JPH1140195A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1140195A
JPH1140195A JP9193599A JP19359997A JPH1140195A JP H1140195 A JPH1140195 A JP H1140195A JP 9193599 A JP9193599 A JP 9193599A JP 19359997 A JP19359997 A JP 19359997A JP H1140195 A JPH1140195 A JP H1140195A
Authority
JP
Japan
Prior art keywords
carbonate
chain
solvent
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9193599A
Other languages
Japanese (ja)
Inventor
Hideaki Katayama
秀昭 片山
Juichi Arai
寿一 新井
Haruo Akaboshi
晴夫 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9193599A priority Critical patent/JPH1140195A/en
Publication of JPH1140195A publication Critical patent/JPH1140195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution with flame resistance and self-extinguishing property by using a mixed solvent of one or more cyclic esters and one or more chain esters, which are mutually compatible as a nonaqueous solvent and using a halogenated chain carbonate with a specified composition for the chain ester. SOLUTION: This battery comprises a negative electrode and a positive electrode, containing a material which can electrochemically occlude and desorb lithium and a non-aqueous electrolytic substance produced by dissolving a lithium salt as an electrolytic substance in a nonaqueous solvent. The nonaqueous solvent is a mixed solvent containing one or more cyclic esters and one or more chain esters, which are mutually compatible as a nonaqueous solvent, and at least one chain ester is halogenated chain carbonate with a specified composition having a defined formula (wherein n and n' are each 1-3; X is F, C, Br, or I; m+m'=1 to 2(n+n'+1) for the chain ester. The safety of the buttery is high by using a mixture which has such a self-extinguishing property for the solvent in the electrolytic solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係わり、更に詳しくは、過充電等や短絡などによって
も高い安全性を有する非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having high safety against overcharge or short circuit.

【0002】[0002]

【従来の技術】金属リチウムやリチウム合金或いは炭素
材料などの電気化学的にリチウムを吸蔵・放出できる材
料を負極活物質に用い、電気化学的にリチウムを吸蔵・
放出できる材料を正極活物質に用いたリチウム二次電池
が研究開発され、一部が実用化されている。このリチウ
ム二次電池は電池電圧が高く、他の二次電池に比べて重
量及び体積あたりのエネルギー密度が大きいという特徴
を有している。このため携帯電話,ノートパソコン,カ
メラ一体型VTR等の携帯用電子機器の電源として用い
られている。
2. Description of the Related Art A material capable of electrochemically occluding and releasing lithium, such as metallic lithium, a lithium alloy, or a carbon material, is used as a negative electrode active material, and electrochemically occluding and releasing lithium.
Lithium secondary batteries using materials that can be released as positive electrode active materials have been researched and developed, and some of them have been put to practical use. This lithium secondary battery has a feature that the battery voltage is high and the energy density per weight and volume is higher than other secondary batteries. For this reason, it is used as a power source for portable electronic devices such as mobile phones, notebook computers, and camera-integrated VTRs.

【0003】このようなリチウム二次電池においては、
鉛蓄電池,ニッケルカドミウム電池,ニッケル水素電池
といった他の二次電池に用いられているような水溶液系
の電解液はリチウムとの反応が起こるなどの不都合が生
じるために用いることができず、もっぱら有機溶媒にリ
チウム塩を溶解した非水電解液が用いられている。
In such a lithium secondary battery,
Aqueous electrolytes such as those used in other secondary batteries such as lead-acid batteries, nickel-cadmium batteries, and nickel-metal hydride batteries cannot be used due to inconveniences such as reaction with lithium. A non-aqueous electrolyte in which a lithium salt is dissolved in a solvent is used.

