JP2000012030A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000012030A
JP2000012030A JP10177507A JP17750798A JP2000012030A JP 2000012030 A JP2000012030 A JP 2000012030A JP 10177507 A JP10177507 A JP 10177507A JP 17750798 A JP17750798 A JP 17750798A JP 2000012030 A JP2000012030 A JP 2000012030A
Authority
JP
Japan
Prior art keywords
lithium
spinel
positive electrode
type lithium
lithium manganate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10177507A
Other languages
Japanese (ja)
Inventor
Manabu Ochita
学 落田
Kenji Nakai
賢治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10177507A priority Critical patent/JP2000012030A/en
Publication of JP2000012030A publication Critical patent/JP2000012030A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve cycle life characteristics at high temperatures by causing a positive electrode having a spinel-type lithium manganate (LiMn2O4) as a main constituent to contain a specific amount of lithium cobaltate (LiCoO2). SOLUTION: An amount added to lithium cobaltate to be contained in a positive electrode is set 1 to 20 wt.% of a spinel-type lithium manganate. The spinle-type lithium manganate and the lithium cobaltate used as positive- electrode active materials can be manufactured by weighting a lithium salt material, a manganase salt material or a cobalt salt material, respectively according to a desired composition, sufficiently mixing them together, and heating/firing them at temperatures within a range of 600 deg.C to 1,100 deg.C in the air. A spinel-type lithium manganate, LiMn2O4 (M is a metallic element), having a different kinds of element added thereto or a lithium-rich spinel-type lithium manganate, Li(1+x)Mn2O4 (x is the amount of excess lithium) may be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質として
スピネル型マンガン酸リチウムを主成分とする非水電解
液二次電池において、サイクル寿命特性及び安全性に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery containing spinel-type lithium manganate as a main component as a positive electrode active material, and relates to cycle life characteristics and safety.

【0002】[0002]

【従来の技術】近年、ビデオカメラ、携帯電話、ノート
型パーソナルコンピュータ等のポータブル型機器の普及
に伴い小型、軽量であり、かつ高エネルギー密度を有す
る二次電池が要求されている。各種の二次電池におい
て、炭素質材料を負極活物質とし、コバルト酸リチウム
を正極活物質としたリチウムイオン二次電池が広く実用
化されている。しかしながらこの電池は、コバルト資源
の希少性から、電池コストが嵩むという欠点がある。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras, mobile phones, and notebook personal computers, secondary batteries having a small size, light weight and high energy density have been demanded. In various secondary batteries, lithium ion secondary batteries using a carbonaceous material as a negative electrode active material and lithium cobalt oxide as a positive electrode active material have been widely put into practical use. However, this battery has a disadvantage that the cost of the battery increases due to the scarcity of cobalt resources.

【0003】そこで、資源量、コストの観点から、スピ
ネル型マンガン酸リチウムの正極活物質としての利用が
検討されている。また、スピネル型マンガン酸リチウム
は、コバルト酸リチウムに比べて熱的安定性に優れてい
るため、大型化した非水電解液二次電池に適した正極用
活物質として注目されている。しかしながら、前記した
スピネル型マンガン酸リチウムを正極活物質として電池
を試作し、50℃の各温度でサイクル寿命試験を行った
ところ、寿命が短いという問題点が認められた。
[0003] From the viewpoint of resource amount and cost, utilization of spinel-type lithium manganate as a positive electrode active material is being studied. In addition, spinel-type lithium manganate has attracted attention as a positive electrode active material suitable for a large-sized non-aqueous electrolyte secondary battery because it has better thermal stability than lithium cobaltate. However, when a battery was trial-produced using the above-mentioned spinel-type lithium manganate as a positive electrode active material and subjected to a cycle life test at each temperature of 50 ° C., a problem that the life was short was recognized.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、スピ
ネル形マンガン酸リチウムを正極活物質の主体とする非
水電解液二次電池おいて、高温でのサイクル寿命特性を
改善することである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the cycle life characteristics at high temperatures in a non-aqueous electrolyte secondary battery mainly composed of spinel-type lithium manganate as a positive electrode active material. .

【0005】[0005]

【課題を解決するための手段】上記した課題を解決する
ために第一の発明では、スピネル型マンガン酸リチウム
を主成分とする正極、充放電によりリチウムを吸蔵、放
出することのできる負極及び非水電解液からなる非水電
解液二次電池において、前記正極にコバルト酸リチウム
を含有することを特徴とし、第二の発明では前記コバル
ト酸リチウムのスピネル型マンガン酸リチウムに対する
添加量が、1〜20重量%であることを特徴としてい
る。
According to a first aspect of the present invention, there is provided a positive electrode comprising spinel-type lithium manganate as a main component, a negative electrode capable of inserting and extracting lithium by charge and discharge, and a non-electrode. In a non-aqueous electrolyte secondary battery comprising an aqueous electrolyte, the positive electrode contains lithium cobaltate, and in the second invention, the addition amount of the lithium cobaltate to the spinel-type lithium manganate is 1 to 3. 20% by weight.

【0006】[0006]

【発明の実施の形態】本発明の非水電解液二次電池用の
正極活物質として使用されるスピネル型マンガン酸リチ
ウムとコバルト酸リチウムは、リチウム、マンガン、お
よびコバルトの硝酸塩、酸化物、硫酸塩、水酸化物また
はハロゲン化物等を原料として製造することができる。
例えば、所望の組成に応じてリチウム塩原料、マンガン
塩原料またはコバルト塩原料をそれぞれ秤量し、十分に
混合し、空気中で600℃から1100℃の温度範囲で
加熱焼成することにより製造できる。この際、異種元素
を添加したスピネル型マンガン酸リチウムLiMn2MO4(M
は金属元素)やリチウムリッチスピネル型マンガン酸リ
チウムLi(1+x)Mn2O4(xは過剰リチウム量)や異種
元素添加型リチウムリッチスピネル型マンガン酸リチウ
ムLi(1+x)Mn2MO4としてもよい。
DETAILED DESCRIPTION OF THE INVENTION The spinel-type lithium manganate and lithium cobaltate used as the positive electrode active material for the non-aqueous electrolyte secondary battery of the present invention include lithium, manganese, and cobalt nitrates, oxides, and sulfates. It can be produced using a salt, a hydroxide, a halide or the like as a raw material.
For example, it can be manufactured by weighing a lithium salt raw material, a manganese salt raw material, or a cobalt salt raw material in accordance with a desired composition, mixing them sufficiently, and baking them in air in a temperature range of 600 ° C. to 1100 ° C. At this time, spinel-type lithium manganate LiMn 2 MO 4 (M
May be a metal element), lithium-rich spinel-type lithium manganate Li (1 + x) Mn 2 O 4 (x is an excess amount of lithium) or lithium-rich spinel-type lithium manganate Li (1 + x) Mn 2 MO 4 of different element addition type .

【0007】リチウムを吸蔵、放出することのできる負
極活物質としては、例えば、コークス類、非晶質炭素
類、グラファイト類、熱分解炭素類有機高分子化合物焼
成体、炭素繊維、活性炭等の炭素質材料、ポリアセチレ
ン等のポリマー等を使用できる。また、リチウムアルミ
ニウム合金等のリチウム合金も使用できる。
The negative electrode active material capable of inserting and extracting lithium includes, for example, carbons such as cokes, amorphous carbons, graphites, fired pyrocarbon organic polymer compounds, carbon fibers, and activated carbon. The material may be a polymer such as polyacetylene. Further, a lithium alloy such as a lithium aluminum alloy can also be used.

【0008】非水電解液としては、従来より公知の非水
電解液溶媒に、リチウム塩電解質を溶解した電解液を使
用できる。すなわち、非水電解液用の溶媒として、プロ
ピレンカーボネート、エチレンカーボネート、ブチレン
カーボネート、ビニレンカーボネート、ジメチルカーボ
ネート、ジエチルカーボネート、メチルエチルカーボネ
イト、γ−ブチルラクトン、スルホラン、1,2−ジメ
トキシエタン、1,2−ジエトキシエタン、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、ジオキソラ
ン、アセトニトリル、酢酸メチル、酪酸メチル、リン酸
トリエステル等の非プロトン性有機溶媒の少なくとも1
種以上を混合した溶媒と、その溶媒に溶けるリチウム
塩、例えば、LiClO4, LiBF4, LiPF6, LiCF3SO3, LiCF3
CO2, LiAsF6,LiSbF6等が使用できる。特に、プロピレン
カーボネート、エチレンカーボネート、ビニレンカーボ
ネート等の環状カーボネート類とジメチルカーボネー
ト、ジエチルカーボネート等の鎖状カーボネート類を1
種類以上混合した溶媒に、LiBF4および/またはLiPF6
含む非水電解液が望ましい。
As the non-aqueous electrolyte, an electrolyte obtained by dissolving a lithium salt electrolyte in a conventionally known non-aqueous electrolyte solvent can be used. That is, as the solvent for the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyl lactone, sulfolane, 1,2-dimethoxyethane, 1,2 At least one of aprotic organic solvents such as diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, acetonitrile, methyl acetate, methyl butyrate, phosphoric acid triester;
A solvent in which at least one species is mixed, and a lithium salt soluble in the solvent, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3
CO 2 , LiAsF 6 , LiSbF 6 and the like can be used. In particular, propylene carbonate, ethylene carbonate, cyclic carbonates such as vinylene carbonate and dimethyl carbonate, chain carbonates such as diethyl carbonate 1
The solvent mixture or more, the non-aqueous electrolyte preferably includes LiBF4 and / or LiPF 6.

【0009】セパレータとしては、イオン透過度の大き
く、所定の機械的強度を持った絶縁性の薄膜が用いら
れ、ポリエチレンやポリプロピレン等の薄膜が望まし
い。なお、非水電解液二次電池の他の構成、例えば、電
池缶や上蓋等については、従来の非水電解液二次電池と
同様とすることができる。また、電池形状についても特
に指定するものではなく、円筒型、角型等の種々の形状
とすることができる。以下に、本発明の実施の形態を示
す。
As the separator, an insulating thin film having a high ion permeability and a predetermined mechanical strength is used, and a thin film of polyethylene or polypropylene is preferable. Other configurations of the non-aqueous electrolyte secondary battery, for example, a battery can and an upper lid, can be the same as the conventional non-aqueous electrolyte secondary battery. Also, the shape of the battery is not particularly specified, and various shapes such as a cylindrical shape and a square shape can be adopted. Hereinafter, embodiments of the present invention will be described.

【0010】1.正極 図1は本発明を実施した円筒型非水電解液二次電池の断
面図である。1は正極集電体で、厚さ20μmのアルミ
ニウム箔である。平面サイズは55mm×510mmであ
る。2は正極活物質層である。正極活物質としては、平
均粒径10μmのリチウムマンガン複合酸化物と、導電
助剤として平均粒径3μmの炭素粉末及び結着剤として
ポリフッ化ビニリデン(以下、PVdFと略す)とを、
それぞれ90:5:5の重量%で混合する。本発明で
は、後述するように、この混合物にコバルト酸リチウム
を添加した。そこに、N−メチル−2−ピロリドンを投
入混合してスラリーを作製する。厚み20μmのアルミ
ニウム箔の両面にこのスラリーを塗布し、溶剤を乾燥さ
せた後、ローラプレス機にて圧延して、正極合剤電極を
作製し、幅が54mmで、長さが450mmに切断して
短細状の正極を作製した。
[0010] 1. 1. Positive Electrode FIG. 1 is a sectional view of a cylindrical nonaqueous electrolyte secondary battery embodying the present invention. Reference numeral 1 denotes a positive electrode current collector, which is an aluminum foil having a thickness of 20 μm. The plane size is 55 mm × 510 mm. 2 is a positive electrode active material layer. As the positive electrode active material, a lithium manganese composite oxide having an average particle diameter of 10 μm, a carbon powder having an average particle diameter of 3 μm as a conductive additive, and polyvinylidene fluoride (hereinafter abbreviated as PVdF) as a binder,
Mix at 90: 5: 5 wt% respectively. In the present invention, as described later, lithium cobaltate was added to this mixture. There, N-methyl-2-pyrrolidone is charged and mixed to prepare a slurry. This slurry was applied to both sides of an aluminum foil having a thickness of 20 μm, and after drying the solvent, it was rolled with a roller press to produce a positive electrode mixture electrode, which was cut into a width of 54 mm and a length of 450 mm. Thus, a short positive electrode was produced.

【0011】2.負極 負極活物質としては平均粒径20μmの非晶質炭素材料
とポリフッ化ビニリデン(PVdF)の結着剤を90:
10の重量%で混合し、N−メチル−2−ピロリドンを
投入混合して、スラリー状の溶液を作製する。集電体と
して厚み10μmの銅箔3の両面にこの混合溶液を塗布
し、溶剤を乾燥した後、ローラプレス機にて圧延して、
負極合剤電極を作製し、その後56mm幅で、長さが5
60mmに切断して短冊状の負極を作製した。
2. Negative electrode As the negative electrode active material, a binder of an amorphous carbon material having an average particle diameter of 20 μm and polyvinylidene fluoride (PVdF) was used.
The mixture was mixed at 10% by weight, and N-methyl-2-pyrrolidone was added and mixed to prepare a slurry-like solution. This mixed solution was applied to both sides of a copper foil 3 having a thickness of 10 μm as a current collector, the solvent was dried, and then rolled with a roller press.
A negative electrode mixture electrode was prepared, and then 56 mm wide and 5 mm long.
It was cut into 60 mm to produce a strip-shaped negative electrode.

【0012】3.電池 上記した方法で作製した正極と負極とを厚さ40μm、
幅58mmのポリエチレン微多孔膜からなるセパレータ
5を介して捲回し、スパイラル状の捲回群を作製する。
この捲回群を電池缶6に挿入し、予め負極集電体3の銅
箔に溶接しておいたニッケルタブ端子を電池缶底に溶接
する。次にエチレンカーボネートとジメチルカーボネー
トを体積比で1:2に混合した溶液にLiPF6を1m
ol/lの濃度で溶解した電解液を電池容器に5ml注
入した。電解液は、体積比でプロピレンカーボネート:
ジメチルカーボネート=3:7の混合溶媒にLiPF6を1M/
l溶解させたものである。次に、予め正極集電体1のア
ルミニウム箔に溶接したアルミニウムタブ端子を蓋に溶
接して、蓋を絶縁性のガスケット9を介して電池缶の上
部に配置させ、この部分をかしめて密閉し、直径18m
m、高さ65mmの円筒型電池を作製した。なお、9は
電気絶縁性のガスケットである。ここで、正極キャップ
7内には、電池内圧の上昇に応じて作動する電流遮断機
構と前記電流遮断機構が作動する圧力よりも高い圧力に
応じて開放作動する弁機構が組み込まれている。本実施
例では電流遮断機構の作動圧を8kgf/cm2、弁機
構の作動圧を20kgf/cm2とした。このようにし
て実施例の電池が完成する。
3. Battery The positive electrode and the negative electrode produced by the above-described method are 40 μm thick,
It is wound through a separator 5 made of a microporous polyethylene film having a width of 58 mm to form a spiral wound group.
The wound group is inserted into the battery can 6, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector 3 is welded to the bottom of the battery can. Next, 1 m of LiPF 6 was added to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2.
5 ml of the electrolytic solution dissolved at a concentration of ol / l was injected into the battery container. The electrolyte is propylene carbonate in volume ratio:
LiPF 6 in a mixed solvent of dimethyl carbonate = 3: 7 at 1M /
l Dissolved. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector 1 is welded to the lid, and the lid is disposed on the upper portion of the battery can via the insulating gasket 9, and this portion is caulked and sealed. , Diameter 18m
m, a cylindrical battery having a height of 65 mm was produced. Reference numeral 9 denotes an electrically insulating gasket. Here, in the positive electrode cap 7, a current interrupting mechanism that operates in response to an increase in battery internal pressure and a valve mechanism that opens in response to a pressure higher than the pressure at which the current interrupting mechanism operates are incorporated. In the present embodiment, the operating pressure of the current interrupting mechanism was 8 kgf / cm 2 , and the operating pressure of the valve mechanism was 20 kgf / cm 2 . Thus, the battery of the example is completed.

【0013】4.初期充放電試験 作製した電池を25℃にて24時間放置した後、初期の
充放電試験をした。すなわち、充電電圧4.2V(ただ
し、制限電流320mA)で4時間充電した後、放電電
流1Aで放電終止電圧2.5Vまでの放電を10サイク
ル行った。
4. Initial charge / discharge test After the produced battery was left at 25 ° C. for 24 hours, an initial charge / discharge test was performed. That is, after charging for 4 hours at a charging voltage of 4.2 V (however, a limiting current of 320 mA), discharging was performed for 10 cycles to a discharging end voltage of 2.5 V with a discharging current of 1 A.

【0014】5.サイクル試験 初期充放電試験をした電池の一部は、50℃にて充電電
流1Aで充電終止電圧4.2Vで5時間、放電電流1A
にて放電終止電圧2.5Vの条件下で充放電サイクル試
験を行った。100サイクル充放電後の電池を分解し、
電解液中へのマンガンの溶出量、負極合剤中のマンガン
含有量を測定した。
5. Cycle Test A part of the battery subjected to the initial charge / discharge test was charged at a charge current of 1 A at 50 ° C., a charge end voltage of 4.2 V for 5 hours, and a discharge current of 1 A.
, A charge / discharge cycle test was performed under the condition of a discharge end voltage of 2.5 V. Disassemble the battery after 100 cycles charge and discharge,
The amount of manganese eluted into the electrolyte and the manganese content in the negative electrode mixture were measured.

【0015】6.高温加熱試験 前記したサイクル試験を200サイクル行ったのち、高
温加熱試験を行った。この高温加熱試験では、電池を恒
温槽内に充電状態で固定し、5℃/分の加熱速度で15
0℃まで加熱する。その後、150℃の温度状態を60
分保持して、電池の破裂、発火の有無を測定した。
6. High-temperature heating test After 200 cycles of the above-described cycle test, a high-temperature heating test was performed. In this high-temperature heating test, the battery was fixed in a constant temperature bath in a charged state, and heated at a heating rate of 5 ° C./min for 15 minutes.
Heat to 0 ° C. Thereafter, the temperature of 150 ° C.
After holding for a minute, the presence or absence of rupture or ignition of the battery was measured.

【0016】[0016]

【実施例】(実施例1〜9、比較例1)スピネル型マン
ガン酸リチウムに対するコバルト酸リチウムの混合重量
比を、表1に示すように、それぞれ0、1、5、10、
20、30、40、50、60、70重量%として、そ
の他の作製条件は前記した条件でそれぞれの電池を試作
した。
EXAMPLES (Examples 1 to 9, Comparative Example 1) As shown in Table 1, the mixing weight ratio of lithium cobalt oxide to spinel type lithium manganate was 0, 1, 5, 10,
Each battery was trial-produced under the other manufacturing conditions described above, with 20, 30, 40, 50, 60, and 70% by weight.

【0017】これらの電池のサイクル寿命特性を図2に
示す。比較例1の電池では100サイクルを超えた時点
から、急激に放電容量が低下した。一方、コバルト酸リ
チウムを混合した電池では放電容量が低下が少なく、コ
バルト酸リチウムが1重量%を超えることで、50℃で
のサイクル寿命特性が向上することが判明した。この理
由は、コバルト酸リチウムの添加によって充電状態で、
導電率が向上する為と考えられる。
FIG. 2 shows the cycle life characteristics of these batteries. In the battery of Comparative Example 1, the discharge capacity sharply decreased from the point of time exceeding 100 cycles. On the other hand, in the battery mixed with lithium cobaltate, it was found that the discharge capacity was small and the cycle life characteristic at 50 ° C. was improved when lithium cobaltate exceeded 1% by weight. The reason for this is that the addition of lithium cobalt
It is considered that the conductivity is improved.

【0018】表1に実施例1〜9と比較例1の電池を各
10個ずつ高温加熱試験をし、破裂、発火を起こした個
数を示した。コバルト酸リチウムの混合比が20重量%
を超えると、電池は破裂、発火を起こすことが判明し
た。
Table 1 shows the batteries of Examples 1 to 9 and Comparative Example 1 which were subjected to a high-temperature heating test for 10 batteries each, and the number of batteries which burst or ignited was shown. The mixing ratio of lithium cobaltate is 20% by weight
Above, the battery was found to rupture and ignite.

【0019】以上の結果から、スピネル型マンガン酸リ
チウムに対するコバルト酸リチウムの混合比を1〜20
重量%にすることで、安全性が高く、サイクル寿命特性
に優れた電池が得られる。尚、スピネル型マンガン酸リ
チウムのマンガン元素の一部をコバルト、ニッケル、ア
ルミニウム、鉄、マグネシウム、ストロンチウム等の他
の元素で置換した酸化物とコバルト酸リチウムのコバル
ト元素の一部をニッケル、マンガン、マグネシウム、ア
ルミニウム、鉄、マグネシウム等の元素で置換した化合
物についても同様な効果が得られた。
From the above results, the mixing ratio of lithium cobaltate to spinel-type lithium manganate was from 1 to 20.
By setting the weight%, a battery having high safety and excellent cycle life characteristics can be obtained. In addition, a part of the manganese element of the spinel-type lithium manganate is replaced with another element such as cobalt, nickel, aluminum, iron, magnesium, and strontium, and part of the cobalt element of the lithium cobalt oxide is nickel, manganese, Similar effects were obtained with compounds substituted with elements such as magnesium, aluminum, iron, and magnesium.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】正極の活物質にスピネル型マンガン酸リ
チウムとコバルト酸リチウムとの混合物を用いることに
より、50℃でのサイクル寿命特性及び高温加熱特性に
優れた非水電解液二次電池を提供できる。
The use of a mixture of spinel-type lithium manganate and lithium cobaltate as the active material of the positive electrode provides a non-aqueous electrolyte secondary battery having excellent cycle life characteristics at 50 ° C. and high-temperature heating characteristics. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した円筒型非水電解液二次電池の
断面図である。
FIG. 1 is a sectional view of a cylindrical nonaqueous electrolyte secondary battery embodying the present invention.

【図2】各電池のサイクル寿命特性である。FIG. 2 shows cycle life characteristics of each battery.

【符号の説明】[Explanation of symbols]

1は正極集電体、2は正極活物質層、3は負極集電体、
4は負極活物質層、5はセパレータ、6は電池缶、7は
正極キャップ、8は正極リード、9はガスケット。
1 is a positive electrode current collector, 2 is a positive electrode active material layer, 3 is a negative electrode current collector,
4 is a negative electrode active material layer, 5 is a separator, 6 is a battery can, 7 is a positive electrode cap, 8 is a positive electrode lead, and 9 is a gasket.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 AA10 BB05 BC06 BD04 5H014 AA02 EE10 HH01 5H029 AJ05 AJ12 AK03 AL06 AL07 AL08 AL16 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 DJ17 HJ01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA04 AA10 BB05 BC06 BD04 5H014 AA02 EE10 HH01 5H029 AJ05 AJ12 AK03 AL06 AL07 AL08 AL16 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 DJ17 HJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スピネル型マンガン酸リチウム(LiMn
24)を主成分とする正極、充放電によりリチウムを吸
蔵、放出することのできる負極及び非水電解液からなる
非水電解液二次電池において、前記正極にコバルト酸リ
チウム(LiCoO2)を含有することを特徴とする非
水電解液二次電池。
A spinel type lithium manganate (LiMn)
In a non-aqueous electrolyte secondary battery comprising a positive electrode mainly composed of 2 O 4 ), a negative electrode capable of occluding and releasing lithium by charging and discharging, and a non-aqueous electrolyte, the positive electrode includes lithium cobalt oxide (LiCoO 2 ). A non-aqueous electrolyte secondary battery comprising:
【請求項2】前記コバルト酸リチウムのスピネル型マン
ガン酸リチウムに対する添加量が、1〜20重量%であ
ることを特徴とする請求項1記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the lithium cobaltate added to the spinel-type lithium manganate is 1 to 20% by weight.
JP10177507A 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery Pending JP2000012030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10177507A JP2000012030A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10177507A JP2000012030A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000012030A true JP2000012030A (en) 2000-01-14

Family

ID=16032124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10177507A Pending JP2000012030A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000012030A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
JP2002216745A (en) * 2001-01-23 2002-08-02 Sanyo Electric Co Ltd Lithium secondary battery
WO2006071972A3 (en) * 2004-12-28 2007-10-18 Boston Power Inc Lithium-ion secondary battery
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
US7656125B2 (en) 2005-07-14 2010-02-02 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US7811708B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US8828605B2 (en) 2004-12-28 2014-09-09 Boston-Power, Inc. Lithium-ion secondary battery
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
JP2016213205A (en) * 2011-07-13 2016-12-15 エルジー・ケム・リミテッド High-energy lithium secondary battery improved in energy density characteristic
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
JP2002216745A (en) * 2001-01-23 2002-08-02 Sanyo Electric Co Ltd Lithium secondary battery
US8828605B2 (en) 2004-12-28 2014-09-09 Boston-Power, Inc. Lithium-ion secondary battery
WO2006071972A3 (en) * 2004-12-28 2007-10-18 Boston Power Inc Lithium-ion secondary battery
EP2178137A1 (en) 2004-12-28 2010-04-21 Boston-Power, Inc. Lithium-Ion secondary battery
US7811708B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US7656125B2 (en) 2005-07-14 2010-02-02 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8084998B2 (en) 2005-07-14 2011-12-27 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
JP2017027947A (en) * 2011-05-23 2017-02-02 エルジー ケム. エルティーディ. High output lithium secondary battery with enhanced output density characteristics
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
JP2016213205A (en) * 2011-07-13 2016-12-15 エルジー・ケム・リミテッド High-energy lithium secondary battery improved in energy density characteristic
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP2001319652A (en) Positive active material and non-aqueous electrolyte battery, and their manufacturing method
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2000012030A (en) Nonaqueous electrolyte secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JPH07235291A (en) Secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2002170566A (en) Lithium secondary cell
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP3921836B2 (en) Organic electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP4221932B2 (en) Non-aqueous electrolyte battery
JP2003077478A (en) Lithium ion secondary battery
JP2003007349A (en) Charging method for battery
JPH10199567A (en) Nonaqueous electrolyte secondary cell
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JP2002198047A (en) Lithium secondary battery