JPH10199567A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH10199567A
JPH10199567A JP9002637A JP263797A JPH10199567A JP H10199567 A JPH10199567 A JP H10199567A JP 9002637 A JP9002637 A JP 9002637A JP 263797 A JP263797 A JP 263797A JP H10199567 A JPH10199567 A JP H10199567A
Authority
JP
Japan
Prior art keywords
battery
carbonate
lithium
dioxolan
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9002637A
Other languages
Japanese (ja)
Inventor
Hideaki Katayama
秀昭 片山
Juichi Arai
寿一 新井
Yutaka Ito
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9002637A priority Critical patent/JPH10199567A/en
Publication of JPH10199567A publication Critical patent/JPH10199567A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell with high stability and optimum battery characteristics. SOLUTION: This nonaqueous electrolyte secondary cell consists of a negative electrode 2 whose active material is a material capable of storing and releasing lithium electrochemically, a positive electrode whose active material is a material capable of storaging and releasing lithium electrochemically, and nonaqueous electrolyte whose lithium salt is dissolved in nonaqueous solvent as electrolyte. The nonaqueous electrolyte made out of mixture of one or more types of cyclic ester and one or more types of chain ester, a volume ratio of the cyclic ester against the whole solvent is 60 to 90%, at least one type of the cyclic ester is 4-trifluoromethyl or 3-dioxolan-2-one, and a volume ratio of the 4- trifluoromethy-1 or 3-dioxolan-2-one against the whole solvent is 60 to 90%, and a volume ratio of the chain ester against the whole solvent is 10 to 40%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係わり、更に詳しくは、過充電等や短絡などによって
も高い安全性を有する非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having high safety against overcharge or short circuit.

【0002】[0002]

【従来の技術】金属リチウムやリチウム合金或いは炭素
材料などの電気化学的にリチウムを吸蔵・放出できる材
料を負極活物質に用い、電気化学的にリチウムを吸蔵・
放出できる材料を正極活物質に用いたリチウム二次電池
が研究開発され、一部が実用化されている。このリチウ
ム二次電池は電池電圧が高く、他の二次電池に比べて重
量及び体積あたりのエネルギー密度が大きいという特徴
を有している。このため携帯電話,ノートパソコン,カ
メラ一体型VTR等の携帯用電子機器の電源として用い
られている。このようなリチウム二次電池においては、
鉛蓄電池,ニッケルカドミウム電池,ニッケル水素電池
といった他の二次電池に用いられているような水溶液系
の電解液はリチウムとの反応が起こるなどの不都合が生
じるために用いることができず、もっぱら有機溶媒にリ
チウム塩を溶解した非水電解液が用いられている。この
ような非水電解液の例としては、例えば特開平2−10666
号公報に示されているような、プロピレンカーボネート
に鎖状炭酸エステルを混合した溶媒にリチウム塩を溶解
したもの、特開平4−162370 号及びUSP No.519262
9号公報に示されているような、エチレンカーボネート
に鎖状炭酸エステルを混合した溶媒にリチウム塩を溶解
した電解液が知られている。
2. Description of the Related Art A material capable of electrochemically occluding and releasing lithium, such as metallic lithium, a lithium alloy, or a carbon material, is used as a negative electrode active material, and electrochemically occluding and releasing lithium.
Lithium secondary batteries using materials that can be released as positive electrode active materials have been researched and developed, and some of them have been put to practical use. This lithium secondary battery has a feature that the battery voltage is high and the energy density per weight and volume is higher than other secondary batteries. For this reason, it is used as a power source for portable electronic devices such as mobile phones, notebook computers, and camera-integrated VTRs. In such a lithium secondary battery,
Aqueous electrolytes such as those used in other secondary batteries such as lead-acid batteries, nickel-cadmium batteries, and nickel-metal hydride batteries cannot be used due to inconveniences such as reaction with lithium. A non-aqueous electrolyte in which a lithium salt is dissolved in a solvent is used. Examples of such a non-aqueous electrolyte include, for example, JP-A-2-10666.
JP-A-4-162370 and USP No. 519262, in which a lithium salt is dissolved in a solvent in which a chain carbonate is mixed with propylene carbonate, as disclosed in JP-A No. 4-162370.
As disclosed in Japanese Patent Application Publication No. 9-203, there is known an electrolytic solution in which a lithium salt is dissolved in a solvent in which a chain carbonate is mixed with ethylene carbonate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな有機溶媒を用いた電解液は可燃性が高く、過充電時
や何らかの要因で外部短絡もしくは内部短絡を生じた場
合に発火する可能性があり、安全性の向上が要望されて
いる。
However, an electrolytic solution using such an organic solvent is highly flammable, and may be ignited during overcharging or when an external short circuit or an internal short circuit occurs for some reason. There is a demand for improved safety.

【0004】本発明は上記従来の問題点を解決するため
に、非水電解液に難燃性及び自己消火性をもたせ、また
この電解液を用いることによって電池特性を損ねること
のない、安全かつ特性に優れた非水電解液二次電池を提
供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a non-aqueous electrolyte with flame retardancy and self-extinguishing properties. An object is to provide a non-aqueous electrolyte secondary battery having excellent characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、非水電解液二次電池に用いる電解液の溶媒として、
環状エステルと鎖状エステルの混合物を用い、環状エス
テルとしては、一般式〔1〕に示す構造を有する4−ト
リフルオロメチル−1,3−ジオキソラン−2−オンを
主成分とし、これを単独もしくは、他の環状エステルと
混合し、更に鎖状エステルを適量混合した混合溶媒を用
いることにより上記課題を解決した。
In order to achieve the above object, as a solvent for an electrolytic solution used in a non-aqueous electrolyte secondary battery,
A mixture of a cyclic ester and a chain ester is used. As the cyclic ester, 4-trifluoromethyl-1,3-dioxolan-2-one having a structure represented by the general formula [1] is used as a main component. The above-mentioned problem was solved by using a mixed solvent obtained by mixing with a cyclic ester and further mixing an appropriate amount of a chain ester.

【0006】[0006]

【化1】 Embedded image

【0007】本発明に用いる、環状エステルとしては、
4−トリフルオロメチル−1,3−ジオキソラン−2−
オンを単独もしくは、プロピレンカーボネート,エチレ
ンカーボネート,ブチレンカーボネート,γ−ブチロラ
クトン,ビニレンカーボネート,2−メチル−γ−ブチ
ロラクトン,アセチル−γ−ブチロラクトン,γ−バレ
ロラクトン等と混合して用いることができる。
The cyclic ester used in the present invention includes:
4-trifluoromethyl-1,3-dioxolan-2-
ON can be used alone or in combination with propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone, or the like.

【0008】鎖状エステルとしては、ジメチルカーボネ
ート,ジエチルカーボネート,メチルエチルカーボネー
ト,メチルプロピルカーボネート,メチルイソプロピル
カーボネート,メチルブチルカーボネート,エチルプロ
ピルカーボネート,エチルイソプロピルカーボネート,
エチルブチルカーボネート,ジプロピルカーボネート,
ジイソプロピルカーボネート,プロピルブチルカーボネ
ート,ジブチルカーボネート,プロピオン酸アルキルエ
ステル,マロン酸ジアルキルエステル,酢酸アルキルエ
ステル等があり、これらを単独もしくは混合して用いる
ことができるが、ジメチルカーボネート,ジエチルカー
ボネート,ジプロピルカーボネート,ジイソプロピルカ
ーボネート,メチルエチルカーボネート,メチルプロピ
ルカーボネート,メチルイソプロピルカーボネート,メ
チルプロピルカーボネート,メチルイソプロピルカーボ
ネートよりなる群から選ばれた1種もしくは2種以上の
鎖状炭酸エステルを用いるのが望ましい。
Examples of the chain ester include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl isopropyl carbonate,
Ethyl butyl carbonate, dipropyl carbonate,
There are diisopropyl carbonate, propyl butyl carbonate, dibutyl carbonate, alkyl propionate, dialkyl malonate, alkyl acetate and the like, and these can be used alone or in combination, but dimethyl carbonate, diethyl carbonate, dipropyl carbonate, It is desirable to use one or more chain carbonates selected from the group consisting of diisopropyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl propyl carbonate, and methyl isopropyl carbonate.

【0009】そして、環状エステルの全溶媒中に占める
量は体積比で60〜90%,鎖状エステルの体積比は1
0〜40%で、しかも、4−トリフルオロメチル−1,
3−ジオキソラン−2−オンの全溶媒に占める体積比は
60〜90%であることが望ましい。4−トリフルオロ
メチル−1,3−ジオキソラン−2−オンの全溶媒に占
める体積比が60%より少ないと溶媒の燃焼性が高く十
分な安全性を確保できないし、また、4−トリフルオロ
メチル−1,3−ジオキソラン−2−オンの全溶媒に占
める体積比が90%より多いと電極でのリチウムの吸蔵
・放出の速度が遅く、速い電流レートでの充放電ができ
ないために電池としての特性が悪くなる。
The amount of the cyclic ester in the total solvent is 60 to 90% by volume, and the volume of the chain ester is 1 to 90%.
0-40% and 4-trifluoromethyl-1,
The volume ratio of 3-dioxolan-2-one to the total solvent is desirably 60 to 90%. If the volume ratio of 4-trifluoromethyl-1,3-dioxolan-2-one to the total solvent is less than 60%, the flammability of the solvent is high and sufficient safety cannot be ensured. If the volume ratio of -1,3-dioxolan-2-one to the total solvent is more than 90%, the rate of insertion and extraction of lithium at the electrode is slow, and charging and discharging at a high current rate cannot be performed. The characteristics deteriorate.

【0010】更に、電解質として用いられるリチウム塩
としては、上記非水溶媒中で解離し、リチウムイオンを
供給するLiClO4,LiBF4,LiPF6,LiAs
6,LiF,LiCl,LiBr等の無機リチウム塩及
びLiB(C65)4, LiN(SO2CF3)2,Li
C(SO2CF3)3,LiOSO2CF3,LiOSO22
5,LiOSO237,LiOSO249
LiOSO2511,LiOSO2613,L
iOSO2715等の有機リチウム塩があるが、無機の
リチウム塩が電解液の難燃性が高く望ましい。その中で
も特にLiPF6 は電池特性,難燃性とも優れるためリ
チウム塩として用いるのに好ましい。
Further, as the lithium salt used as the electrolyte, LiClO 4 , LiBF 4 , LiPF 6 , LiAs which dissociates in the above non-aqueous solvent and supplies lithium ions.
Inorganic lithium salts such as F 6 , LiF, LiCl, LiBr, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , Li
C (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2
F 5, LiOSO 2 C 3 F 7, LiOSO 2 C 4 F 9,
LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , L
and organic lithium salts such as iOSO 2 C 7 F 15, but lithium salts of inorganic is high and desirable flame retardancy of the electrolyte. Among them, LiPF 6 is particularly preferable for use as a lithium salt because of its excellent battery characteristics and flame retardancy.

【0011】また、負極活物質には、リチウム金属,リ
チウム合金,リチウムを吸蔵・放出できる炭素材料,リ
チウムを吸蔵・放出できる酸化錫化合物等の電気化学的
にリチウムを吸蔵・放出できる材料があるが、その中で
もリチウムを吸蔵・放出できる炭素材料を用いることが
安全性の面から望ましい。リチウムを吸蔵・放出できる
炭素材料は更に詳しくは、グラファイト,易黒鉛性炭
素,難黒鉛性炭素に分類することができるが4−トリフ
ルオロメチル−1,3−ジオキソラン−2−オンのよう
なプロピレンカーボネート構造を有する化合物を非水電
解液の溶媒として用いた場合には、電池特性の面から難
黒鉛性炭素もしくは易黒鉛性炭素を用いることが望まし
い。
The negative electrode active material includes lithium metal, lithium alloy, a carbon material capable of absorbing and releasing lithium, and a tin oxide compound capable of absorbing and releasing lithium, and the like, and a material capable of electrochemically storing and releasing lithium. However, among them, it is desirable to use a carbon material capable of inserting and extracting lithium from the viewpoint of safety. More specifically, carbon materials capable of inserting and extracting lithium can be classified into graphite, graphitizable carbon, and non-graphitizable carbon, and propylene such as 4-trifluoromethyl-1,3-dioxolan-2-one. When a compound having a carbonate structure is used as a solvent for the non-aqueous electrolyte, it is desirable to use non-graphitizable carbon or graphitizable carbon from the viewpoint of battery characteristics.

【0012】また、正極活物質には例えばLiCo
2,LiNiO2,LiMnO2,LiMn24等のリ
チウム含有複合酸化物、TiO2,MnO2,MoO3,V2
5,TiS2,MoS2等のカルコゲン化合物等が用いら
れ、放電電圧が高く、電気化学的安定性の高い、LiC
oO2,LiNiO2,LiMnO2等のα−NaCrO2
造を有するリチウム化合物やLiMn24等が望まし
い。
The positive electrode active material is, for example, LiCo.
Lithium-containing composite oxides such as O 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , TiO 2 , MnO 2 , MoO 3 , V 2
A chalcogen compound such as O 5 , TiS 2 , MoS 2 or the like is used, and a high discharge voltage, high electrochemical stability, LiC
Lithium compounds having an α-NaCrO 2 structure, such as oO 2 , LiNiO 2 , and LiMnO 2 , and LiMn 2 O 4 are desirable.

【0013】本発明の方法によれば、電解液中に用いる
溶媒として、難燃性で自己消火性を有する4−トリフル
オロメチル−1,3−ジオキソラン−2−オンを主成分
とし、鎖状エステル,環状エステルを適量混合すること
により、安全性が高く、電池特性に優れた非水電解液二
次電池を得ることができる。
According to the method of the present invention, the solvent used in the electrolytic solution is 4-trifluoromethyl-1,3-dioxolan-2-one, which is flame-retardant and has self-extinguishing properties, as a main component, and has a chain-like structure. By mixing an appropriate amount of the ester and the cyclic ester, a non-aqueous electrolyte secondary battery having high safety and excellent battery characteristics can be obtained.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1〜42)本発明の電池に使用される電解液の
燃焼性、本発明の電池の安全性及び電池特性を確認する
ために以下に示すような試験を行った。
(Examples 1 to 42) The following tests were conducted to confirm the flammability of the electrolyte used in the battery of the present invention, the safety of the battery of the present invention, and the battery characteristics.

【0015】リチウム塩としてLiPF6 を用い、これ
を表1に記載される各種混合溶媒に溶解してリチウム塩
濃度が1mol/l となる様に電解液を調合した。混合比
は、溶媒の体積比を示す。
LiPF 6 was used as a lithium salt, and was dissolved in various mixed solvents shown in Table 1 to prepare an electrolyte so that the lithium salt concentration was 1 mol / l. The mixing ratio indicates the volume ratio of the solvent.

【0016】[0016]

【表1】 [Table 1]

【0017】なお、表1中、TFPCは4−トリフルオ
ロメチル−1,3−ジオキソラン−2−オンを、ECは
エチレンカーボネートを、PCはプロピレンカーボネー
トを、DMCはジメチルカーボネートを、DECはジエ
チルカーボネートを、MECはメチルエチルカーボネー
トを、MPCはメチルプロピルカーボネートを、MiP
Cはメチルイソプロピルカーボネートをそれぞれ示す。
In Table 1, TFPC is 4-trifluoromethyl-1,3-dioxolan-2-one, EC is ethylene carbonate, PC is propylene carbonate, DMC is dimethyl carbonate, and DEC is diethyl carbonate. , MEC is methyl ethyl carbonate, MPC is methyl propyl carbonate, MiP
C represents methyl isopropyl carbonate, respectively.

【0018】このようにして作製した非水電解液の燃焼
性を試験するために、幅10mm,長さ100mmに切断し
たマニラ麻布に表1に示した電解液をそれぞれ2ccずつ
含浸させ、マニラ麻布の一方の端からライターで着火
し、燃焼の様子を観察した。結果を表2に示す。
In order to test the flammability of the non-aqueous electrolyte prepared in this manner, 2 cc of each of the electrolytes shown in Table 1 was impregnated into Manila linen cut to a width of 10 mm and a length of 100 mm. Was ignited with a lighter from one end, and the state of combustion was observed. Table 2 shows the results.

【0019】また、比較として比較例1〜6に示す体積
比で混合した電解液を作製し、上記方法と同様にマニラ
麻布を用いた燃焼性の試験を行った。結果を表2に示
す。
For comparison, electrolytic solutions mixed at the volume ratios shown in Comparative Examples 1 to 6 were prepared, and a flammability test was performed using Manila linen cloth in the same manner as described above. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】表2の結果からわかるように、4−トリフ
ルオロメチル−1,3−ジオキソラン−2−オンの全溶
媒に対する体積比が60%未満であると、電解液を含浸
したマニラ麻布は全て燃焼したが、60%以上の場合に
は、着火せず電解液の燃焼性を著しく低下させているこ
とが確認できた。
As can be seen from the results in Table 2, when the volume ratio of 4-trifluoromethyl-1,3-dioxolan-2-one to the total solvent is less than 60%, all of the Manila linen impregnated with the electrolytic solution is used. Although it was burned, it was confirmed that when it was 60% or more, it did not ignite and the flammability of the electrolyte was significantly reduced.

【0022】次に、図1に示した構造のAA型電池を作
製し、過充電試験により電池の安全性試験を行った。
Next, an AA type battery having the structure shown in FIG. 1 was fabricated, and a battery safety test was performed by an overcharge test.

【0023】正極活物質としてLiCoO2 粉末,導電
剤としてグラファイト粉末,結着剤としてポリフッ化ビ
ニリデン樹脂,溶媒としてN−メチル−2−ピロリドン
を混合し、スラリー状の正極活物質合剤を得た。このス
ラリーをドクターブレード法により正極集電体として厚
さ20μmのアルミニウム箔の両面に塗布し、乾燥して
厚さ50μmの活物質層を形成し、プレスで圧縮し、真
空オーブン中で熱処理して水分を除去して正極を作製し
た。
LiCoO 2 powder as a positive electrode active material, graphite powder as a conductive agent, polyvinylidene fluoride resin as a binder, and N-methyl-2-pyrrolidone as a solvent were mixed to obtain a slurry of a positive electrode active material mixture. . This slurry was applied to both sides of a 20 μm thick aluminum foil as a positive electrode current collector by a doctor blade method, dried to form an active material layer having a thickness of 50 μm, compressed by a press, and heat-treated in a vacuum oven. Water was removed to produce a positive electrode.

【0024】また、負極活物質として難黒鉛性炭素粉
末,結着剤としてポリフッ化ビニリデン樹脂,溶媒とし
てN−メチル−2−ピロリドンを混合し、スラリー状の
負極活物質合剤を得た。このスラリーをドクターブレー
ド法により負極集電体として厚さ20μmの銅箔の両面
に塗布し、乾燥して厚さ50μmの活物質層を形成し、
プレスで圧縮し、真空オーブン中で熱処理して水分を除
去して負極を作製した。このようにして得られた正極と
負極とをセパレータとして厚さ25μmのポリプロピレ
ン製細孔膜を積層し、巻回することにより渦巻き式電極
体を作製した。この電極体を電池缶6に収納し、ニッケ
ル製負極リード4の一端を負極2に圧着し、他端を電池
缶に溶接した。また、アルミニウム製正極リード3の一
端を正極1に取り付け、他端を電池内圧力に応じて電流
を遮断する電流遮断用薄板11を介して電池蓋に接続し
た。そして、表1に示した組成の各種電解液を注入し、
絶縁封口ガスケット8を介して電池をかしめ、電池蓋7
を固定し非水電解液二次電池を作製した。
Also, a non-graphitizable carbon powder as an anode active material, a polyvinylidene fluoride resin as a binder, and N-methyl-2-pyrrolidone as a solvent were mixed to obtain a slurry-like anode active material mixture. This slurry was applied to both sides of a copper foil having a thickness of 20 μm as a negative electrode current collector by a doctor blade method, and dried to form an active material layer having a thickness of 50 μm.
It was compressed by a press and heat-treated in a vacuum oven to remove water, thereby producing a negative electrode. Using the thus obtained positive electrode and negative electrode as separators, a polypropylene microporous membrane having a thickness of 25 μm was laminated and wound to produce a spiral electrode body. The electrode body was housed in a battery can 6, one end of a nickel negative electrode lead 4 was pressed against the negative electrode 2, and the other end was welded to the battery can. Further, one end of an aluminum positive electrode lead 3 was attached to the positive electrode 1, and the other end was connected to a battery lid via a current interrupting thin plate 11 for interrupting an electric current according to the internal pressure of the battery. Then, various electrolytic solutions having the compositions shown in Table 1 were injected,
The battery is swaged via the insulating sealing gasket 8 and the battery cover 7
Was fixed to produce a non-aqueous electrolyte secondary battery.

【0025】このようにして作製した、非水電解液二次
電池をまず、充電電圧4.2V ,充電電流280mA,
充電時間5時間という条件で充電を行い、続いて放電電
流280mA,放電終止電圧2.8V という条件で放電
を行い動作確認を行った後、充電電流2800mAで過
充電試験を行った。電池の変化の様子及び電池表面の最
高温度を測定した。結果を表3に示す。
The non-aqueous electrolyte secondary battery thus produced was first charged with a charging voltage of 4.2 V, a charging current of 280 mA,
Charging was performed under the condition of a charging time of 5 hours, followed by discharging under the conditions of a discharge current of 280 mA and a discharge end voltage of 2.8 V. After confirming the operation, an overcharge test was performed at a charging current of 2800 mA. The state of the battery change and the maximum temperature of the battery surface were measured. Table 3 shows the results.

【0026】[0026]

【表3】 [Table 3]

【0027】表3からわかるように、4−トリフルオロ
メチル−1,3−ジオキソラン−2−オンの全溶媒に対
する体積比が60%未満であると、過充電時に発火が見
られたのに対し、60%以上であれば過充電時に発火が
見られず、安全な電池を得ることができた。
As can be seen from Table 3, when the volume ratio of 4-trifluoromethyl-1,3-dioxolan-2-one to the total solvent was less than 60%, ignition was observed at the time of overcharging. , 60% or more, no ignition was observed during overcharging, and a safe battery could be obtained.

【0028】また過充電時の電池表面の温度も4−トリ
フルオロメチル−1,3−ジオキソラン−2−オンを含
まない比較例1,5では、電流遮断用薄板が動作して、
電流が遮断された後も温度が急激に上昇し、電池表面の
温度が150℃以上高温になったのに対し、4−トリフ
ルオロメチル−1,3−ジオキソラン−2−オンの全溶
媒に対する体積比が60%以上の場合には過充電時にも
表面温度が100℃を超えることなく安全な電池である
ことがわかる。
Also, in Comparative Examples 1 and 5, in which the temperature of the battery surface during overcharge did not include 4-trifluoromethyl-1,3-dioxolan-2-one, the current interrupting thin plate was operated.
Even after the current was cut off, the temperature rose sharply, and the temperature of the battery surface rose to 150 ° C. or higher, whereas the volume of 4-trifluoromethyl-1,3-dioxolan-2-one relative to the total solvent was increased. When the ratio is 60% or more, it can be seen that the battery is safe without the surface temperature exceeding 100 ° C. even during overcharge.

【0029】次に、正極もしくは負極の単極での特性を
試験するために、図2に示したコイン型電池を作製し、
電池特性の試験を行った。
Next, in order to test the characteristics of the positive electrode or the single electrode of the negative electrode, the coin-type battery shown in FIG.
A test of battery characteristics was performed.

【0030】前記AA型電池を作製するときと同様の方
法で作製したスラリー状の正極活物質合剤をドクターブ
レード法により正極集電体として厚さ20μmのアルミ
ニウム箔の片面に塗布し、乾燥して厚さ50μmの活物
質層を形成し、プレスで圧縮し、真空オーブン中で熱処
理して水分を除去して正極を作製した。
A slurry-like positive electrode active material mixture prepared in the same manner as that for preparing the AA type battery is applied as a positive electrode current collector to one side of a 20 μm thick aluminum foil by a doctor blade method, and dried. Then, an active material layer having a thickness of 50 μm was formed, compressed by a press, and heat-treated in a vacuum oven to remove moisture, thereby producing a positive electrode.

【0031】また、前記AA型電池を作製するときと同
様の方法で作製したのと同様の方法で作製したスラリー
状の負極活物質合剤をドクターブレード法により負極集
電体として厚さ20μmの銅箔の片面に塗布し、乾燥し
て厚さ50μmの活物質層を形成し、プレスで圧縮し、
真空オーブン中で熱処理して水分を除去して負極を作製
した。
A negative electrode active material mixture having a thickness of 20 μm was prepared by a doctor blade method using a slurry-like negative electrode active material mixture prepared by the same method as that for preparing the AA type battery. Coated on one side of copper foil, dried to form a 50 μm thick active material layer, compressed with a press,
A negative electrode was prepared by heat treatment in a vacuum oven to remove moisture.

【0032】このようにして得られた正極もしくは負極
を円形に打ち抜き、内側にあらかじめパッキング17を
装着したステンレス製缶16の底部に、この正極もしく
は負極を挿入し、その上部に円形に打ち抜いた厚さ25
μmのポリプロピレン製細孔膜セパレータ14を重ね、
さらにその上部に、対極として円形に打ち抜いた金属リ
チウムを重ね、表1に示した各電解液を注入し、ステン
レス製蓋15を装着した後電池缶をかしめて封口密閉
し、図2に示したような単極評価用コイン型非水電解液
二次電池を作製した。
The positive electrode or negative electrode thus obtained was punched into a circle, the positive electrode or the negative electrode was inserted into the bottom of a stainless steel can 16 in which a packing 17 was previously mounted, and a circular punch was formed on the top. 25
μm polypropylene microporous membrane separator 14 stacked,
Further, metal lithium punched out in a circular shape as a counter electrode was superimposed on the upper portion, each of the electrolytes shown in Table 1 was injected, a stainless steel lid 15 was attached, and then the battery can was caulked and sealed. Such a coin-type non-aqueous electrolyte secondary battery for unipolar evaluation was produced.