【0004】このような非水電解液の例としては、例え
ば特開平2−10666号公報に示されているような、プロピ
レンカーボネートに鎖状炭酸エステルを混合した溶媒に
リチウム塩を溶解したもの、特開平4−162370号公報及
びUSP No.5192629号公報に示されているような、
エチレンカーボネートに鎖状炭酸エステルを混合した溶
媒にリチウム塩を溶解した電解液が知られている。
Examples of such a non-aqueous electrolyte include a solution obtained by dissolving a lithium salt in a solvent obtained by mixing a chain carbonate with propylene carbonate, as described in, for example, JP-A-2-10666. As shown in JP-A-4-162370 and USP No. 5192629,
An electrolytic solution in which a lithium salt is dissolved in a solvent in which a chain carbonate is mixed with ethylene carbonate is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな有機溶媒を用いた電解液は可燃性が高く、過充電時
や何らかの要因で外部短絡もしくは内部短絡を生じた場
合に発火する可能性があり、安全性の向上が要望されて
いる。
However, an electrolytic solution using such an organic solvent is highly flammable, and may be ignited during overcharging or when an external short circuit or an internal short circuit occurs for some reason. There is a demand for improved safety.

【0006】本発明は上記従来の問題点を解決するため
に、非水電解液に難燃性及び自己消火性をもたせ、また
この電解液を用いることによって電池特性を損ねること
のない、安全かつ特性に優れた非水電解液二次電池を提
供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a non-aqueous electrolyte with flame retardancy and self-extinguishing properties. An object is to provide a non-aqueous electrolyte secondary battery having excellent characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、非水電解液二次電池に用いる電解液の溶媒として、
互いに相溶する環状エステルの1種以上と鎖状エステル
の1種以上を含む混合溶媒からなり、かつ鎖状エステル
の少なくとも1種は一般式(1)で示される、ハロゲン
化鎖状カーボネートである溶媒を用いることにより上記
課題を解決した。
In order to achieve the above object, as a solvent for an electrolytic solution used in a non-aqueous electrolyte secondary battery,
It is a mixed solvent containing at least one kind of cyclic ester and at least one kind of chain ester mutually compatible, and at least one kind of chain ester is a halogenated chain carbonate represented by the general formula (1). The above problem was solved by using a solvent.

【0008】[0008]

【化2】 Embedded image

【0009】本発明に用いる、鎖状エステルとしては、
一般式(1)に示した化合物以外にジメチルカーボネー
ト,ジエチルカーボネート,メチルエチルカーボネー
ト,メチルプロピルカーボネート,メチルイソプロピル
カーボネート,メチルブチルカーボネート,エチルプロ
ピルカーボネート,エチルイソプロピルカーボネート,
エチルブチルカーボネート,ジプロピルカーボネート、
ジイソプロピルカーボネート,プロピルブチルカーボネ
ート,ジブチルカーボネートといった鎖状カーボネート
を混合することができる。また、プロピオン酸アルキル
エステル,マロン酸ジアルキルエステル,酢酸アルキル
エステルなどのカルボン酸エステルを混合しても良い。
The chain ester used in the present invention includes:
In addition to the compounds represented by the general formula (1), dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl isopropyl carbonate,
Ethyl butyl carbonate, dipropyl carbonate,
Chain carbonates such as diisopropyl carbonate, propyl butyl carbonate and dibutyl carbonate can be mixed. Further, a carboxylic acid ester such as an alkyl propionate, a dialkyl malonate and an alkyl acetate may be mixed.

【0010】環状エステルとしては、プロピレンカーボ
ネート、エチレンカーボネート、ブチレンカーボネー
ト、γ−ブチロラクトン、ビニレンカーボネート、2−
メチル−γ−ブチロラクトン、アセチル−γ−ブチロラ
クトン、γ−バレロラクトン等の炭化水素系の環状エス
テル、あるいは、クロロエチレンカーボネート、4−ト
リフルオロメチル−1,3−ジオキソラン−2−オン、
ブロモ−γ−ブチロラクトン等のハロゲン化環状エステ
ルを単独もしくは、混合して用いることができる。
As the cyclic ester, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-ene
Hydrocarbon-based cyclic esters such as methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone, or chloroethylene carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one,
Halogenated cyclic esters such as bromo-γ-butyrolactone can be used alone or as a mixture.

