic electrolyte secondary battery according to claim 1, wherein the positive electrode contains 0.5 to 5 wt% of lithium phosphate.
JP27482198A 1998-09-29 1998-09-29 Organic electrolyte secondary battery Expired - Fee Related JP3921836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27482198A JP3921836B2 (en) 1998-09-29 1998-09-29 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27482198A JP3921836B2 (en) 1998-09-29 1998-09-29 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000106210A JP2000106210A (en) 2000-04-11
JP3921836B2 true JP3921836B2 (en) 2007-05-30

Family

ID=17547048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27482198A Expired - Fee Related JP3921836B2 (en) 1998-09-29 1998-09-29 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3921836B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9929698D0 (en) * 1999-12-15 2000-02-09 Danionics As Non-aqueous electrochemical cell
AU4692901A (en) * 2000-04-17 2001-10-30 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
TW531924B (en) 2000-05-26 2003-05-11 Sony Corp Nonaqueous electrolyte secondary battery
CN104600360A (en) 2008-02-29 2015-05-06 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2019079745A (en) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2000106210A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
JP2002117895A (en) Electrolysis liquid for non-aqueous system battery and non-aqueous system secondary battery
JP2001345101A (en) Secondary battery
JP2000012030A (en) Nonaqueous electrolyte secondary battery
US7097938B2 (en) Negative electrode material and battery using the same
JP2001250543A (en) Lithium secondary battery
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2847885B2 (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JP3508464B2 (en) Non-aqueous electrolyte secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP3775107B2 (en) Lithium secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP2002203555A (en) Non-aqueous electrolyte secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2000156231A (en) Nonaqueous electrolyte secondary battery
JP3402233B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees