JP2001297763A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JP2001297763A
JP2001297763A JP2000110410A JP2000110410A JP2001297763A JP 2001297763 A JP2001297763 A JP 2001297763A JP 2000110410 A JP2000110410 A JP 2000110410A JP 2000110410 A JP2000110410 A JP 2000110410A JP 2001297763 A JP2001297763 A JP 2001297763A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
active material
lithium
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110410A
Other languages
Japanese (ja)
Inventor
Hiroshi Mukai
寛 向井
Shinya Kitano
真也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000110410A priority Critical patent/JP2001297763A/en
Publication of JP2001297763A publication Critical patent/JP2001297763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light and safe nonaqueous electrolyte secondary cell. SOLUTION: A double oxide of lithium and cobalt with the resistance coefficient of more than 1 mΩ.cm and less than 40 Ω.cm, where ; the bulk density of powder is 3.8 g/cm3, is used as a cathode activator of the nonaqueous electrolyte secondary cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。
2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery.

【0003】そのような要求を満たす典型的な電池は、
特にリチウム金属やリチウム合金等の活物質、又はリチ
ウムイオンをホスト物質(ここでホスト物質とは、リチ
ウムイオンを吸蔵及び放出できる物質をいう。)である
炭素に吸蔵させたリチウムインターカレーション化合物
を負極材料とし、LiClO4、LiPF6等のリチウ
ム塩を溶解した非プロトン性の有機溶媒を電解液とする
非水電解質二次電池である。
A typical battery that meets such requirements is:
In particular, an active material such as lithium metal or a lithium alloy, or a lithium intercalation compound in which lithium ions are occluded in carbon, which is a host material (here, a host material refers to a material that can occlude and release lithium ions). This is a non-aqueous electrolyte secondary battery in which an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used as an anode material and an electrolyte is used.

【0004】この非水電解質二次電池は、上記の負極材
料をその支持体である負極集電体に保持してなる負極
板、リチウムコバルト複合酸化物のようにリチウムイオ
ンと可逆的に電気化学反応をする正極活物質をその支持
体である正極集電体に保持してなる正極板、電解液を保
持するとともに負極板と正極板との間に介在して両極の
短絡を防止するセパレータからなっている。
This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above-mentioned negative electrode material is held on a negative electrode current collector as a support, and a reversible electrochemical reaction with lithium ions such as a lithium-cobalt composite oxide. The positive electrode plate, which holds the positive electrode active material that reacts on the positive electrode current collector that is the support, from the separator that holds the electrolytic solution and intervenes between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes Has become.

【0005】そして、上記正極板及び負極板は、いずれ
も薄いシートないし箔状に成形されたものを、セパレー
タを介して順に積層又は渦巻き状に巻回した発電要素と
する。そしてこの発電要素を、ステンレス、ニッケルメ
ッキを施した鉄、又はアルミニウム製等の金属からなる
電池容器に収納され、電解液を注液後、蓋板で密封固着
して、電池が組み立てられる。
[0005] Each of the positive electrode plate and the negative electrode plate is formed into a thin sheet or foil, and is a power generating element formed by sequentially laminating or spirally winding through a separator. Then, the power generating element is housed in a battery container made of a metal such as stainless steel, nickel-plated iron, or aluminum, and after injecting the electrolytic solution, hermetically sealed with a lid plate to assemble the battery.

【0006】ところで、最近のリチウムイオン二次電池
が用いられる機器が多様化するに伴い、リチウムイオン
二次電池に求められる作動環境や電池の接続方法も多岐
にわたるようになってきている。たとえば、ポータブル
AV機器などでは、電池を直列または並列に接続した組
電池で用いることが多い。
[0006] With the recent diversification of equipment using lithium ion secondary batteries, the operating environment and battery connection methods required for lithium ion secondary batteries have also become diversified. For example, portable AV equipment and the like often use batteries assembled in series or in parallel.

【0007】組電池として用いた場合、電池間の性能の
ばらつきが問題となり、電池間のばらつきある状態で充
放電を繰り返していった場合には、電池は不安全な状態
になる可能性が高い。特に、充放電性能の劣った電池が
無理に充電された場合、電池が過充電状態となるため、
最悪の場合には熱逸走に至り、破裂もしくは発火する可
能性がある。したがって、過充電などの電池の異常時に
も安全な電池が求められる。
[0007] When used as an assembled battery, variations in performance between batteries become a problem, and when charging and discharging are repeated in a state where there is variation between batteries, the battery is likely to be in an unsafe state. . In particular, when a battery with poor charge / discharge performance is forcibly charged, the battery becomes overcharged,
In the worst case, it may lead to thermal runaway and rupture or ignite. Therefore, a safe battery is required even when the battery is abnormal such as overcharging.

【0008】しかしながら、リチウムイオン電池の正極
活物質として広く用いられているコバルト酸リチウムは
熱安定性が劣るために、電池が過充電状態や内部短絡な
どの異常な状態になった場合に、電池が発熱し、最悪の
場合では熱逸走に至り、破裂もしくは発火する可能性が
ある。
However, lithium cobalt oxide, which is widely used as a positive electrode active material of a lithium ion battery, has poor thermal stability. Therefore, when the battery is in an abnormal state such as an overcharged state or an internal short circuit, the battery cannot be used. May generate heat and, in the worst case, lead to thermal escape, which may cause rupture or ignition.

【0009】[0009]

【発明が解決しようとする課題】上記問題を解決する手
段として、コバルト酸リチウムの熱安定性を向上する方
法が考えられる。特開平11−7958では、Coの一
部をAlなどの元素で置換することによりコバルト酸リ
チウムの熱安定性を向上している。
As a means for solving the above problem, a method for improving the thermal stability of lithium cobalt oxide can be considered. In JP-A-11-7958, the thermal stability of lithium cobalt oxide is improved by substituting a part of Co with an element such as Al.

【0010】しかしながら、コバルト酸リチウムのCo
の一部をAlなどの元素で置換した場合、エネルギー密
度の低下を招くといった問題が必然的に起こる。
However, the lithium cobalt oxide, Co
When a part of is replaced with an element such as Al, a problem that the energy density is inevitably occurs.

【0011】そこで、本発明の目的は、電池のエネルギ
ー密度を低下させることなく、過充電状態や内部短絡な
どの異常な状態になった場合にも、電池の発熱を抑え、
安全性に優れ、しかも放電特性に優れた非水電解質電池
を供給することにある。
Accordingly, an object of the present invention is to suppress the heat generation of a battery even in an abnormal state such as an overcharged state or an internal short circuit without lowering the energy density of the battery,
An object of the present invention is to provide a non-aqueous electrolyte battery having excellent safety and excellent discharge characteristics.

【0012】[0012]

【課題を解決するための手段】本発明になる非水電解質
二次電池は、正極活物質として、粉体充填密度が3.8
g/cm3のときの抵抗係数が1mΩ・cm以上40m
Ω・cm以下のリチウムコバルト複合酸化物を使用する
ことで前述の課題を解決しようとするものである。
The nonaqueous electrolyte secondary battery according to the present invention has a powder packing density of 3.8 as a positive electrode active material.
The resistance coefficient at g / cm 3 is 1 mΩ · cm or more and 40 m
An object of the present invention is to solve the above-mentioned problem by using a lithium-cobalt composite oxide of Ω · cm or less.

【0013】この正極活物質を用いて非水電解液二次電
池を構成した場合、電池のエネルギー密度を低下させる
ことなく、過充電状態や内部短絡などの異常な状態にな
った場合にも、電池の発熱を抑え、安全性に優れたもの
となる。
When a non-aqueous electrolyte secondary battery is constructed using this positive electrode active material, it is possible to reduce the energy density of the battery and reduce the energy density of the battery even when the battery is in an abnormal state such as an overcharged state or an internal short circuit. The heat generated by the battery is suppressed, and the safety is excellent.

【0014】[0014]

【発明の実施の形態】本発明は、非水電解質二次電池用
正極活物質として、粉体充填密度が3.8g/cm3
時の抵抗係数が1mΩ・cm以上40mΩ・cm以下の
リチウムコバルト複合酸化物を使用する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a lithium active material having a resistance coefficient of 1 mΩ · cm to 40 mΩ · cm at a powder filling density of 3.8 g / cm 3 as a positive electrode active material for a nonaqueous electrolyte secondary battery. A cobalt composite oxide is used.

【0015】この正極活物質を用いて非水電解液二次電
池を構成した場合、電池のエネルギー密度を低下させる
ことなく、過充電状態や内部短絡などの異常な状態にな
った場合にも、電池の発熱を抑え、安全性に優れたもの
となる。
When a non-aqueous electrolyte secondary battery is constructed using this positive electrode active material, the battery can be used in an abnormal state such as an overcharged state or an internal short circuit without lowering the energy density of the battery. The heat generated by the battery is suppressed, and the safety is excellent.

【0016】すなわち、正極活物質としてのリチウムコ
バルト複合酸化物の粉体の比抵抗を最適値とすることに
より、電池が過充電となった場合でも、正極活物質が分
解せず、電池の爆発等を防止するものである。
That is, by setting the specific resistance of the lithium-cobalt composite oxide powder as the positive electrode active material to an optimum value, even if the battery is overcharged, the positive electrode active material does not decompose and the battery explodes. And so on.

【0017】リチウムコバルト複合酸化物の、粉体充填
密度が3.8g/cm3の時の抵抗係数が1mΩ・cm
以下の場合には、正極活物質粉末の比抵抗が小さすぎ
て、電池の爆発等の防止に効果がなく、また、抵抗係数
が40mΩ・cm以上の場合には、充放電サイクルにお
ける容量低下が大きく、また、高率放電特性が劣るた
め、実際に電池を使用する場合の欠点となる。
When the powder packing density of the lithium cobalt composite oxide is 3.8 g / cm 3 , the resistance coefficient is 1 mΩ · cm.
In the following cases, the specific resistance of the positive electrode active material powder is too small to be effective in preventing explosion of the battery, and when the resistance coefficient is 40 mΩ · cm or more, a decrease in capacity in a charge / discharge cycle is caused. It is large and has a poor high-rate discharge characteristic, which is a drawback when the battery is actually used.

【0018】リチウムコバルト複合酸化物の粉体抵抗の
測定には、図2に示した粉末抵抗測定器を用いた。図2
において、11は圧縮ロッド、12はスリーブ、13は
圧縮受け皿、14は圧縮ロッドの突起物、15は圧縮受
け皿の突起物、16は試料粉末である。
For measuring the powder resistance of the lithium-cobalt composite oxide, a powder resistance measuring instrument shown in FIG. 2 was used. FIG.
, 11 is a compression rod, 12 is a sleeve, 13 is a compression tray, 14 is a projection of the compression rod, 15 is a projection of the compression tray, and 16 is a sample powder.

【0019】圧縮ロッド1は外径8mm、長さ115c
mの銅製、スリーブ2は外径40mm、長さ90mm、
かつその中央部に外径8mmの中空を有するセラミック
製、圧縮受け皿3は外径60mm、高さ10mmかつそ
の中央部に外径8mm、高さ10mmの突起物を有する
ベリリウム銅製である。また、圧縮ロッド1には突起物
14が、また、圧縮受け皿3には突起物15が取り付け
られている。
The compression rod 1 has an outer diameter of 8 mm and a length of 115 c.
m, made of copper, the sleeve 2 has an outer diameter of 40 mm, a length of 90 mm,
The compression tray 3 is made of beryllium copper having an outer diameter of 60 mm, a height of 10 mm and a central part having an outer diameter of 8 mm and a height of 10 mm. A projection 14 is attached to the compression rod 1, and a projection 15 is attached to the compression tray 3.

【0020】なお、この粉体抵抗測定器は、粉体の充填
密度を変えて抵抗を測定することができ、充填密度が大
きくなるにしたがって抵抗は小さくなる関係を示すが、
充填密度が3.8g/cm3以上になると、抵抗はほぼ
一定値となる。
This powder resistance measuring instrument can measure the resistance by changing the packing density of the powder, and shows that the resistance decreases as the packing density increases.
When the packing density becomes 3.8 g / cm 3 or more, the resistance becomes a substantially constant value.

【0021】本発明においては、この粉体抵抗測定器を
用いて、粉体試料2g、充填密度が3.8g/cm3
なるときの抵抗を測定した。これより得られた粉体抵抗
R、圧縮ロッドの断面積Sおよびペレット高さLより、
抵抗係数ρをρ=R×S/Lの式より求めた。
In the present invention, the resistance when the powder density was 2 g and the packing density was 3.8 g / cm 3 was measured using this powder resistance measuring instrument. From the obtained powder resistance R, the cross-sectional area S of the compression rod, and the pellet height L,
The resistance coefficient ρ was determined from the equation ρ = R × S / L.

【0022】なお、本発明の非水電解質二次電池の負極
材料としては、リチウムまたはリチウムイオンを吸蔵放
出可能な物質として、Al、Si、Pb、Sn、Zn、
Cd等とリチウムとの合金、LiFe23、WO2、M
oO2等の遷移金属酸化物、Li5(Li3N)等の窒化
リチウム、グラファイトやカーボン等の炭素質材料、も
しくは金属リチウム箔、又はこれらの混合物を用いても
よい。
As the negative electrode material of the non-aqueous electrolyte secondary battery of the present invention, as a material capable of occluding and releasing lithium or lithium ion, Al, Si, Pb, Sn, Zn,
Alloys of Cd and the like with lithium, LiFe 2 O 3 , WO 2 , M
A transition metal oxide such as oO 2, a lithium nitride such as Li 5 (Li 3 N), a carbonaceous material such as graphite or carbon, a metal lithium foil, or a mixture thereof may be used.

【0023】また、本発明においては、電解液の溶媒と
しては、エチレンカーボネートやプロピレンカーボネー
ト等の環状炭酸エステル、ジメチルカーボネートやジエ
チルカーボネートやメチルエチルカーボネート等の鎖状
炭酸エステル、γ−ブチロラクトン、スルホラン、ジメ
チルスルホキシド、アセトニトリル、ジメチルホルムア
ミド、ジメチルアセトアミド、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジオキソラン、メチル
アセテート等の極性溶媒、もしくはこれらの混合物を使
用することができる。
In the present invention, the solvent for the electrolytic solution includes cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, sulfolane, and the like. Dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran,
A polar solvent such as 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof can be used.

【0024】さらに、有機溶媒に溶解するリチウム塩と
しては、LiPF6、LiBF4、LiAsF6、LiC
3CO2、LiCF3SO3、LiN(SO2CF32
LiN(SO2CF2CF32、LiN(COCF32
よびLiN(COCF2CF3 2などの塩もしくはこれ
らの混合物でもよい。
Further, a lithium salt dissolved in an organic solvent may be used.
And LiPF6, LiBFFour, LiAsF6, LiC
FThreeCOTwo, LiCFThreeSOThree, LiN (SOTwoCFThree)Two,
LiN (SOTwoCFTwoCFThree)Two, LiN (COCFThree)TwoYou
And LiN (COCFTwoCFThree) TwoSuch as salt or this
These mixtures may be used.

【0025】また、隔離体としては、ポリエチレンやポ
リプロピレン等の絶縁性のポリオレフィン微多孔膜や、
高分子固体電解質、高分子固体電解質に電解液を含有さ
せたゲル状電解質等も使用できる。また、絶縁性の微多
孔膜と高分子固体電解質等を組み合わせて使用してもよ
い。さらに、高分子固体電解質として有孔性高分子固体
電解質膜を使用する場合、高分子中に含有させる電解液
と、細孔中に含有させる電解液とが異なっていてもよ
い。
Further, as the isolator, an insulating polyolefin microporous membrane such as polyethylene or polypropylene,
A solid polymer electrolyte, a gel electrolyte in which an electrolyte solution is contained in a solid polymer electrolyte, and the like can also be used. Further, an insulating microporous film and a solid polymer electrolyte may be used in combination. Further, when a porous solid polymer electrolyte membrane is used as the solid polymer electrolyte, the electrolyte contained in the polymer and the electrolyte contained in the pores may be different.

【0026】なお、本発明による発電要素は、正極板及
び負極板を、いずれも薄いシートないし箔状に成形した
ものを、順に積層したもの又は渦巻き状に巻回したもの
のどちらであってもよい。
The power generating element according to the present invention may be either a positive electrode plate or a negative electrode plate formed in the form of a thin sheet or foil, laminated in order, or spirally wound. .

【0027】電池ケースの材質としては、金属箔と樹脂
フィルムとを貼り合わせたシート、鉄、またはアルミニ
ウムのいずれであってもよい。
The material of the battery case may be any of a sheet in which a metal foil and a resin film are bonded, iron, or aluminum.

【0028】[0028]

【実施例】次に、本発明を好適な実施例にもとづき説明
する。なお、本発明は本実施例により何ら限定されるも
のではなく、その主旨を変更しない範囲において適宜変
更することが可能である。
Next, the present invention will be described based on preferred embodiments. It should be noted that the present invention is not limited at all by the present embodiment, and can be appropriately changed without changing the gist of the present invention.

【0029】[実施例1]まず、正極Aを次のように作
製した。すなわち、炭酸リチウムと、水酸化コバルトと
をモル比でLi/Co=1.01/1.00になるよう
にボールミルで混合し、空気中で600℃において1時
間仮焼した後、さらに900℃で10時間焼成すること
により、正極活物質を合成した。
[Example 1] First, a positive electrode A was produced as follows. That is, lithium carbonate and cobalt hydroxide are mixed in a ball mill so that the molar ratio of Li / Co becomes 1.01 / 1.00, and the mixture is calcined in air at 600 ° C. for 1 hour, and then 900 ° C. For 10 hours to synthesize a positive electrode active material.

【0030】この正極活物質を粉砕、分級することによ
り、D50%粒径4.5μmの正極活物質を得た。平均
粒径は、レーザ回折式粒度分布測定装置(島津製作所
製、SALD−2000J)で測定した。さらに、この
活物質5kgと精製水2kgとをプラネタリーミキサー
で10分間混合し、周囲温度25℃で1時間静置した
後、吸引ろ過を行った。
The positive electrode active material was pulverized and classified to obtain a positive electrode active material having a D50% particle size of 4.5 μm. The average particle diameter was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, SALD-2000J). Further, 5 kg of this active material and 2 kg of purified water were mixed with a planetary mixer for 10 minutes, allowed to stand at an ambient temperature of 25 ° C. for 1 hour, and then subjected to suction filtration.

【0031】さらに、130℃で、48時間の真空乾燥
処理を施し、粉体充填密度3.8g/cm3のときの抵
抗係数が1.2mΩ・cm、D50%粒径4.5μmの
正極活物質を得た。抵抗係数は、図2に示した粉末抵抗
測定器を用いて求めた。
Further, a vacuum drying treatment was performed at 130 ° C. for 48 hours to obtain a positive electrode having a resistance coefficient of 1.2 mΩ · cm and a D50% particle size of 4.5 μm at a powder packing density of 3.8 g / cm 3. Material was obtained. The resistance coefficient was determined using the powder resistance meter shown in FIG.

【0032】正極板は集電体に上記の活物質を保持した
ものである。集電体は厚さ20μmのアルミニウム箔を
用いた。正極板は、結着剤であるポリフッ化ビニリデン
6部と導電剤であるアセチレンブラック3部とを活物質
91部とともに混合し、適宜N−メチルピロリドンを加
えてペースト状に調製した後、その集電体材料の両面に
塗布、乾燥することによって製作した。
The positive electrode plate is one in which the above-mentioned active material is held on a current collector. As the current collector, an aluminum foil having a thickness of 20 μm was used. The positive electrode plate was prepared by mixing 6 parts of polyvinylidene fluoride as a binder and 3 parts of acetylene black as a conductive agent with 91 parts of an active material, adding N-methylpyrrolidone as appropriate, preparing a paste, and then collecting the paste. It was manufactured by applying and drying both sides of an electric conductor material.

【0033】負極板は、集電体の両面に、ホスト物質と
してのグラファイト(黒鉛)92部と結着剤としてのポ
リフッ化ビニリデン8部とを混合し、適宜N−メチルピ
ロリドンを加えてペースト状に調製したものを塗布、乾
燥することによって製作した。負極板の集電体は、厚さ
14μmの銅箔を用いた。
The negative electrode plate was prepared by mixing 92 parts of graphite (graphite) as a host substance and 8 parts of polyvinylidene fluoride as a binder on both sides of a current collector, and adding N-methylpyrrolidone as appropriate to form a paste. Was prepared by coating and drying. A 14 μm thick copper foil was used as the current collector of the negative electrode plate.

【0034】本発明になる非水電解質二次電池は、上記
正極板と隔離体と負極板とからなる長円形巻回型発電要
素が非水系の電解液とともに金属ラミネート樹脂フィル
ムを熱溶着してなる金属ラミネート樹脂フィルムケース
に収納されたものであり、その外観を図1に示す。
[0034] In the nonaqueous electrolyte secondary battery according to the present invention, the elliptical wound type power generating element comprising the positive electrode plate, the separator and the negative electrode plate is formed by heat-welding a metal laminated resin film together with a nonaqueous electrolytic solution. FIG. 1 shows the external appearance of the metal-laminated resin film case.

【0035】図1において、1は袋状単電池ケース、2
は発電要素、3は巻回要素の巻回中心軸、4は正極リー
ド端子、5は負極リード端子である。
In FIG. 1, reference numeral 1 denotes a bag-shaped cell case,
Is a power generation element, 3 is a winding center axis of the winding element, 4 is a positive lead terminal, and 5 is a negative lead terminal.

【0036】隔離体はポリエチレン微多孔膜とし、ま
た、電解液は、LiPF6を1mol/l含むエチレン
カーボネート:ジエチルカーボネート=4:6(体積
比)の混合液とした。
The separator was a microporous polyethylene membrane, and the electrolyte was a mixed solution of ethylene carbonate: diethyl carbonate = 4: 6 (volume ratio) containing 1 mol / l of LiPF6.

【0037】極板の寸法は、正極板が厚さ180μm、
幅49mm、セパレータが厚さ25μm、幅53mm、
負極板が厚さ170μm、幅51mmであり、正極板及
び負極板にそれぞれリード端子を溶接し、順に重ね合わ
せてポリエチレンの長方形状の巻芯を中心として、長辺
が発電要素の巻回中心軸と平行になるよう、その周囲に
長円渦状に巻回して、50×35×4mmの大きさの発
電要素とした。
The dimensions of the electrode plate are as follows: the positive electrode plate has a thickness of 180 μm;
Width 49mm, separator thickness 25μm, width 53mm,
The negative electrode plate has a thickness of 170 μm and a width of 51 mm, and the lead terminals are welded to the positive electrode plate and the negative electrode plate, respectively, and superimposed in order, with a rectangular core of polyethylene as a center, and a long side having a winding center axis of a power generating element. Was wound in an elliptical spiral shape so as to be parallel to the above, thereby forming a power generating element having a size of 50 × 35 × 4 mm.

【0038】そして、電極の絶縁部分をポリエチレンか
らなる巻き止め用テープ(ここでは接着剤が片面に塗布
されている)で電極幅(発電要素の巻回中心軸と平行な
発電要素の長さ)に相当する長さを、巻回中心軸と平行
な発電要素側壁部分に貼り付け、発電要素を巻き止め固
定した。
Then, the insulating part of the electrode is covered with a tape for winding made of polyethylene (here, an adhesive is applied on one side) to the electrode width (the length of the power generation element parallel to the winding central axis of the power generation element). Was attached to the side wall of the power generation element parallel to the winding center axis, and the power generation element was stopped and fixed.

【0039】これを金属ラミネート樹脂フィルムケース
に、長円形巻回型発電要素はその巻回中心軸が袋状金属
ラミネート樹脂フィルムケースの開口面に垂直となるよ
うに収納し、リード端子を固定して密封し、電解液を、
各電極と隔離体が十分湿潤し、発電要素外にフリーな電
解液が存在しない量を真空注液した。最後に、密封溶着
を行って、公称容量500mAhのラミネート単電池を試
作した。
This is housed in a metal-laminated resin film case, and the elliptical wound-type power generating element is housed so that the winding center axis is perpendicular to the opening surface of the bag-shaped metal-laminated resin film case, and the lead terminals are fixed. And seal the electrolyte.
Each electrode and the separator were sufficiently wetted, and vacuum injection was performed in such an amount that no free electrolyte solution was present outside the power generating element. Finally, a sealed unit cell having a nominal capacity of 500 mAh was prototyped by performing sealing welding.

【0040】[実施例2]炭酸リチウムと、水酸化コバ
ルトとをモル比でLi/Co=1.01/1.00にな
るようにボールミルで混合し、空気中で600℃におい
て1時間仮焼した後、さらに900℃で10時間焼成す
ることにより、正極活物質を合成した。この正極活物質
を粉砕、分級することにより、D50%粒径4.5μm
の正極活物質を得た。
Example 2 Lithium carbonate and cobalt hydroxide were mixed in a ball mill so that the molar ratio of Li / Co was 1.01 / 1.00, and calcined at 600 ° C. for 1 hour in air. After that, the resultant was further baked at 900 ° C. for 10 hours to synthesize a positive electrode active material. This positive electrode active material was pulverized and classified to obtain a D50% particle size of 4.5 μm.
Of the positive electrode active material was obtained.

【0041】さらに、この活物質5kgと精製水10k
gとをプラネタリーミキサーで10分間混合して、周囲
温度25℃で1時間静置した後、吸引ろ過を行った。さ
らに、130℃で、48時間の真空乾燥処理を施し、粉
体充填密度3.8g/cm3のときの抵抗係数が5mΩ
・cm、 D50%粒径4.5μmの正極活物質を得
た。以下、この正極活物質を用いて、実施例1と同様の
方法でラミネート電池を作製した。
Further, 5 kg of this active material and 10 k of purified water
g was mixed with a planetary mixer for 10 minutes, and allowed to stand at an ambient temperature of 25 ° C. for 1 hour, followed by suction filtration. Further, a vacuum drying treatment is performed at 130 ° C. for 48 hours, and the resistance coefficient at a powder packing density of 3.8 g / cm 3 is 5 mΩ.
・ Cm, D50% A positive electrode active material having a particle size of 4.5 μm was obtained. Hereinafter, a laminated battery was produced in the same manner as in Example 1 using this positive electrode active material.

【0042】[実施例3]炭酸リチウムと、水酸化コバ
ルトとをモル比でLi/Co=1.01/1.00にな
るようにボールミルで混合し、空気中で600℃におい
て1時間仮焼した後、さらに900℃で10時間焼成す
ることにより、正極活物質を合成した。この正極活物質
を粉砕、分級することにより、D50%粒径4.5μm
の正極活物質を得た。
Example 3 Lithium carbonate and cobalt hydroxide were mixed in a ball mill so that the molar ratio of Li / Co was 1.01 / 1.00, and calcined at 600 ° C. for 1 hour in air. After that, the resultant was further baked at 900 ° C. for 10 hours to synthesize a positive electrode active material. This positive electrode active material was pulverized and classified to obtain a D50% particle size of 4.5 μm.
Of the positive electrode active material was obtained.

【0043】さらに、この活物質5kgと精製水10k
gとを混合して、周囲温度25℃で1時間静置した後、
吸引ろ過を行った。さらに、上記の操作を5回行った。
これより得られた試料を130℃で、48時間の真空乾
燥処理を施し、粉体充填密度が3.8g/cm3のとき
の抵抗係数が38mΩ・cm、 D50%粒径4.5μ
mの正極活物質を得た。以下、この正極活物質を用い
て、実施例1と同様の方法でラミネート電池を作製し
た。
Further, 5 kg of this active material and 10 k of purified water
g, and allowed to stand at an ambient temperature of 25 ° C. for 1 hour.
Suction filtration was performed. Further, the above operation was performed five times.
The sample thus obtained was subjected to a vacuum drying treatment at 130 ° C. for 48 hours to give a resistance coefficient of 38 mΩ · cm at a powder packing density of 3.8 g / cm 3 and a D50% particle size of 4.5 μm.
m of the positive electrode active material was obtained. Hereinafter, a laminated battery was produced in the same manner as in Example 1 using this positive electrode active material.

【0044】[比較例1]炭酸リチウムと、水酸化コバ
ルトとをモル比でLi/Co=1.01/1.00にな
るようにボールミルで混合し、空気中で600℃におい
て1時間仮焼した後、さらに900℃で10時間焼成す
ることにより、正極活物質を合成した。この正極活物質
を粉砕・分級することにより、粉体充填密度が3.8g
/cm3のときの抵抗係数が0.8mΩ・cm、D50
%粒径4.5μmの正極活物質を得た。以下、この正極
活物質を用いて、実施例1と同様の方法でラミネート電
池を作製した。
Comparative Example 1 Lithium carbonate and cobalt hydroxide were mixed in a ball mill so that the molar ratio of Li / Co was 1.01 / 1.00, and the mixture was calcined at 600 ° C. for 1 hour in air. After that, the resultant was further baked at 900 ° C. for 10 hours to synthesize a positive electrode active material. By pulverizing and classifying this positive electrode active material, the powder packing density is 3.8 g.
/ Cm 3 , the resistance coefficient is 0.8 mΩ · cm, D50
% Active material was obtained. Hereinafter, a laminated battery was produced in the same manner as in Example 1 using this positive electrode active material.

【0045】[比較例2]炭酸リチウムと、水酸化コバ
ルトとをモル比でLi/Co=1.01/1.00にな
るようにボールミルで混合し、空気中で600℃におい
て1時間仮焼した後、さらに900℃で10時間焼成す
ることにより、正極活物質を合成した。この正極活物質
を粉砕・分級することにより、D50%粒径4.5μm
の正極活物質を得た。
Comparative Example 2 Lithium carbonate and cobalt hydroxide were mixed in a ball mill so that the molar ratio of Li / Co was 1.01 / 1.00, and calcined in air at 600 ° C. for 1 hour. After that, the resultant was further baked at 900 ° C. for 10 hours to synthesize a positive electrode active material. This positive electrode active material is pulverized and classified to have a D50% particle size of 4.5 μm.
Of the positive electrode active material was obtained.

【0046】さらに、この活物質5kgを精製水10k
gと混合して周囲温度90℃で1時間静置した後、吸引
ろ過を行った。さらに、130℃で、48時間の真空乾
燥処理を施し、粉体充填密度が3.8g/cm3のとき
の抵抗係数が45.0mΩ・cm、 D50%粒径4.
5μmの正極活物質を得た。以下、この正極活物質を用
いて、実施例1と同様の方法でラミネート電池を作製し
た。
Further, 5 kg of this active material was added to 10 k of purified water.
g, and allowed to stand at an ambient temperature of 90 ° C. for 1 hour, followed by suction filtration. Further, a vacuum drying treatment is performed at 130 ° C. for 48 hours, and when the powder packing density is 3.8 g / cm 3 , the resistance coefficient is 45.0 mΩ · cm, and the D50% particle size is 4.
A positive electrode active material of 5 μm was obtained. Hereinafter, a laminated battery was produced in the same manner as in Example 1 using this positive electrode active material.

【0047】まず、実施例1、2、3および比較例1、
2の500mAhのラミネート単電池についての、サイ
クル寿命試験を行なった。各電池について、初期容量
と、45℃での容量維持率を測定した。
First, Examples 1, 2, and 3 and Comparative Example 1,
A cycle life test was performed on the two 500 mAh laminated cells. The initial capacity and the capacity retention at 45 ° C. were measured for each battery.

【0048】最初に、周囲温度25℃で、電流500m
A/電圧4.1Vの条件で3時間定電流/定電圧充電を
行った後、10分間の休止を経て、放電電流500m
A、終止電圧2.75Vの条件で放電を行うという条件
での充放電サイクルを2サイクル繰り返し、その時の放
電容量を初期容量とした。次に、初期容量の確認試験が
終った電池を、周囲温度45℃下で、さらに300サイ
クル繰り返し、300サイクル目の放電容量をもとめ
た。ここで、300サイクル目の放電容量を初期容量で
除した時の比率をを容量維持率と定義した。実施例およ
び比較例の結果を表1に示した。
First, at an ambient temperature of 25 ° C. and a current of 500 m
A / constant current / constant voltage charging under the condition of A / voltage 4.1 V for 3 hours, and after a pause of 10 minutes, discharging current of 500 m
A, two charge / discharge cycles were performed under the condition that discharge was performed under the condition of a final voltage of 2.75 V, and the discharge capacity at that time was defined as the initial capacity. Next, the battery for which the confirmation test of the initial capacity was completed was further repeated 300 cycles at an ambient temperature of 45 ° C., and the discharge capacity at the 300th cycle was determined. Here, the ratio when the discharge capacity at the 300th cycle was divided by the initial capacity was defined as the capacity retention rate. Table 1 shows the results of Examples and Comparative Examples.

【0049】[0049]

【表1】 [Table 1]

【0050】表1から明らかなように、比較例2の電池
の容量維持率は劣悪であった対し、実施例1、2、3お
よび比較例1は良好なサイクル寿命特性を示し、中でも
実施例1、2、3では特に優れたサイクル寿命特性を示
した。これにより、 正極活物質の粉体比抵抗を制約す
ることにより、実施例の電池は、比較例の電池よりもサ
イクル寿命特性が改善されていることがわかった。
As is clear from Table 1, the capacity retention of the battery of Comparative Example 2 was poor, while Examples 1, 2, and 3 and Comparative Example 1 exhibited good cycle life characteristics. 1, 2, and 3 exhibited particularly excellent cycle life characteristics. Thus, it was found that by limiting the powder specific resistance of the positive electrode active material, the batteries of the examples had better cycle life characteristics than the batteries of the comparative examples.

【0051】つぎに、実施例1、2、3および比較例
1、2の500mAhのラミネート単電池についての、
安全性試験を行なった。各電池を、周囲温度25℃で電
流730mAで電圧10Vまで充電することにより、過
充電状態の電池の安全性についての試験を行った。その
結果を表2に示した。
Next, the 500 mAh laminated single cells of Examples 1, 2, and 3 and Comparative Examples 1 and 2
A safety test was performed. Each battery was charged to a voltage of 10 V at a current of 730 mA at an ambient temperature of 25 ° C. to test the safety of the battery in an overcharged state. The results are shown in Table 2.

【0052】また、電流500mA/電圧4.3Vの条
件で3時間定電流/定電圧充電を行った後、内部短絡を
模擬するために、φ1mmの針を電池に刺した場合の安
全性について試験を行った結果も表2に示した。なお、
表中の数字は、供試電池数20個に対してそれぞれ破
裂、発火に至った電池数である。
After performing constant-current / constant-voltage charging for 3 hours under the conditions of a current of 500 mA and a voltage of 4.3 V, a test was conducted to determine the safety when a needle of φ1 mm was inserted into the battery to simulate an internal short circuit. Table 2 also shows the results obtained. In addition,
The numbers in the table indicate the number of batteries that burst and fired, respectively, for the number of test batteries of 20.

【0053】[0053]

【表2】 [Table 2]

【0054】表2から明らかなように、比較例1の電池
は、いずれも破裂、発火を伴うような危険な状態に陥っ
たのに対し、実施例および比較例2の電池では、破裂、
発火を引き起こすことなく、非常に安全な結果が得られ
た。
As is clear from Table 2, all of the batteries of Comparative Example 1 fell into a dangerous state involving rupture and ignition, whereas the batteries of Example and Comparative Example 2 ruptured and fired.
Very safe results were obtained without causing ignition.

【0055】また、過充電試験を行った際の電池表面温
度も、比較例1の電池では、最高500℃以上まで上が
った電池があったのに対し、実施例1、2、3および比
較例2の電池では、最高で120℃以下にまで電池表面
温度を抑えることができた。これにより、正極活物質の
粉体比抵抗を増加させることにより電池の安全性が改善
されたことがわかる。
The surface temperature of the battery when the overcharge test was performed was higher than that of the battery of Comparative Example 1 at 500 ° C. or higher. Battery No. 2 was able to reduce the battery surface temperature to a maximum of 120 ° C. or less. This indicates that the safety of the battery was improved by increasing the powder specific resistance of the positive electrode active material.

【0056】[0056]

【発明の効果】本発明によれば、電池特性、特にサイク
ル寿命特性の低下を招くことなく、発熱を伴うような異
常状態下でも安全性の高い、非水電解質二次電池を提供
することができる。さらには、放電特性に優れた非水電
解質電池を提供することができる。したがって、本発明
の工業価値は極めて大きい。
According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery which is highly safe even under abnormal conditions involving heat generation, without deteriorating battery characteristics, especially cycle life characteristics. it can. Furthermore, a nonaqueous electrolyte battery having excellent discharge characteristics can be provided. Therefore, the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非水電解質二次電池の外観図。FIG. 1 is an external view of a nonaqueous electrolyte secondary battery.

【図2】粉体比抵抗を測定する装置の概略図。FIG. 2 is a schematic diagram of an apparatus for measuring a powder specific resistance.

【符号の説明】[Explanation of symbols]

1 袋状単電池ケース 2 発電要素 3 巻回要素の巻回中心軸 4 正極リード端子 5 負極リード端子 11 圧縮ロッド 12 スリーブ 13 圧縮受け皿 14 圧縮ロッドの突起物 15 圧縮受け皿の突起物 16 試料粉末 REFERENCE SIGNS LIST 1 bag-shaped unit cell case 2 power generation element 3 winding center axis of winding element 4 positive electrode lead terminal 5 negative electrode lead terminal 11 compression rod 12 sleeve 13 compression tray 14 projection of compression rod 15 projection of compression tray 16 sample powder

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 DJ16 HJ08 HJ20 5H050 AA03 AA07 AA15 BA17 CA08 CB08 DA02 FA05 FA17 HA08 HA17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ05 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 DJ16 HJ08 HJ20 5H050 AA03 AA07 AA15 BA17 CA08 CB08 DA02 FA05 FA17 HA08 HA17

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質が粉体充填密度が3.8g/
cm3の時の抵抗係数が1mΩ・cm以上40mΩ・c
m以下のリチウムコバルト複合酸化物であることを特徴
とする非水電解質二次電池。
1. The method of claim 1, wherein the positive electrode active material has a powder packing density of 3.8 g /
The resistance coefficient at cm 3 is 1 mΩ · cm or more and 40 mΩ · c
A non-aqueous electrolyte secondary battery comprising a lithium-cobalt composite oxide having a particle size of not more than m.
JP2000110410A 2000-04-12 2000-04-12 Nonaqueous electrolyte secondary cell Pending JP2001297763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110410A JP2001297763A (en) 2000-04-12 2000-04-12 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110410A JP2001297763A (en) 2000-04-12 2000-04-12 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2001297763A true JP2001297763A (en) 2001-10-26

Family

ID=18622930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110410A Pending JP2001297763A (en) 2000-04-12 2000-04-12 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2001297763A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303622A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
EP2157655A1 (en) * 2007-04-19 2010-02-24 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2011052309A1 (en) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 Lithium secondary battery
US8105396B2 (en) 2009-01-14 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for fabricating the same
US8105711B2 (en) 2007-04-12 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery
US8124278B2 (en) 2007-06-18 2012-02-28 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing electrode of nonaqueous electrolyte secondary battery
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565811B2 (en) * 2003-03-31 2010-10-20 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2004303622A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery
KR101114715B1 (en) * 2007-04-12 2012-03-13 파나소닉 주식회사 Nonaqueous electrolytic secondary battery
US8105711B2 (en) 2007-04-12 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery
EP2157655A1 (en) * 2007-04-19 2010-02-24 Panasonic Corporation Nonaqueous electrolyte secondary battery
US8399113B2 (en) 2007-04-19 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery
EP2157655A4 (en) * 2007-04-19 2011-08-03 Panasonic Corp Nonaqueous electrolyte secondary battery
US8124278B2 (en) 2007-06-18 2012-02-28 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing electrode of nonaqueous electrolyte secondary battery
US8105396B2 (en) 2009-01-14 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for fabricating the same
CN102576900A (en) * 2009-10-30 2012-07-11 丰田自动车株式会社 Lithium secondary battery
JP2011096539A (en) * 2009-10-30 2011-05-12 Toyota Motor Corp Lithium secondary battery
WO2011052309A1 (en) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP5053044B2 (en) Nonaqueous electrolyte secondary battery
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP2000012030A (en) Nonaqueous electrolyte secondary battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP2005135634A (en) Nonaqueous electrolyte secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP2007157538A (en) Battery
JP2002216759A (en) Lithium ion secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JPH1140199A (en) Lithium secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP4938923B2 (en) Secondary battery
JP2000243452A (en) Lithium-ion secondary battery
JP2004327371A (en) Non-aqueous electrolyte secondary battery
JP3552210B2 (en) Lithium ion secondary battery, cathode active material and sheath for synthesis of lithium-containing composite oxide for cathode active material
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JP2000106210A (en) Organic electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery
JP3394020B2 (en) Lithium ion secondary battery