【0011】さらに、これら鎖状エステルと環状エステ
ルを含む混合溶媒が互いに相溶することが必要である。
一般式(1)で表される鎖状エステルはハロゲンの数が
多いと、炭化水素系の環状エステルや鎖状エステルなど
との相溶性が悪くなり、相分離を起こす場合があり、電
解液として用いることができない。
Further, it is necessary that the mixed solvent containing the chain ester and the cyclic ester be compatible with each other.
When the number of halogens in the chain ester represented by the general formula (1) is large, the compatibility with a hydrocarbon-based cyclic ester or chain ester is deteriorated, and phase separation may occur. Can not be used.

【0012】更に、電解質として用いられるリチウム塩
としては、上記非水溶媒中で解離し、リチウムイオンを
供給するLiClO4,LiBF4,LiPF6,LiA
sF6,LiF,LiCl,LiBr等の無機リチウム
塩及びLiB(C65)4 ,LiN(SO2CF3)2 ,Li
C(SO2CF3)3 ,LiOSO2CF3 , LiOS
225 ,LiOSO237 ,LiOSO2
49 ,LiOSO2511,LiOSO2613,L
iOSO2715等の有機リチウム塩があるが、無機の
リチウム塩が電解液の難燃性が高く望ましい。その中で
も特にLiPF6 は電池特性,難燃性とも優れるためリ
チウム塩として用いるのに好ましい。
Further, as a lithium salt used as an electrolyte, LiClO 4 , LiBF 4 , LiPF 6 and LiA which dissociate in the above-mentioned non-aqueous solvent and supply lithium ions are used.
Inorganic lithium salts such as sF 6 , LiF, LiCl, LiBr and the like, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , Li
C (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOS
O 2 C 2 F 5 , LiOSO 2 C 3 F 7 , LiOSO 2 C
4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , L
and organic lithium salts such as iOSO 2 C 7 F 15, but lithium salts of inorganic is high and desirable flame retardancy of the electrolyte. Among them, LiPF 6 is particularly preferable for use as a lithium salt because of its excellent battery characteristics and flame retardancy.

【0013】また、負極活物質には、リチウム金属,リ
チウム合金,リチウムを吸蔵・放出できる炭素材料,リ
チウムを吸蔵・放出できる酸化錫化合物等の電気化学的
にリチウムを吸蔵・放出できる材料があるが、その中で
もリチウムを吸蔵・放出できる炭素材料を用いることが
安全性の面から望ましい。リチウムを吸蔵・放出できる
炭素材料は更に詳しくは、グラファイト,易黒鉛性炭
素,難黒鉛性炭素に分類することができるがプロピレン
カーボネート構造を有する化合物を非水電解液の溶媒と
して用いた場合には、電池特性の面から難黒鉛性炭素も
しくは易黒鉛性炭素を用いるか、エチレンカーボネート
構造の溶媒と混合して用いることが望ましい。
The negative electrode active material includes lithium metal, lithium alloy, a carbon material capable of storing and releasing lithium, and a tin oxide compound capable of storing and releasing lithium, and other materials capable of electrochemically storing and releasing lithium. However, among them, it is desirable to use a carbon material capable of inserting and extracting lithium from the viewpoint of safety. More specifically, carbon materials capable of occluding and releasing lithium can be classified into graphite, graphitizable carbon, and non-graphitizable carbon, but when a compound having a propylene carbonate structure is used as a solvent for a non-aqueous electrolyte, From the viewpoint of battery characteristics, it is desirable to use non-graphitizable carbon or graphitizable carbon, or to mix and use a solvent having an ethylene carbonate structure.

【0014】また、正極活物質には例えばLiCo
2 ,LiNiO2 ,LiMnO2 ,LiMn24
のリチウム含有複合酸化物、TiO2 ,MnO2 ,Mo
3 ,V25,TiS2 ,MoS2 等のカルコゲン化合
物等が用いられ、放電電圧が高く、電気化学的安定性の
高い、LiCoO2 ,LiNiO2 ,LiMnO2 等の
α−NaCrO2 構造を有するリチウム化合物やLiM
24等が望ましい。
The positive electrode active material is, for example, LiCo.
Lithium-containing composite oxides such as O 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , TiO 2 , MnO 2 , Mo
Α-NaCrO 2 structure such as LiCoO 2 , LiNiO 2 , LiMnO 2 , which uses a chalcogen compound such as O 3 , V 2 O 5 , TiS 2 , MoS 2 , and has a high discharge voltage and high electrochemical stability Lithium compounds and LiM
n 2 O 4 and the like are desirable.

【0015】即ち、本発明の方法によれば、電解液中に
用いる溶媒として、難燃性で自己消火性を有するハロゲ
ン化鎖状カーボネートと環状エステル,鎖状エステルの
混合物を用いることにより安全性が高く、電池特性に優
れた非水電解液二次電池を得ることができる。
That is, according to the method of the present invention, the use of a mixture of a flame-retardant, self-extinguishing halogenated chain carbonate, a cyclic ester, and a chain ester as a solvent in the electrolytic solution allows the safety to be improved. And a nonaqueous electrolyte secondary battery excellent in battery characteristics can be obtained.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1〜29)本発明の電池に使用される電解液の
燃焼性,本発明の電池の安全性及び電池特性を確認する
ために以下に示すような試験を行った。
(Examples 1 to 29) The following tests were performed to confirm the flammability of the electrolyte used in the battery of the present invention, the safety of the battery of the present invention, and the battery characteristics.

【0017】リチウム塩としてLiPF6 を用い、これ
を表1に記載される各種混合溶媒に溶解してリチウム塩
濃度が1mol/l となる様に電解液を調合した。混合比
は、溶媒の体積比を示す。
LiPF 6 was used as a lithium salt, and was dissolved in various mixed solvents shown in Table 1 to prepare an electrolyte so that the lithium salt concentration was 1 mol / l. The mixing ratio indicates the volume ratio of the solvent.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、表1中、ECはエチレンカーボネー
トを、PCはプロピレンカーボネートを、DMCはジメ
チルカーボネートを、TFMECは2,2,2−トリフ
ルオロエチルメチルカーボネートを、TBMECは2,
2,2−トリブロモエチルメチルカーボネートを、TI
MECは2,2,2−トリアイオドエチルメチルカーボ
ネートを、HFDECは2,2,2,2′,2′,2′
−ヘキサフルオロジエチルカーボネートを、HCDEC
は2,2,2,2′,2′,2′−ヘキサクロロジエチ
ルカーボネートを、DFDECは2,2,2′,2′,
3,3,3,3′,3′,3′−デカフルオロジプロピ
ルカーボネートを、DCDECは2,2′−ジクロロジ
エチルカーボネートを、DBDECは2,2′−ジブロ
モジエチルカーボネートを、1−CDECは1−クロロ
エチル,エチルカーボネートを2−CDECは2−クロ
ロエチルエチルカーボネートをDCDMCは、1,1′
−ジクロロジメチルカーボネートをDBDMCは1,
1′−ジブロモジメチルカーボネートをCDMCはクロ
ロメチルメチルカーボネートを、BDMCはブロモメチ
ルメチルカーボネートをTFPCは4−トリフルオロメ
チル−1,3−ジオキソラン−2−オンを、C1−EC
はクロロエチレンカーボネートをそれぞれ示す。
In Table 1, EC is ethylene carbonate, PC is propylene carbonate, DMC is dimethyl carbonate, TFMEC is 2,2,2-trifluoroethylmethyl carbonate, and TBMEC is 2,
2,2-Tribromoethylmethyl carbonate was added to TI
MEC is 2,2,2-triiodoethyl methyl carbonate, and HFDEC is 2,2,2,2 ', 2', 2 '
-Hexafluorodiethyl carbonate, HCDEC
Is 2,2,2,2 ', 2', 2'-hexachlorodiethyl carbonate, and DFDEC is 2,2,2 ', 2',
3,3,3,3 ', 3', 3'-decafluorodipropyl carbonate, DCDEC is 2,2'-dichlorodiethyl carbonate, DBDEC is 2,2'-dibromodiethyl carbonate, 1-CDEC is 1-chloroethyl, ethyl carbonate and 2-CDEC are 2-chloroethyl ethyl carbonate and DCDMC are 1,1 '
-Dichlorodimethyl carbonate is DBDMC 1,
1'-dibromodimethyl carbonate, CDMC is chloromethyl methyl carbonate, BDMC is bromomethyl methyl carbonate, TFPC is 4-trifluoromethyl-1,3-dioxolan-2-one, C1-EC
Represents chloroethylene carbonate, respectively.

【0020】次に、図1に示した構造の直径18mm,長
さ650mmの円筒型電池を作製し、充放電による容量測
定と過充電試験による電池の安全性試験を行った。
Next, a cylindrical battery having a diameter of 18 mm and a length of 650 mm having the structure shown in FIG. 1 was manufactured, and a capacity measurement by charging / discharging and a safety test of the battery by an overcharge test were performed.

【0021】正極活物質としてLiCoO2 粉末,導電
剤としてグラファイト粉末,結着剤としてポリフッ化ビ
ニリデン樹脂,溶媒としてN−メチル−2−ピロリドン
を混合し、スラリー状の正極活物質合剤を得た。このス
ラリーをドクターブレード法により正極集電体として厚
さ20μmのアルミニウム箔の両面に塗布し、乾燥して
厚さ50μmの活物質層を形成し、プレスで圧縮し、真
空オーブン中で熱処理して水分を除去して正極を作製し
た。
LiCoO 2 powder as a cathode active material, graphite powder as a conductive agent, polyvinylidene fluoride resin as a binder, and N-methyl-2-pyrrolidone as a solvent were mixed to obtain a slurry-like cathode active material mixture. . This slurry was applied to both sides of a 20 μm thick aluminum foil as a positive electrode current collector by a doctor blade method, dried to form an active material layer having a thickness of 50 μm, compressed by a press, and heat-treated in a vacuum oven. Water was removed to produce a positive electrode.

【0022】また、負極活物質として難黒鉛性炭素粉
末,結着剤としてポリフッ化ビニリデン樹脂,溶媒とし
てN−メチル−2−ピロリドンを混合し、スラリー状の
負極活物質合剤を得た。このスラリーをドクターブレー
ド法により負極集電体として厚さ20μmの銅箔の両面
に塗布し、乾燥して厚さ50μmの活物質層を形成し、
プレスで圧縮し、真空オーブン中で熱処理して水分を除
去して負極を作製した。このようにして得られた正極と
負極とセパレータとして厚さ25μmのポリプロピレン
製細孔膜を積層し、巻回することにより渦巻き式電極体
を作製した。この電極体を電池缶6に収納し、ニッケル
製の負極リード4の一端を負極2に圧着し、他端を電池
缶に溶接した。また、アルミニウム製の正極リード3の
一端を正極1に取り付け、他端を電池内圧力に応じて電
流を遮断する電流遮断用薄板11を介して電池蓋に接続
した。そして、表1に示した組成の各種電解液を注入
し、絶縁性の封口ガスケット8を介して電池をかしめ、
電池蓋7を固定し非水電解液二次電池を作製した。
Also, a non-graphitizable carbon powder as a negative electrode active material, polyvinylidene fluoride resin as a binder, and N-methyl-2-pyrrolidone as a solvent were mixed to obtain a slurry of a negative electrode active material mixture. This slurry was applied to both sides of a copper foil having a thickness of 20 μm as a negative electrode current collector by a doctor blade method, and dried to form an active material layer having a thickness of 50 μm.
It was compressed by a press and heat-treated in a vacuum oven to remove water, thereby producing a negative electrode. The thus obtained positive electrode, negative electrode, and a polypropylene microporous membrane having a thickness of 25 μm as a separator were laminated and wound to produce a spiral electrode body. The electrode body was housed in a battery can 6, one end of a nickel negative electrode lead 4 was pressed against the negative electrode 2, and the other end was welded to the battery can. Also, one end of a positive electrode lead 3 made of aluminum was attached to the positive electrode 1, and the other end was connected to the battery lid via a current interrupting thin plate 11 for interrupting current according to the internal pressure of the battery. Then, various electrolytic solutions having the compositions shown in Table 1 were injected, and the battery was caulked through an insulating sealing gasket 8.
The battery cover 7 was fixed to produce a non-aqueous electrolyte secondary battery.

【0023】このようにして作製した、非水電解液二次
電池の容量測定を行った。充電電流280mA,充電電
圧4.2V の定電流定電圧充電,放電電流280mA,
放電終止電圧2.5V の定電流放電で充放電を3回行い
容量測定を行い、3回目の放電容量をその電池の容量と
した。結果を表2に示す。
The capacity of the thus prepared non-aqueous electrolyte secondary battery was measured. A charging current of 280 mA, a charging current of 4.2 V, a constant current constant voltage charging and a discharging current of 280 mA,
Charge / discharge was performed three times with constant current discharge at a discharge end voltage of 2.5 V, capacity measurement was performed, and the third discharge capacity was defined as the capacity of the battery. Table 2 shows the results.

【0024】次に、充電電流2800mAで過充電試験
を行い、電池の変化の様子及び電池表面の最高温度を測
定した。結果を表2に示す。
Next, an overcharge test was performed at a charging current of 2800 mA to measure the state of change of the battery and the maximum temperature of the battery surface. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】表2からわかるように、ハロゲン化鎖状カ
ーボネートを含む電解液を用いた電池は過充電時に発火
が見られず、安全な電池を得ることができた。
As can be seen from Table 2, the battery using the electrolyte containing the halogenated chain carbonate did not show ignition at the time of overcharging, and a safe battery was obtained.

【0027】また、過充電時の電池表面の温度もハロゲ
ン化鎖状カーボネートを含まない比較例1では、電流遮
断用薄板が動作して、電流が遮断された後も温度が急激
に上昇し、電池表面の温度が150℃以上の高温になっ
たのに対し、実施例1〜29の場合には過充電時にも表
面温度が80℃を超えることなく安全な電池であること
がわかる。
Also, in Comparative Example 1 in which the temperature of the battery surface during overcharge did not include the halogenated chain carbonate, the current interrupting thin plate was operated, and the temperature rapidly increased even after the current was interrupted. While the surface temperature of the battery was increased to 150 ° C. or higher, in Examples 1 to 29, it was found that the battery was safe without the surface temperature exceeding 80 ° C. even during overcharge.

【0028】[0028]

【発明の効果】以上の如く本発明によれば、電解液に互
いに相溶する環状エステルの1種以上と鎖状エステルの
1種以上の混合物からなり、鎖状エステルの少なくとも
1種は一般式(1)で示される、ハロゲン化鎖状カーボ
ネートである溶媒にリチウム塩を溶解した電解液を用い
ることにより、安全性に優れ、また、電池特性の良好な
非水電解液二次電池を得ることができる。
As described above, according to the present invention, a mixture of at least one kind of cyclic ester and at least one kind of chain ester compatible with each other in the electrolytic solution, wherein at least one kind of the chain ester is represented by the general formula: The use of an electrolyte in which a lithium salt is dissolved in a solvent which is a halogenated chain carbonate as shown in (1) to obtain a non-aqueous electrolyte secondary battery having excellent safety and good battery characteristics. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いた円筒型非水電解液二次電
池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical non-aqueous electrolyte secondary battery used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…正極リード、4…負極リー
ド、5…セパレータ、6…電池缶、7…電池蓋、8…封
口ガスケット、9,10…絶縁板、11…電流遮断用薄
板。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Positive electrode lead, 4 ... Negative electrode lead, 5 ... Separator, 6 ... Battery can, 7 ... Battery lid, 8 ... Sealing gasket, 9,10 ... Insulating plate, 11 ... Current interrupting thin plate .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気化学的にリチウムを吸蔵・放出できる
材料を用いた負極と、電気化学的にリチウムを吸蔵・放
出できる材料を用いた正極と、非水溶媒に電解質として
リチウム塩を溶解した非水電解液とからなる非水電解液
二次電池において、非水溶媒が、環状エステルの1種以
上と鎖状エステルの1種以上を含む混合溶媒からなり、
かつ混合溶媒が互いに相溶し、かつ鎖状エステルの少な
くとも1種は一般式(1)で示される、ハロゲン化鎖状
カーボネートであることを特徴とする非水電解液二次電
池。 【化1】
1. A negative electrode using a material capable of electrochemically storing and releasing lithium, a positive electrode using a material capable of electrochemically storing and releasing lithium, and a lithium salt dissolved as an electrolyte in a non-aqueous solvent. In a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, the non-aqueous solvent comprises a mixed solvent containing at least one cyclic ester and at least one chain ester,
A non-aqueous electrolyte secondary battery characterized in that the mixed solvents are mutually compatible and at least one of the chain esters is a halogenated chain carbonate represented by the general formula (1). Embedded image
JP9193599A 1997-07-18 1997-07-18 Nonaqueous electrolyte secondary battery Pending JPH1140195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193599A JPH1140195A (en) 1997-07-18 1997-07-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9193599A JPH1140195A (en) 1997-07-18 1997-07-18 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1140195A true JPH1140195A (en) 1999-02-12

Family

ID=16310640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193599A Pending JPH1140195A (en) 1997-07-18 1997-07-18 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1140195A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511073A (en) * 2000-10-05 2004-04-08 エイイーエイ テクノロジー バッテリー システムズ リミテッド Electrolyte for secondary batteries
JP2008084772A (en) * 2006-09-28 2008-04-10 Fdk Corp Lithium secondary battery
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
WO2013157504A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
DE112016004508T5 (en) 2015-10-01 2018-07-12 Ube Industries, Ltd. A nonaqueous electrolyte solution for a lithium secondary battery or a lithium ion capacitor, and a lithium secondary battery or a lithium ion capacitor using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511073A (en) * 2000-10-05 2004-04-08 エイイーエイ テクノロジー バッテリー システムズ リミテッド Electrolyte for secondary batteries
JP2008084772A (en) * 2006-09-28 2008-04-10 Fdk Corp Lithium secondary battery
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
US9406977B2 (en) 2006-12-20 2016-08-02 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
WO2013157504A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JPWO2013157503A1 (en) * 2012-04-17 2015-12-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JPWO2013157504A1 (en) * 2012-04-17 2015-12-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US9570778B2 (en) 2012-04-17 2017-02-14 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US9806378B2 (en) 2012-04-17 2017-10-31 Daikin Industries, Ltd. Electrolytic solution containing mixture of fluorinated chain carbonates, electrochemical device, lithium ion secondary battery and module
DE112016004508T5 (en) 2015-10-01 2018-07-12 Ube Industries, Ltd. A nonaqueous electrolyte solution for a lithium secondary battery or a lithium ion capacitor, and a lithium secondary battery or a lithium ion capacitor using the same
US10868336B2 (en) 2015-10-01 2020-12-15 Ube Industries, Ltd. Non-aqueous electrolytic solution for lithium secondary battery or lithium ion capacitor, and lithium secondary battery or lithium ion capacitor using the same

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
US8338030B2 (en) Non-aqueous electrolyte secondary battery
US7745057B2 (en) Nonaqueous electrolyte secondary battery
JP5058538B2 (en) Lithium ion secondary battery
JP2006108092A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing this
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JPH11195429A (en) Nonaqueous electrolytic solution secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP2000021412A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2009129721A (en) Non-aqueous secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH10154528A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2008091041A (en) Nonaqueous secondary battery
JP4149042B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JPH1140195A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3368446B2 (en) Lithium secondary battery
JPH1140199A (en) Lithium secondary battery
JPH10199567A (en) Nonaqueous electrolyte secondary cell
JP2000323171A (en) Nonaqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6