【0033】作製したコイン型二次電池を正極について
は電圧範囲3〜4.2V で、負極については電圧範囲
0.01〜1V で、充放電電流を電極の1cm2 当たりの
電流にして0.5〜1.5mAの範囲の一定電流で充放電
を行い、電池容量を測定した。結果を図3,図4に示
す。なお、図中の相対放電容量とは、充放電時の電流密
度が0.5mA/cm2の時の放電容量を1としたときの当
該電流密度における放電容量を示す。
The prepared coin-type secondary battery has a voltage range of 3 to 4.2 V for the positive electrode and a voltage range of 0.01 to 1 V for the negative electrode, and has a charge / discharge current of 0.1 / cm 2 of the electrode. The battery was charged and discharged at a constant current in the range of 5 to 1.5 mA, and the battery capacity was measured. The results are shown in FIGS. The relative discharge capacity in the figure indicates the discharge capacity at the current density when the current density at the time of charge / discharge is 0.5 mA / cm 2 and the discharge capacity is 1.

【0034】図3,図4からわかるように、4−トリフ
ルオロメチル−1,3−ジオキソラン−2−オンの全溶
媒に対する体積比が90%より多いと充放電電流が高い
場合には電流の低い場合に比べて著しい容量の低下が見
られたが、90%以下では高い充放電電流の場合にも容
量の低下は少なく良好な特性の電池を得ることができ
る。
As can be seen from FIGS. 3 and 4, when the volume ratio of 4-trifluoromethyl-1,3-dioxolan-2-one to the total solvent is more than 90%, the charge / discharge current is high when the charge / discharge current is high. A remarkable decrease in the capacity was observed as compared with the case where the charge / discharge rate was low. However, when the charge / discharge current was 90% or less, a decrease in the capacity was small and a battery having good characteristics could be obtained.

【0035】以上の結果から、電解液に難燃性をもた
せ、かつ良好な電池特性を得るためには、4−トリフル
オロメチル−1,3−ジオキソラン−2−オンの全溶媒
に対する体積比が、60〜90%であることが必要であ
る。
From the above results, the volume ratio of 4-trifluoromethyl-1,3-dioxolan-2-one to the total solvent is required to make the electrolyte solution flame-retardant and obtain good battery characteristics. , 60-90%.

【0036】[0036]

【発明の効果】以上の如く本発明によれば、電解液の主
成分として4−トリフルオロメチル−1,3−ジオキソ
ラン−2−オンを用い、鎖状炭酸エステルを適量混合す
ることにより、安全性に優れ、また、電池特性の良好な
非水電解液二次電池を得ることができる。
As described above, according to the present invention, 4-trifluoromethyl-1,3-dioxolan-2-one is used as a main component of an electrolytic solution, and an appropriate amount of a chain carbonate is mixed, whereby safety is ensured. It is possible to obtain a non-aqueous electrolyte secondary battery having excellent battery characteristics and good battery characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いたAA型非水電解液二次電
池の断面図である。
FIG. 1 is a cross-sectional view of an AA type non-aqueous electrolyte secondary battery used for carrying out the present invention.

【図2】本発明の実施に用いたコイン型非水電解液二次
電池の断面図である。
FIG. 2 is a cross-sectional view of a coin-type non-aqueous electrolyte secondary battery used in carrying out the present invention.

【図3】正極と金属リチウムを対極とするコイン型非水
電解液二次電池の充放電電流と放電容量の関係を示す図
である。
FIG. 3 is a diagram showing the relationship between charge / discharge current and discharge capacity of a coin-type nonaqueous electrolyte secondary battery having a positive electrode and metallic lithium as counter electrodes.

【図4】負極と金属リチウムを対極とするコイン型非水
電解液二次電池の充放電電流と放電容量の関係を示す図
である。
FIG. 4 is a diagram showing the relationship between charge / discharge current and discharge capacity of a coin-type nonaqueous electrolyte secondary battery having a negative electrode and metallic lithium as counter electrodes.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…正極リード、4…負極リー
ド、5,14…セパレータ、6,16…電池缶、7,1
5…電池蓋、8…封口ガスケット、9,10…絶縁板、
11…電流遮断用薄板、12…正極、又は負極、13…
金属リチウム、17…パッキング。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Positive electrode lead, 4 ... Negative electrode lead, 5, 14 ... Separator, 6, 16 ... Battery can, 7, 1
5 ... battery lid, 8 ... sealing gasket, 9, 10 ... insulating plate,
11 ... thin plate for interrupting current, 12 ... positive electrode or negative electrode, 13 ...
Metal lithium, 17 ... packing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気化学的にリチウムを吸蔵・放出できる
材料を活物質とする負極と、電気化学的にリチウムを吸
蔵・放出できる材料を活物質とする正極と、非水溶媒に
電解質としてリチウム塩を溶解した非水電解液とからな
る非水電解液二次電池において、非水電解液が、環状エ
ステルの1種以上と鎖状エステルの1種以上の混合物か
らなり、環状エステルの全溶媒に対する体積比が60〜
90%であり、環状エステルの内の少なくとも1種が4
−トリフルオロメチル−1,3−ジオキソラン−2−オ
ンであり、4−トリフルオロメチル−1,3−ジオキソ
ラン−2−オンの全溶媒に対する体積比が60〜90%
であり、鎖状エステルの全溶媒に対する体積比が10〜
40%であることを特徴とする非水電解液二次電池。
1. A negative electrode using a material capable of electrochemically storing and releasing lithium as an active material, a positive electrode using a material capable of electrochemically storing and releasing lithium as an active material, and lithium as an electrolyte in a non-aqueous solvent. A non-aqueous electrolyte secondary battery comprising a salt-dissolved non-aqueous electrolyte, wherein the non-aqueous electrolyte comprises a mixture of at least one cyclic ester and at least one chain ester, Volume ratio to
90% and at least one of the cyclic esters is 4%
-Trifluoromethyl-1,3-dioxolan-2-one, wherein the volume ratio of 4-trifluoromethyl-1,3-dioxolan-2-one to all solvents is 60 to 90%.
And the volume ratio of the chain ester to the total solvent is 10 to 10.
Non-aqueous electrolyte secondary battery characterized by being 40%.
JP9002637A 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary cell Pending JPH10199567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9002637A JPH10199567A (en) 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9002637A JPH10199567A (en) 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPH10199567A true JPH10199567A (en) 1998-07-31

Family

ID=11534905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9002637A Pending JPH10199567A (en) 1997-01-10 1997-01-10 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPH10199567A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038319A1 (en) * 1999-11-24 2001-05-31 Solvay Fluor Und Derivate Gmbh Dioxolone and its use as electrolytes
WO2005024991A1 (en) * 2003-09-05 2005-03-17 Lg Chem, Ltd. Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
US8367254B2 (en) 2003-09-05 2013-02-05 Lg Chem, Ltd. Electrolyte for a high voltage battery and lithium secondary battery comprising the same
DE102012104567A1 (en) 2012-05-25 2013-11-28 Jacobs University Bremen Ggmbh New bis(trifluorine methyl)-dioxolane-one used as solvent for electrolyte for lithium-based energy storage for lithium-ion secondary battery for portable electronics
JP2017529664A (en) * 2014-08-27 2017-10-05 エイチエスシー コーポレーション Fluoropropylene carbonate-based electrolyte and lithium ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038319A1 (en) * 1999-11-24 2001-05-31 Solvay Fluor Und Derivate Gmbh Dioxolone and its use as electrolytes
WO2005024991A1 (en) * 2003-09-05 2005-03-17 Lg Chem, Ltd. Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
US8158285B2 (en) 2003-09-05 2012-04-17 Lg Chem, Ltd. Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
US8288039B2 (en) 2003-09-05 2012-10-16 Lg Chem, Ltd. Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
US8367254B2 (en) 2003-09-05 2013-02-05 Lg Chem, Ltd. Electrolyte for a high voltage battery and lithium secondary battery comprising the same
US8372549B2 (en) 2003-09-05 2013-02-12 Lg Chem, Ltd. Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
EP2605323A1 (en) 2003-09-05 2013-06-19 LG Chem Ltd. Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
DE102012104567A1 (en) 2012-05-25 2013-11-28 Jacobs University Bremen Ggmbh New bis(trifluorine methyl)-dioxolane-one used as solvent for electrolyte for lithium-based energy storage for lithium-ion secondary battery for portable electronics
JP2017529664A (en) * 2014-08-27 2017-10-05 エイチエスシー コーポレーション Fluoropropylene carbonate-based electrolyte and lithium ion battery

Similar Documents

Publication Publication Date Title
JP4794180B2 (en) Nonaqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH11260401A (en) Nonaqueous electrolyte and nonaqueous electrolyte secodary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JPH11195429A (en) Nonaqueous electrolytic solution secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4149042B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2009238387A (en) Nonaqueous electrolyte secondary battery
JP2009105017A (en) Nonaqueous electrolyte secondary battery
US7422827B2 (en) Nonaqueous electrolyte
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP4794193B2 (en) Nonaqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JPH11176478A (en) Organic electrolyte secondary battery
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
JPH10199567A (en) Nonaqueous electrolyte secondary cell
JP4479045B2 (en) Nonaqueous electrolyte secondary battery
JPH1140195A (en) Nonaqueous electrolyte secondary battery
JP2001196094A (en) Non-aqueous electrolytic secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery