JPH11176478A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH11176478A
JPH11176478A JP9363525A JP36352597A JPH11176478A JP H11176478 A JPH11176478 A JP H11176478A JP 9363525 A JP9363525 A JP 9363525A JP 36352597 A JP36352597 A JP 36352597A JP H11176478 A JPH11176478 A JP H11176478A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
active material
positive electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9363525A
Other languages
Japanese (ja)
Other versions
JP3988901B2 (en
Inventor
Minako Iwasaki
美奈子 岩崎
Hideaki Yumiba
秀章 弓場
Fusaji Kita
房次 喜多
Kazunobu Matsumoto
和伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP36352597A priority Critical patent/JP3988901B2/en
Publication of JPH11176478A publication Critical patent/JPH11176478A/en
Application granted granted Critical
Publication of JP3988901B2 publication Critical patent/JP3988901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte secondary battery of high safety, even with high capacity. SOLUTION: In an organic electrolyte secondary battery comprising a positive electrode 1 having active material including painted film 2b at least on one surface of a positive electrode collector 1a comprising metal foil, and a negative electrode 2 having active material including painted film on at least one surface of a negative electrode collector 2a comprising metal foil wound through a separator to form a winding structure electrode body contained in a battery can 5, a part of only the positive electrode collector 1a without having the active material including painted film 2b is provided at least at the outermost circumferential part of the negative electrode in the winding structure electrode body, and the positive electrode collector 1a and the negative electrode collector 2a are disposed via the separator at the part. The battery is suitable for a fully charged negative electrode charge/discharge capacity of 96 mAh/cm<3> or more per unit volume of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池に関するものであり、さらに詳しくは、安全性を確保
するための特定の構造を有する有機電解液二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery, and more particularly, to an organic electrolyte secondary battery having a specific structure for ensuring safety.

【0002】[0002]

【従来の技術】有機電解液二次電池は電解液の溶媒とし
て有機溶媒を用いた二次電池であり、この有機電解液二
次電池は、容量が大きく、かつ高電圧、高エネルギー密
度、高出力であることから、ますます需要が増える傾向
にある。
2. Description of the Related Art An organic electrolyte secondary battery is a secondary battery using an organic solvent as a solvent of the electrolyte. The organic electrolyte secondary battery has a large capacity, a high voltage, a high energy density, and a high capacity. Because of the output, the demand tends to increase more and more.

【0003】そして、この電池の有機電解液(以下、電
池を表すとき以外は、単に「電解液」という)の溶媒と
しては、これまで、エチレンカーボネートなどの環状エ
ステルやそれにジメチルカーボネート、プロピオン酸メ
チルなどのエステルを混合したものが用いられてきた。
[0003] As a solvent for an organic electrolytic solution of this battery (hereinafter, simply referred to as "electrolytic solution" except when the battery is referred to), a cyclic ester such as ethylene carbonate, dimethyl carbonate, methyl propionate and the like have hitherto been used. A mixture of such esters has been used.

【0004】しかしながら、本発明者らの検討によれ
ば、この有機電解液二次電池は、今後さらに高容量化を
図った場合やユーザーから要求される仕様によっては、
電池の構造についてさらに工夫をしていかないと、安全
性が低下するおそれのあることが判明した。これを詳し
く説明すると、通常、この種の電池では、保護回路など
で過充電を防止することによって内部短絡を起こさない
ようにする対策がとられているし、また通常の内部短絡
では電池が発熱するだけで異常事態には至らないように
されているが、異常使用を想定して釘刺し試験を行って
みたところ、安全性に欠ける場合のあることが判明し
た。すなわち、釘刺し試験では、電池の圧壊や外部短絡
に比べて少ない部分で電池を確実に短絡させるので、短
絡部位に電流が集中し、より発熱しやすくなり、電池が
部分的に急速に高温になりやすいため、セパレータのフ
ューズ(溶融による目づまり)のばらつきが生じやす
く、また短絡部位での電解液と負極との反応による発熱
が多くなるので、この釘刺し試験は通常の使用条件では
生じ得ないような安全性の欠如も見出し得るほどに苛酷
な安全性確認試験である。従って、この釘刺し試験で安
全性が確認できれば、異常使用に遭遇した場合でも安全
性が確保されるものと考えられる。
However, according to the study of the present inventors, this organic electrolyte secondary battery may be used in a case where the capacity is further increased in the future or depending on the specifications required by the user.
It has been found that the safety may be reduced unless the battery structure is further devised. To explain this in more detail, in this type of battery, measures are usually taken to prevent an internal short circuit by preventing overcharge with a protection circuit, etc. However, when a nail penetration test was performed assuming an abnormal use, it was found that safety was sometimes lacking. That is, in the nail penetration test, the battery is surely short-circuited in a small portion compared to the crushing of the battery or external short-circuit, so that the current is concentrated on the short-circuited portion, the heat is more likely to be generated, and the battery is partially heated to a high temperature rapidly. The nail penetration test can occur under normal operating conditions because the fuse tends to fluctuate (clogging due to melting) and the heat generated by the reaction between the electrolyte and the negative electrode at the short-circuit site increases. This is a severe safety confirmation test that can find any lack of safety. Therefore, if the safety can be confirmed by this nail penetration test, it is considered that the safety is ensured even when an abnormal use is encountered.

【0005】また、釘刺し試験は室温で行うよりも45
℃の高温状態で行う方が、電池がより高温にまで上昇し
やすく、電池の熱暴走反応が生じやすい。さらに、1/
2釘刺しのように、釘を電池の途中で止める方が、短絡
部分が少なくなり電流がより集中して発熱しやすい。従
って、この釘刺し試験を45℃で行い、1/2釘刺しに
すると、安全性を確認するための試験として非常に苛酷
な試験となり、そのような苛酷な条件下の試験で安全性
が確認できれば、実使用で充分な安全性が確保できるも
のと考えられる。
[0005] Also, the nail piercing test is 45 times longer than performed at room temperature.
When performed at a high temperature of ℃, the battery easily rises to a higher temperature, and a thermal runaway reaction of the battery is more likely to occur. Furthermore, 1 /
(2) When the nail is stopped in the middle of the battery as in the case of nail penetration, the short-circuit portion is reduced, the current is more concentrated, and heat is easily generated. Therefore, when this nail penetration test is performed at 45 ° C. and a 1/2 nail penetration is performed, it is a very severe test as a test for confirming safety, and the safety is confirmed by a test under such severe conditions. If possible, it is considered that sufficient safety can be ensured by actual use.

【0006】[0006]

【発明が解決しようとする課題】ところで、カーボンな
どのリチウムを脱挿入できる化合物を負極活物質として
用いた場合、金属リチウムを用いる場合よりも高温での
電解液との反応性がはるかに低下し、電池の安全性が改
善される。しかし、最近の高容量化への流れにより電池
のエネルギー密度は今後ますます高くなる傾向にあるた
め、苛酷な安全性確認試験である釘刺し試験においても
優れた安全性を示し得るようにしておくことが必要であ
り、そのためには電池の内部構造を発火しにくい構造に
変更しておくことが必要であることがわかってきた。
By the way, when a compound capable of deintercalating lithium such as carbon is used as a negative electrode active material, reactivity with an electrolytic solution at a high temperature is much lower than when metal lithium is used. , Battery safety is improved. However, due to the recent trend toward higher capacity, the energy density of batteries tends to be higher and higher in the future, so that it is necessary to be able to show excellent safety even in the nail penetration test which is a severe safety confirmation test. It has been found that it is necessary to change the internal structure of the battery to a structure that does not easily ignite.

【0007】従って、本発明は、今後の高容量化に備
え、苛酷な安全性確認試験である釘刺し試験においても
充分に安全性が確認できるように電池の構造を改良し、
安全性の優れた有機電解液二次電池を提供することを目
的とする。
Accordingly, the present invention is to improve the battery structure so that the safety can be sufficiently confirmed even in a nail penetration test, which is a severe safety confirmation test, in preparation for a future increase in capacity.
An object is to provide an organic electrolyte secondary battery having excellent safety.

【0008】[0008]

【課題を解決するための手段】本発明は、金属箔からな
る正極集電体の少なくとも一方の面に活物質含有塗膜を
形成してなる正極と、金属箔からなる負極集電体の少な
くとも一方の面に活物質含有塗膜を形成してなる負極と
を、セパレータを介して巻回した巻回構造の電極体を電
池缶に収容してなる有機電解液二次電池において、上記
巻回構造の電極体における正極の少なくとも最外周部に
活物質含有塗膜を形成せず正極集電体のみの部分を設
け、かつ上記巻回構造の電極体における負極の少なくと
も最外周部に活物質含有塗膜を形成せず負極集電体のみ
の部分を設け、上記部分の正極集電体と負極集電体とを
セパレータを介して配置させることによって、上記課題
を解決したものである。
SUMMARY OF THE INVENTION The present invention provides a positive electrode current collector made of a metal foil and a positive electrode having an active material-containing coating film formed on at least one surface thereof, and at least one of a negative electrode current collector made of a metal foil. In the organic electrolytic solution secondary battery in which a negative electrode having an active material-containing coating film formed on one surface thereof is wound through a separator and an electrode body having a wound structure is housed in a battery can, At least the outermost part of the positive electrode of the positive electrode in the electrode body of the structure is provided with a portion of only the positive electrode current collector without forming an active material-containing coating film, and at least the outermost part of the negative electrode of the wound electrode body contains the active material. The object has been achieved by providing a portion of only the negative electrode current collector without forming a coating film, and disposing the positive electrode current collector and the negative electrode current collector in the above portions via a separator.

【0009】以下、本発明を完成するに至った経過およ
び上記構成にすることによって安全性を向上させること
ができる理由を詳細に説明する。
Hereinafter, the progress of completing the present invention and the reason why the above configuration can improve safety will be described in detail.

【0010】一般に現在の有機電解液二次電池の巻回構
造の電極体は、正極集電体となるアルミニウム箔の両面
に活物質含有塗膜を形成したシート状の正極と、負極集
電体となる銅箔の両面に活物質含有塗膜を形成したシー
ト状の負極と2枚のセパレータとを、負極、セパレー
タ、正極、セパレータの順に積み重ね、負極が正極より
外周側になるように渦巻状に巻回したものである。
In general, a current wound electrode body of an organic electrolyte secondary battery includes a sheet-shaped positive electrode having an active material-containing coating film formed on both sides of an aluminum foil serving as a positive electrode current collector, and a negative electrode current collector. A negative electrode in the form of a sheet in which an active material-containing coating film is formed on both sides of a copper foil and two separators are stacked in the order of a negative electrode, a separator, a positive electrode, and a separator. It is wound around.

【0011】本発明者らは、有機電解液二次電池として
最も普及しているリチウムイオン二次電池を入手し、釘
刺し試験を行ったところ、通常の市販のリチウムイオン
二次電池では危険性が低いのに対し、電池のエネルギー
密度を上げていくと危険性が高くなっていくことが判明
した。これらの電池の負極には通常炭素材料などのリチ
ウムを脱挿入できる化合物が使用されているが、負極が
過充電されてリチウムが多少でも電着した場合、約10
0℃付近から電解液と電着リチウムやリチウムが挿入さ
れた炭素材料との間で発熱反応が生じる。
The present inventors have obtained a lithium-ion secondary battery which is most widely used as an organic electrolyte secondary battery, and conducted a nail penetration test. However, it was found that the danger increased as the energy density of the battery increased. For the negative electrode of these batteries, a compound such as a carbon material that can insert and remove lithium is usually used. However, when the negative electrode is overcharged and lithium is electrodeposited to some extent, about 10% is used.
From around 0 ° C., an exothermic reaction occurs between the electrolytic solution and electrodeposited lithium or a carbon material into which lithium is inserted.

【0012】また、正極でも、リチウムが脱離すること
によって、電解液との反応開始温度が低くなり、負極の
反応熱により正極の熱暴走温度に達すると、電池は異常
発熱を起こす。このような連続反応を伴う発熱現象があ
るため、通常使用条件での電池の負極の充放電可能な容
量が電池の単位体積あたり96mAh/cm3 (満充電
において)を越えた場合には、電池が過充電された時の
安全性が低下する。つまり、負極の単位体積あたりの放
電可能な容量が多いほど、過充電時に発熱が生じた場合
に電池の単位体積あたりの発熱量が多くなり、電池温度
が正極の熱暴走温度にまで上昇する可能性が高くなる。
従って、本発明では、負極の単位体積あたりの容量が大
きい電池において、負極と電解液との発熱反応が生じた
場合でも、その発熱によって電池の温度が正極の熱暴走
反応にまで上昇しないように電池の構造を改良して、負
極の単位体積当たりの容量が大きい高容量の電池でも、
充分な安全性を確保できるようにしたのである。
Also, in the positive electrode, the desorption of lithium lowers the temperature at which the reaction with the electrolytic solution starts, and when the heat of reaction of the negative electrode reaches the thermal runaway temperature of the positive electrode, the battery generates abnormal heat. Due to such an exothermic phenomenon accompanied by a continuous reaction, if the chargeable / dischargeable capacity of the negative electrode of the battery under normal use conditions exceeds 96 mAh / cm 3 (at full charge) per unit volume of the battery, the battery The safety when overcharged is reduced. In other words, the greater the dischargeable capacity per unit volume of the negative electrode, the greater the amount of heat generated per unit volume of the battery if heat is generated during overcharge, and the battery temperature may rise to the thermal runaway temperature of the positive electrode The nature becomes high.
Therefore, in the present invention, in a battery having a large capacity per unit volume of the negative electrode, even when an exothermic reaction occurs between the negative electrode and the electrolytic solution, the temperature of the battery is not increased by the heat generation to a thermal runaway reaction of the positive electrode. By improving the structure of the battery, even a high-capacity battery with a large capacity per unit volume of the negative electrode,
It was made possible to ensure sufficient safety.

【0013】本発明において、巻回構造の電極体におけ
る正極の少なくとも最外周部に活物質含有塗膜を形成せ
ずに正極集電体のみの部分を設け、かつ巻回構造の電極
体における負極の少なくとも最外周部に活物質含有塗膜
を形成せずに負極集電体のみの部分を設け、上記部分の
正極集電体と負極集電体とをセパレータを介して配置さ
せることによって安全性を向上させることができる理由
は、現在のところ必ずしも明確でないが、次のように考
えられる。
[0013] In the present invention, at least the outermost portion of the positive electrode in the wound electrode body is provided with only the positive electrode current collector without forming an active material-containing coating film, and the negative electrode in the wound electrode body is provided. By providing a portion of only the negative electrode current collector without forming an active material-containing coating film on at least the outermost peripheral portion, and by arranging the positive electrode current collector and the negative electrode current collector of the above portion via a separator, safety is improved. The reason why can be improved is not always clear at present, but it is considered as follows.

【0014】前記のように、負極活物質として炭素材料
のようなリチウムを脱挿入できる化合物を用いることに
よって、電解液と負極との高温での反応性は負極活物質
としてリチウムを用いていた場合よりも低くなっている
が、負極の充放電可能な容量が増えることにより電解液
との反応性が増加して、発熱量が多くなり、電池の温度
が上昇しやすくなる。しかし、巻回構造の電極体におけ
る正極および負極のそれぞれの少なくとも最外周部に活
物質含有塗膜を形成せず正極集電体と負極集電体の部分
のみを設けておくと、それらの集電体のみの部分によっ
て放熱が早くなり、正極が熱暴走温度に達しにくくなっ
て、電池が異常発熱を起こしにくくなり、電池の安全性
が向上する。
As described above, by using a compound capable of deintercalating lithium such as a carbon material as the negative electrode active material, the reactivity between the electrolyte and the negative electrode at a high temperature can be improved when lithium is used as the negative electrode active material. However, when the chargeable / dischargeable capacity of the negative electrode increases, the reactivity with the electrolytic solution increases, the calorific value increases, and the battery temperature easily rises. However, if the active material-containing coating film is not formed on at least the outermost peripheral portions of each of the positive electrode and the negative electrode in the wound electrode body, and only the positive electrode current collector and the negative electrode current collector are provided, the collector The heat release is accelerated by the portion of the electric body alone, the positive electrode hardly reaches the thermal runaway temperature, the battery hardly generates abnormal heat, and the safety of the battery is improved.

【0015】[0015]

【発明の実施の形態】上記のように、巻回構造の電極体
における正極と負極のそれぞれの最外周部に設ける正極
集電体と負極集電体のみの部分は、巻回構造の電極体に
おいて1周以上であることが好ましく、また2周以下で
あることが好ましい。すなわち、上記のような正極集電
体と負極集電体のみの部分を1周以上にすることによっ
て、放熱を早くし、電池の安全性を充分に向上させるこ
とができ、また、それらの集電体のみの部分を2周以下
にすることによって、電池のエネルギー密度の大幅な低
下を防止することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in the wound electrode body, only the positive electrode current collector and the negative electrode current collector provided at the outermost peripheral portions of the positive electrode and the negative electrode, respectively, are the wound electrode body. Is preferably one or more rounds, and more preferably two or less rounds. That is, by making the portion of only the positive electrode current collector and the negative electrode current collector one or more times as described above, heat radiation can be accelerated, and the safety of the battery can be sufficiently improved. By setting the portion including only the electric conductor to two or less turns, it is possible to prevent a significant decrease in the energy density of the battery.

【0016】また、巻回構造の電極体の最外周部におけ
るセパレータをなくすと、負極集電体が直接電池缶の内
壁と接触することになって放熱がより早くなり、電池の
安全性を向上させる効果がより一層顕著に発現する。
Further, if the separator at the outermost periphery of the wound electrode body is eliminated, the negative electrode current collector comes into direct contact with the inner wall of the battery can, so that heat is released more quickly and the safety of the battery is improved. The effect of this is more remarkably exhibited.

【0017】本発明において、正極活物質としては、特
に限定されることはないが、たとえばLiCoO2 など
のリチウムコバルト酸化物、LiMn2 4 などのリチ
ウムマンガン酸化物、LiNiO2 などのリチウムニッ
ケル酸化物、二酸化マンガン、五酸化バナジウム、クロ
ム酸化物などの金属酸化物または二硫化チタン、二硫化
モリブデンなどの金属硫化物などが用いられる。
In the present invention, the cathode active material is not particularly limited. For example, lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMn 2 O 4, and lithium nickel oxide such as LiNiO 2 Oxides, metal oxides such as manganese dioxide, vanadium pentoxide, and chromium oxide; and metal sulfides such as titanium disulfide and molybdenum disulfide.

【0018】特に正極活物質としてLiNiO2 、Li
CoO2 、LiMn2 4 などの充電時の開路電圧がL
i基準で4V以上を示すリチウム複合酸化物を用いる場
合には、高エネルギー密度が得られるので好ましい。ま
た、充電したLiCoO2 やLiNiO2 は電解液との
反応開始温度がLiMn2 4 などより低く、負極の発
熱によって正極の熱暴走温度に達しやすいので、正極活
物質としてLiCoO2 やLiNiO2 を用いる場合に
は、本発明の効果が特に顕著に発現する。
Particularly, as the positive electrode active material, LiNiO 2 , Li
The open circuit voltage during charging of CoO 2 , LiMn 2 O 4, etc. is L
It is preferable to use a lithium composite oxide exhibiting 4 V or more on the basis of i because a high energy density can be obtained. Moreover, LiCoO 2 and LiNiO 2 was charged reaction starting temperature of the electrolyte is lower than such LiMn 2 O 4, since easily reached thermal runaway temperature of the positive electrode due to heat generation of the negative electrode, a LiCoO 2 and LiNiO 2 as a positive electrode active material When used, the effects of the present invention are particularly pronounced.

【0019】そして、正極は、たとえば、上記の正極活
物質にたとえば鱗片状黒鉛やカーボンブラックなどの導
電助剤や、たとえばポリフッ化ビニリデンやポリテトラ
フルオロエチレンなどの結着剤などを適宜添加し、溶剤
で塗材化した活物質含有塗材をアルミニウム箔などの金
属箔からなる正極集電体に塗布し、乾燥して、活物質含
有塗膜を形成することによって作製される。ただし、本
発明においては、前記のように巻回構造の電極体におい
て正極の少なくとも最外周部となる部分には活物質含有
塗膜を形成せず正極集電体のみの部分を残しておく。
For the positive electrode, for example, a conductive additive such as flake graphite or carbon black, or a binder such as polyvinylidene fluoride or polytetrafluoroethylene is appropriately added to the above-mentioned positive electrode active material, for example. The active material-containing coating material formed into a coating material with a solvent is applied to a positive electrode current collector made of a metal foil such as an aluminum foil and dried to form an active material-containing coating film. However, in the present invention, the active material-containing coating film is not formed on at least the outermost portion of the positive electrode in the wound electrode body as described above, and only the positive electrode current collector is left.

【0020】本発明において、負極に用いる材料として
は、リチウムイオンをドープ、脱ドープできるものであ
ればよく、本発明においては、そのようなリチウムイオ
ンをドープ、脱ドープできる物質を負極活物質という。
そして、この負極活物質としては、特に限定されること
はないが、たとえば、黒鉛、熱分解炭素類、コークス
類、ガラス状炭素類、有機高分子化合物の焼成体、メソ
カーボンマイクロビーズ、炭素繊維、活性炭などの炭素
材料、Si、Sn、Inなどの合金、またはLiに近い
低電位で充放電できるSi、Sn、Inなどの酸化物な
どを用いるのが好ましい。
In the present invention, the material used for the negative electrode may be any material capable of doping and undoping lithium ions. In the present invention, such a material capable of doping and undoping lithium ions is referred to as a negative electrode active material. .
The negative electrode active material is not particularly limited. For example, graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers It is preferable to use a carbon material such as activated carbon, an alloy such as Si, Sn, or In, or an oxide such as Si, Sn, or In that can be charged and discharged at a low potential close to Li.

【0021】負極活物質として炭素材料を用いる場合、
該炭素材料としては下記の特性を持つものが好ましい。
すなわち、その(002)面の層間距離d002 は、3.
5Å以下が好ましく、より好ましくは3.45Å以下、
さらに好ましくは3.4Å以下である。また、c軸方向
の結晶子の大きさLcは、30Å以上が好ましく、より
好ましくは80Å以上、さらに好ましくは250Å以上
である。そして、平均粒径は8〜15μm、特に10〜
13μmが好ましく、純度は99.9%以上が好まし
い。
When a carbon material is used as the negative electrode active material,
The carbon material preferably has the following characteristics.
That is, the interlayer distance d 002 of the (002) plane is 3.
5 ° or less, more preferably 3.45 ° or less,
More preferably, it is 3.4 ° or less. Further, the crystallite size Lc in the c-axis direction is preferably 30 ° or more, more preferably 80 ° or more, and further preferably 250 ° or more. The average particle size is 8 to 15 μm, especially 10 to 10 μm.
13 μm is preferable, and the purity is preferably 99.9% or more.

【0022】負極は、たとえば、上記の負極活物質にた
とえばポリフッ化ビニリデンやポリテトラフルオロエチ
レンなどの結着剤を適宜添加し、さらに要すれば導電助
剤を適宜添加し、溶剤で塗材化し、この活物質含有塗材
を銅箔などからなる負極集電体に塗布し、乾燥して、活
物質含有塗膜を形成することによって作製される。ただ
し、本発明においては、前記のように巻回構造の電極体
において負極の最外周部となる部分には活物質含有塗膜
を形成せず、負極集電体のみの部分を残しておく。
For the negative electrode, for example, a binder such as polyvinylidene fluoride or polytetrafluoroethylene is appropriately added to the above-mentioned negative electrode active material, and if necessary, a conductive additive is appropriately added. The active material-containing coating material is applied to a negative electrode current collector made of copper foil or the like, and dried to form an active material-containing coating film. However, in the present invention, the active material-containing coating film is not formed on the outermost portion of the negative electrode in the wound electrode body as described above, and only the negative electrode current collector is left.

【0023】上記正極や負極の集電体となる金属箔とし
ては、たとえば、アルミニウム箔、銅箔、ニッケル箔、
ステンレス鋼箔などが用いられるが、正極集電体となる
金属箔としては特にアルミニウム箔が好ましく、また負
極集電体となる金属箔としては特に銅箔が好ましい。
Examples of the metal foil serving as a current collector for the positive electrode and the negative electrode include aluminum foil, copper foil, nickel foil, and the like.
Although a stainless steel foil or the like is used, an aluminum foil is particularly preferable as a metal foil serving as a positive electrode current collector, and a copper foil is particularly preferable as a metal foil serving as a negative electrode current collector.

【0024】本発明において、電解液は、有機溶媒系の
ものであれば特に限定されることはないが、主溶媒とし
て鎖状エステルを用いると、電解液の粘度を下げ、イオ
ン伝導度を高めることから好ましい。このような鎖状エ
ステルとしては、たとえば、ジメチルカーボネート、ジ
エチルカーボネート、メチルエチルカーボネート、プロ
ピオン酸メチルなどの鎖状のCOO−結合を有する有機
溶媒が挙げられる。主溶媒というのは、これらの鎖状エ
ステルを含んだ全電解液溶媒中で鎖状エステルが50体
積%を超えることを意味する。鎖状エステルが65体積
%を超えると、従来技術では4.4V充電後の釘刺し試
験での電池の安全性が低下するが、本発明によれば、そ
のように鎖状エステルが65体積%を超える場合でも安
全性を確保でき、本発明の効果が顕著に発現する。
In the present invention, the electrolytic solution is not particularly limited as long as it is of an organic solvent type. However, when a chain ester is used as a main solvent, the viscosity of the electrolytic solution is reduced and the ionic conductivity is increased. This is preferred. Examples of such a chain ester include organic solvents having a chain COO-bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propionate. The main solvent means that the chain ester exceeds 50% by volume in the total electrolyte solvent containing these chain esters. If the chain ester exceeds 65% by volume, the safety of the battery in the nail penetration test after 4.4 V charging is reduced in the prior art, but according to the present invention, the chain ester is 65% by volume as such. Is exceeded, safety can be ensured, and the effect of the present invention is remarkably exhibited.

【0025】そして、鎖状エステルが70体積%を超え
ると、従来技術では電池の安全性がより低下しやすくな
るので、本発明の効果がより一層顕著に発現するように
なり、鎖状エステルが75体積%を超えると、従来技術
では電池の安全性がさらに低下しやすくなるので、本発
明の効果がさらに一層顕著に発現するようになる。ま
た、鎖状エステルがメチル基を有する場合も従来技術で
は電池の安全性が低下しやすくなるので、本発明の効果
がより一層顕著に発現する。
If the amount of the chain ester exceeds 70% by volume, the safety of the battery is more likely to be reduced in the prior art, so that the effect of the present invention is more remarkably exhibited, and If the content exceeds 75% by volume, the safety of the battery is more likely to be reduced in the conventional technique, so that the effects of the present invention are more remarkably exhibited. Also, in the case where the chain ester has a methyl group, the safety of the battery is apt to be reduced in the prior art, so that the effects of the present invention are more remarkably exhibited.

【0026】また、上記鎖状エステルに下記の誘電率が
高いエステル(誘電率30以上)を混合して用いると、
鎖状エステルだけで用いる場合よりも、サイクル特性や
電池の負荷特性が向上するので、電池としてはより好ま
しいものとなる。このような誘電率の高いエステルとし
ては、たとえば、プロピレンカーボネート(PC)、エ
チレンカーボネート(EC)、ブチレンカーボネート
(BC)、ガンマーブチロラクトン(γ−BL)、エチ
レングリコールサルファイト(EGS)などが挙げら
れ、特に環状構造のものが好ましく、とりわけ環状のカ
ーボネートが好ましく、エチレンカーボネート(EC)
が最も好ましい。
When the following ester having a high dielectric constant (dielectric constant of 30 or more) is mixed with the above chain ester and used,
Since the cycle characteristics and the load characteristics of the battery are improved as compared with the case where only the chain ester is used, the battery is more preferable. Examples of such an ester having a high dielectric constant include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), gamma-butyrolactone (γ-BL), and ethylene glycol sulfite (EGS). In particular, those having a cyclic structure are preferred, and cyclic carbonates are particularly preferred. Ethylene carbonate (EC)
Is most preferred.

【0027】上記誘電率の高いエステルは電解液の全溶
媒中の40体積%未満が好ましく、より好ましくは30
体積%以下、さらに好ましくは25体積%以下である。
そして、これらの誘電率の高いエステルによる安全性の
向上は、上記誘電率の高いエステルが電解液の全溶媒中
で10体積%以上になると顕著になり、20体積%に達
するとさらに顕著になる。
The ester having a high dielectric constant is preferably less than 40% by volume of the total solvent of the electrolytic solution, more preferably 30% by volume.
% By volume or less, more preferably 25% by volume or less.
The improvement of the safety by these esters having a high dielectric constant becomes remarkable when the ester having a high dielectric constant becomes 10% by volume or more in the entire solvent of the electrolytic solution, and becomes further remarkable when it reaches 20% by volume. .

【0028】上記誘電率の高いエステル以外に併用可能
な溶媒としては、たとえば1,2−ジメトキシエタン
(DME)、1,3−ジオキソラン(DO)、テトラヒ
ドロフラン(THF)、2−メチル−テトラヒドロフラ
ン(2Me−THF)、ジエチルエーテル(DEE)な
どが挙げられる。そのほか、アミンイミド系有機溶媒
や、含イオウまたは含フッ素系有機溶媒なども用いるこ
とができる。
Examples of the solvent that can be used in combination with the ester having a high dielectric constant include 1,2-dimethoxyethane (DME), 1,3-dioxolan (DO), tetrahydrofuran (THF), and 2-methyl-tetrahydrofuran (2Me). -THF), diethyl ether (DEE) and the like. In addition, an amine imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, and the like can also be used.

【0029】電解液の電解質としては、たとえばLiC
lO4 、LiPF6 、LiBF4 、LiAsF6 、Li
SbF6 、LiCF3 SO3 、LiC4 9 SO3 、L
iCF3 CO2 、Li2 2 4 (SO3 2 、LiN
(CF3 SO2 2 、LiC(CF3 SO2 3 、Li
n 2n+1SO3 (n≧2)、LiN(Rf3 OS
2 2 (ここで、Rfはフルオロアルキル基)などが
単独でまたは2種以上混合して用いられるが、特にLi
PF6 やLiC4 9 SO3 などが充放電特性が良好な
ことから好ましい。電解液中における電解質の濃度は、
特に限定されるものではないが、濃度を1mol/l以
上にすると安全性が向上するので好ましく、1.2mo
l/l以上がさらに好ましい。また、電解液中における
電解質の濃度が1.7mol/l以下であると良好な電
気特性が保たれるので好ましく、1.5mol/l以下
であることがさらに好ましい。
As an electrolyte of the electrolytic solution, for example, LiC
10 4 , LiPF 6 , LiBF 4 , LiAsF 6 , Li
SbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , L
iCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN
(CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li
C n F 2n + 1 SO 3 (n ≧ 2), LiN (Rf 3 OS
O 2 ) 2 (where Rf is a fluoroalkyl group) or the like is used alone or as a mixture of two or more.
PF 6 and LiC 4 F 9 SO 3 are preferable because of good charge / discharge characteristics. The concentration of the electrolyte in the electrolyte is
Although not particularly limited, a concentration of 1 mol / l or more is preferable because safety is improved, and is preferably 1.2 mol / l.
1 / l or more is more preferable. Further, it is preferable that the concentration of the electrolyte in the electrolytic solution be 1.7 mol / l or less, since good electrical characteristics are maintained, and it is more preferable that the concentration be 1.5 mol / l or less.

【0030】本発明は、電池の形状のいかんにかわらず
適用でき、どのような形状の電池にも適用可能である
が、特に円筒形、楕円筒形、角筒形などの筒形電池に適
用するのが適している。そして、巻回構造の電極体を上
記のような円筒形電池や楕円筒形電池に適するように円
筒状や楕円筒状にしたときに、その巻回外径の最小値が
放電状態において電池缶の内径より0.4〜0.7mm
小さいことが好ましい。すなわち、巻回構造の電極体の
巻回外径の最小値を放電状態において電池缶の内径より
0.4mm以上小さくすることによって、電池の容量が
高くなっても釘刺し試験での安全性が確保でき、また、
巻回構造の電極体の巻回外径の最小値を放電状態におい
て電池缶の内径より0.7mm以下で小さくすることに
よって、電池の容量が大きく減少するのを防止すること
ができる。
The present invention can be applied regardless of the shape of the battery, and can be applied to batteries of any shape. In particular, the present invention is applied to cylindrical batteries such as cylindrical, elliptical and rectangular cylinders. Suitable to do. When the wound electrode body is formed into a cylindrical shape or an elliptical cylindrical shape so as to be suitable for the cylindrical battery or the elliptical cylindrical battery as described above, the minimum value of the wound outer diameter is a battery can in a discharged state. 0.4-0.7mm from the inner diameter of
Preferably, it is small. That is, by making the minimum value of the winding outer diameter of the wound electrode body smaller than the inner diameter of the battery can by 0.4 mm or more in the discharged state, the safety in the nail penetration test is improved even when the battery capacity is increased. Can be secured,
By making the minimum value of the winding outer diameter of the wound electrode body smaller than the inner diameter of the battery can in the discharged state by 0.7 mm or less, it is possible to prevent a large decrease in the capacity of the battery.

【0031】[0031]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0032】実施例1 メチルエチルカーボネートとエチレンカーボネートとを
体積比3:1で混合し、この混合溶媒に対してLiPF
6 を1.0mol/l溶解させて、組成が1.0mol
/lLiPF6 /EC:MEC(1:3体積比)で示さ
れる電解液を調製した。上記電解液におけるECはエチ
レンカーボネートの略称であり、MECはメチルエチル
カーボネートの略称である。従って、上記電解液を示す
1.0mol/l LiPF6 /EC:MEC(1:3
体積比)は、体積比でメチルエチルカーボネート3に対
してエチレンカーボネート1の割合の混合溶媒にLiF
6 を1.0mol/l相当溶解させたものであること
を示している。
Example 1 Methyl ethyl carbonate and ethylene carbonate were mixed at a volume ratio of 3: 1.
6 was dissolved at 1.0 mol / l to give a composition of 1.0 mol.
An electrolytic solution represented by / lLiPF 6 / EC: MEC (1: 3 volume ratio) was prepared. EC in the above electrolyte is an abbreviation for ethylene carbonate, and MEC is an abbreviation for methyl ethyl carbonate. Therefore, 1.0 mol / l LiPF 6 / EC: MEC (1: 3) indicating the above electrolyte solution was used.
Volume ratio) is LiF in a mixed solvent of methyl ethyl carbonate 3 and ethylene carbonate 1 in volume ratio.
It indicates that the P 6 is obtained by corresponding dissolving 1.0 mol / l.

【0033】これとは別に、正極活物質としてのLiN
iO2 に対して導電助剤として燐片状黒鉛を重量比10
0:7で加えて混合し、この混合物と、ポリフッ化ビニ
リデンをN−メチルピロリドンに溶解させた溶液とを混
合してスラリー状の塗材にした。この正極活物質含有塗
材を70メッシュの網を通過させて大きなものを取り除
いた後、厚さ20μmのアルミニウム箔からなる正極集
電体の両面に均一に塗付し、加熱して乾燥した。ただ
し、これより作られる正極を負極やセパレータなどと共
に巻回構造の電極体にした時に、正極の最外周部となる
部分には上記活物質含有塗材の塗布を行わず、無地部、
つまり、正極集電体のみの部分を50mmとした。この
シート状の電極体を圧縮成形した後、切断し、幅3mm
のリード体を溶接して、シート状の正極を作製した。
Separately, LiN as a positive electrode active material
Scalable graphite is used as a conductive additive with respect to iO 2 in a weight ratio of 10
The mixture was added and mixed at 0: 7, and this mixture and a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone were mixed to obtain a slurry-like coating material. After the positive electrode active material-containing coating material was passed through a 70-mesh net to remove large ones, it was uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, heated and dried. However, when the positive electrode produced therefrom is formed into a wound electrode body together with a negative electrode, a separator, and the like, the outermost peripheral portion of the positive electrode is not coated with the active material-containing coating material, and the uncoated portion,
That is, the portion including only the positive electrode current collector was set to 50 mm. This sheet-shaped electrode body is compression-molded, cut, and 3 mm in width.
Were welded to produce a sheet-shaped positive electrode.

【0034】つぎに、黒鉛系炭素材料(ただし、002
面の層間距離d002 =3.37Å、c軸方向の結晶子の
大きさLc=950Å、平均粒径10μm、純度99.
9%という特性を持つ炭素材料)を、ポリフッ化ビニリ
デンをN−メチルピロリドンに溶解させた溶液と混合し
てスラリー状の塗材にし、その負極活物質含有塗材を厚
さ10μmの帯状の銅箔からなる負極集電体の両面に均
一に塗付して乾燥した。ただし、これより作られる負極
を前記正極やセパレータなどと共に巻回構造の電極体に
した時に、負極の最外周部となる部分には上記負極活物
質含有塗材の塗布を行わず、無地部、つまり、負極集電
体のみの部分を50mmとした。このシート状の電極体
を圧縮成形後、切断した後、幅3mmのリード体を溶接
して、シート状の負極を作製した。
Next, a graphite-based carbon material (however, 002
Interlayer distance d 002 = 3.37 °, crystallite size Lc in the c-axis direction Lc = 950 °, average particle size 10 μm, purity 99.
9%) is mixed with a solution of polyvinylidene fluoride in N-methylpyrrolidone to form a slurry-like coating material, and the negative electrode active material-containing coating material is strip-shaped copper having a thickness of 10 μm. The foil was uniformly coated on both sides of the negative electrode current collector and dried. However, when the negative electrode produced therefrom is formed into a wound electrode body together with the positive electrode, the separator, and the like, the outermost peripheral portion of the negative electrode is not coated with the negative electrode active material-containing coating material, and the uncoated portion, That is, the portion including only the negative electrode current collector was set to 50 mm. This sheet-shaped electrode body was compression molded, cut, and then welded with a lead body having a width of 3 mm to produce a sheet-shaped negative electrode.

【0035】上記シート状の正極を厚さ25μmの微孔
性ポリエチレンフィルムからなるセパレータを介して上
記シート状の負極に積み重ねて、電極板積層体にし、こ
れを負極が正極より外周側になるようにしつつ渦巻状に
巻回して渦巻状の巻回構造の電極体とした。ただし、上
記巻回構造の電極体における最外周部分にはセパレータ
を配置しなかった。従って、この巻回構造の電極体の最
外周部は負極集電体の銅箔で構成されている。この巻回
構造の電極体を外径18mmの有底円筒状の電池缶内に
充填し、正極および負極のリード体の溶接を行った。つ
ぎに電解液を電池ケース内に注入し、電解液がセパレー
タなどに充分に浸透した後、封口し、予備充電、エイジ
ングを行い、図1に概略構造を示す筒形の有機電解液二
次電池を作製した。また、その電池の巻回構造の電極体
の最外周部およびその近傍の詳細を図2に示した。
The sheet-shaped positive electrode is stacked on the sheet-shaped negative electrode through a separator made of a microporous polyethylene film having a thickness of 25 μm to form an electrode plate laminate. The spirally wound electrode structure was obtained by spirally winding the electrode. However, no separator was arranged on the outermost peripheral portion of the wound electrode body. Accordingly, the outermost peripheral portion of the wound electrode body is formed of the copper foil of the negative electrode current collector. The wound electrode body was filled in a cylindrical battery can having an outer diameter of 18 mm and having a bottom, and the positive and negative electrode lead bodies were welded. Next, the electrolytic solution is injected into the battery case, and after the electrolytic solution has sufficiently penetrated into the separator and the like, sealing, preliminary charging and aging are performed, and a cylindrical organic electrolytic solution secondary battery whose structure is schematically shown in FIG. Was prepared. FIG. 2 shows details of the outermost peripheral portion of the electrode body having the wound structure of the battery and the vicinity thereof.

【0036】なお、この電池の負極の充放電容量は、こ
の電池の通常充電条件(1600mAで充電し4.2V
に達した後は4.2Vの定電圧で充電する操作を2時間
30分行う)では、96mAh/cm3 であった。ま
た、この電池を2.75Vまで1600mAで放電した
後、分解し、巻回構造の電極体の巻回外径を調べたとこ
ろ最小値が16.4mmであり、その最小値部分と電池
缶の内径との差は0.5mmであった。
The charge / discharge capacity of the negative electrode of this battery was measured under the normal charge conditions of this battery (4.2 V when charged at 1600 mA).
After that, the operation of charging at a constant voltage of 4.2 V was performed for 2 hours and 30 minutes), which was 96 mAh / cm 3 . Further, after discharging the battery at 1600 mA to 2.75 V, the battery was disassembled and the winding outer diameter of the wound electrode body was examined. As a result, the minimum value was 16.4 mm. The difference from the inner diameter was 0.5 mm.

【0037】ここで、この電池の概略構造を図1に基づ
いて説明すると、1は前記のシート状の正極で、2はシ
ート状の負極である。ただし、図1では、繁雑化を避け
るため、正極1や負極2の作製にあたって使用した集電
体としての金属箔などは図示していない。そして、これ
らの正極1と負極2はセパレータ3を介して渦巻状に巻
回され、渦巻状の巻回構造の電極体として上記の電解液
4と共に電池缶5内に収容されている。
Here, the schematic structure of this battery will be described with reference to FIG. 1. Reference numeral 1 denotes the above-mentioned sheet-shaped positive electrode, and 2 denotes the sheet-shaped negative electrode. However, FIG. 1 does not show a metal foil or the like as a current collector used in manufacturing the positive electrode 1 or the negative electrode 2 in order to avoid complication. The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and housed in a battery can 5 together with the electrolytic solution 4 as an electrode body having a spirally wound structure.

【0038】電池缶5はステンレス鋼製で、負極端子を
兼ねており、電池缶5の底部には上記渦巻状の巻回構造
の電極体の挿入に先立って、ポリプロピレンからなる絶
縁体6が配置されている。封口板7はアルミニウム製
で、円板状をしていて、中央部に薄肉部7aを厚み方向
の両端面より内部側に設け、かつ上記薄肉部7aの周囲
に電池内圧を防爆弁9に作用させるための圧力導入口7
bとしての孔が設けられている。そして、この薄肉部7
aの上面に防爆弁9の突出部9aが溶接され、溶接部分
11を構成している。なお、上記の封口板7に設けた薄
肉部7aや防爆弁9の突出部9aなどは、図面上での理
解がしやすいように、切断面のみを図示しており、切断
面後方の輪郭線は図示を省略している。また、封口板7
の薄肉部7aと防爆弁9の突出部9aとの溶接部分11
も、図面上での理解が容易なように、実際よりは誇張し
た状態に図示している。
The battery can 5 is made of stainless steel and also serves as a negative electrode terminal. An insulator 6 made of polypropylene is arranged at the bottom of the battery can 5 before inserting the spirally wound electrode body. Have been. The sealing plate 7 is made of aluminum and is in the shape of a disk. A thin portion 7a is provided at the center on the inner side from both end surfaces in the thickness direction, and the internal pressure of the battery acts on the explosion-proof valve 9 around the thin portion 7a. Pressure inlet 7
A hole as b is provided. And this thin part 7
The projection 9a of the explosion-proof valve 9 is welded to the upper surface of a to form a welded portion 11. In addition, the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are illustrated only in a cut plane so as to be easily understood in the drawings, and a contour line behind the cut plane is shown. Is not shown. Also, sealing plate 7
Welded portion 11 between thin portion 7a of protrusion and protrusion 9a of explosion-proof valve 9
Also, for ease of understanding in the drawings, the drawings are shown in an exaggerated state.

【0039】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出孔8aが設けられてい
る。防爆弁9は、アルミニウム製で、円板状をしてお
り、その中央部には発電要素側(図1では、下側)に先
端部を有する突出部9aが設けられ、その突出部9aの
下面が、前記したように、封口板7の薄肉部7aの上面
に溶接され、溶接部分11を構成している。絶縁パッキ
ング10は、ポリプロピレン製で、環状をしており、封
口板7の周縁部の上部に配置され、その上部に防爆弁9
が配置していて、封口板7と防爆弁9とを絶縁するとと
もに、両者の間から電解液が漏れないように両者の間隙
を封止している。環状ガスケット12はポリプロピレン
製で、リード体13はアルミニウム製で、前記封口板7
と正極1とを接続し、渦巻状電極体の上部には絶縁体1
4が配置され、負極2と電池缶5の底部とはニッケル製
のリード体15で接続されている。
The terminal plate 8 is made of rolled steel, nickel-plated on its surface, and has a hat-like shape with a peripheral edge formed in a flange shape. The terminal plate 8 is provided with a gas discharge hole 8a. . The explosion-proof valve 9 is made of aluminum and is in the shape of a disk, and a central portion is provided with a projecting portion 9a having a tip on the power generation element side (the lower side in FIG. 1). As described above, the lower surface is welded to the upper surface of the thin portion 7a of the sealing plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral edge of the sealing plate 7 and has an explosion-proof valve 9
Are arranged to insulate the sealing plate 7 from the explosion-proof valve 9 and seal the gap between the two so that the electrolyte does not leak from between them. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum.
And the positive electrode 1, and an insulator 1 is provided above the spiral electrode body.
The negative electrode 2 and the bottom of the battery can 5 are connected by a nickel lead body 15.

【0040】前記のように、電池缶5の底部には絶縁体
6が配置され、前記正極1、負極2およびセパレータ3
からなる渦巻状の巻回構造の電極体や、電解液4、電極
体上部の絶縁体14などは、この電池缶5内に収容さ
れ、それらの収容後、電池缶5の開口端近傍部分に底部
が内方に突出した環状の溝が形成される。そして、上記
電池缶5の開口部に、封口板7、絶縁パッキング10、
防爆弁9が挿入された環状ガスケット12を入れ、さら
にその上から端子板8を挿入し、電池缶5の溝から先の
部分を内方に締め付けることによって、電池缶5の開口
部が封口されている。ただし、上記のような電池組立に
あたっては、あらかじめ負極2と電池缶5とをリード体
15で接続し、正極1と封口板7とをリード体13で接
続しておくことが好ましい。
As described above, the insulator 6 is disposed at the bottom of the battery can 5, and the positive electrode 1, the negative electrode 2 and the separator 3
The spirally wound electrode body, the electrolyte solution 4, the insulator 14 above the electrode body, and the like are housed in the battery can 5 and, after being housed, are placed near the opening end of the battery can 5. An annular groove whose bottom protrudes inward is formed. A sealing plate 7, an insulating packing 10,
The annular gasket 12 into which the explosion-proof valve 9 is inserted is inserted, the terminal plate 8 is further inserted from above, and the portion of the battery can 5 that is beyond the groove is tightened inward, whereby the opening of the battery can 5 is sealed. ing. However, in assembling the battery as described above, it is preferable that the negative electrode 2 and the battery can 5 are connected in advance with the lead body 15 and the positive electrode 1 and the sealing plate 7 are connected with the lead body 13 in advance.

【0041】上記のようにして組み立てられた電池にお
いては、封口板7の薄肉部7aと防爆弁9の突出部9a
とが溶接部分11で接触し、防爆弁9の周縁部と端子板
8の周縁部とが接触し、正極1と封口板7とは正極側の
リード体13で接続されているので、正極1と端子板8
とはリード体13、封口板7、防爆弁9およびそれらの
溶接部分11によって電気的接続が得られ、電路として
正常に機能する。
In the battery assembled as described above, the thin portion 7a of the sealing plate 7 and the projection 9a of the explosion-proof valve 9 are provided.
Contact at the welded portion 11, the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 come into contact, and the positive electrode 1 and the sealing plate 7 are connected by the lead 13 on the positive electrode side. And terminal plate 8
The electrical connection is obtained by the lead body 13, the sealing plate 7, the explosion-proof valve 9 and the welded portion 11 thereof, and the lead body normally functions as an electric circuit.

【0042】そして、電池に異常事態が起こり、電池内
部にガスが発生して電池の内圧が上昇した場合には、そ
の内圧上昇により、防爆弁9の中央部が内圧方向(図1
では、上側の方向)に変形し、それに伴って溶接部分1
1で一体化されている薄肉部7aに剪断力が働いて、該
薄肉部7aが破断するか、または防爆弁9の突出部9a
と封口板7の薄肉部7aとの溶接部分11が剥離し、そ
れによって、正極1と端子板8との電気的接続が消失し
て、電流が遮断できるように設計されている。
When an abnormal situation occurs in the battery and gas is generated inside the battery and the internal pressure of the battery rises, the internal pressure rises and the central part of the explosion-proof valve 9 moves in the direction of the internal pressure (FIG. 1).
Then, it is deformed in the upper direction)
The shearing force acts on the thin portion 7a integrated at 1 and the thin portion 7a is broken or the projection 9a of the explosion-proof valve 9 is formed.
The welding portion 11 between the sealing plate 7 and the thin portion 7a of the sealing plate 7 is peeled off, whereby the electrical connection between the positive electrode 1 and the terminal plate 8 is lost, and the current is cut off.

【0043】なお、上記防爆弁9には薄肉部9bが設け
られており、たとえば、充電が極度に進行して電解液や
活物質などの発電要素が分解し、大量のガスが発生した
場合は、防爆弁9が変形して、防爆弁9の突出部9aと
封口板7の薄肉部7aとの溶接部分11が剥離した後、
この防爆弁9に設けた薄肉部9bが開裂してガスを端子
板8のガス排出孔8aから電池外部に排出させて電池の
破裂を防止することができるように設計されている。
The explosion-proof valve 9 is provided with a thin portion 9b. For example, when charging proceeds extremely and power generation elements such as an electrolyte and an active material are decomposed and a large amount of gas is generated, After the explosion-proof valve 9 is deformed and the welding portion 11 between the projection 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7 is peeled off,
The thin portion 9b provided on the explosion-proof valve 9 is designed to be opened so that gas is discharged from the gas discharge holes 8a of the terminal plate 8 to the outside of the battery to prevent the battery from being ruptured.

【0044】つぎに、上記電池の巻回構造の電極体の最
外周部およびその近傍(すなわち、図1のAの近傍に相
当する部分)を図2に基づいて説明すると、正極1はア
ルミニウム箔からなる正極集電体1aの両面に活物質含
有塗膜1bを形成することによって作製されているが、
その最外周部では活物質含有塗膜1bを形成せず正極集
電体1aのみの部分が設けられている。また、負極2は
銅箔からなる負極集電体2aの両面に活物質含有塗膜2
bを形成することによって作製されているが、その最外
周部では活物質含有塗膜2bを形成せず負極集電体2a
のみの部分が設けられている。
Next, the outermost peripheral portion of the electrode body of the wound structure of the battery and its vicinity (that is, a portion corresponding to the vicinity of A in FIG. 1) will be described with reference to FIG. Is formed by forming an active material-containing coating film 1b on both surfaces of a positive electrode current collector 1a made of
At the outermost portion, only the positive electrode current collector 1a is provided without forming the active material-containing coating film 1b. The negative electrode 2 has an active material-containing coating film 2 on both surfaces of a negative electrode current collector 2a made of copper foil.
The negative electrode current collector 2a is formed without forming the active material-containing coating film 2b at the outermost periphery thereof.
Only a portion is provided.

【0045】セパレータ3は正極1と負極2との間およ
びそれら正極1と負極2の最外周部における正極集電体
2aと負極集電体2bとの間に配置しているが、巻回構
造の電極体の最外周部には配置しておらず、負極集電体
2aが直接電池缶5の内壁に接触している。なお、前記
のように、放電状態においては、巻回構造の電極体の巻
回外径の最小値と電池缶の内径との間には0.5mmの
差があるが、充電時には電極が膨張することと、渦巻状
の巻回構造の電極体では真正な円形ではないこともあっ
て、電極体の最外周部の負極集電体2aは電池缶5の内
壁に直接接触している。
The separator 3 is disposed between the positive electrode 1 and the negative electrode 2 and between the positive electrode current collector 2a and the negative electrode current collector 2b at the outermost periphery of the positive electrode 1 and the negative electrode 2. The negative electrode current collector 2 a is not directly disposed on the outermost peripheral portion of the electrode body, but directly contacts the inner wall of the battery can 5. As described above, in the discharge state, there is a difference of 0.5 mm between the minimum value of the winding outer diameter of the wound electrode body and the inner diameter of the battery can. In addition, the negative electrode current collector 2 a at the outermost periphery of the electrode body is in direct contact with the inner wall of the battery can 5 because the electrode body having the spirally wound structure is not a true circle.

【0046】この実施例1の電池における正極1の最外
周部の活物質含有塗膜1bを形成せず正極集電体1aの
みの部分は巻回構造の電極体の外周部において約1周に
相当し、また負極2の最外周部の活物質含有塗膜2bを
形成せず負極集電体2aのみの部分は巻回構造の電極体
の外周部において約1周に相当する。
In the battery of Example 1, the portion of only the positive electrode current collector 1a without forming the active material-containing coating film 1b on the outermost peripheral portion of the positive electrode 1 is formed around one round in the outer peripheral portion of the wound electrode body. In addition, the portion of the negative electrode 2 on which only the negative electrode current collector 2a is not formed on the outermost peripheral portion of the negative electrode 2 corresponds to about one round in the outer peripheral portion of the wound electrode body.

【0047】実施例2 正極1の最外周部における活物質含有塗膜1bを形成し
ない部分を正極集電体1aの外面側にし、その内面側に
は活物質含有塗膜1bを形成した以外は、実施例1と同
様にして筒形の有機電解液二次電池を作製した。
Example 2 A portion of the outermost periphery of the positive electrode 1 where the active material-containing coating 1b was not formed was located on the outer surface of the positive electrode current collector 1a, and the active material-containing coating 1b was formed on the inner surface thereof. Then, a cylindrical organic electrolyte secondary battery was manufactured in the same manner as in Example 1.

【0048】この実施例2の電池の巻回構造の電極体の
最外周部およびその近傍を図3に基づいて説明すると、
正極1の最外周部においては外面側のみが活物質含有塗
膜1bを形成せず正極集電体1aのみになっていて、そ
の内面側には活物質含有塗膜1bが形成されている。そ
して、それ以外は図2に示す場合と同様に構成されてい
る。
The outermost peripheral portion of the wound electrode structure of the battery according to the second embodiment and the vicinity thereof will be described with reference to FIG.
At the outermost peripheral portion of the positive electrode 1, only the outer surface side does not form the active material-containing coating film 1b, but only the positive electrode current collector 1a, and the active material-containing coating film 1b is formed on the inner surface side. Otherwise, the configuration is the same as that shown in FIG.

【0049】この実施例2の電池を2.75Vまで16
00mAで放電した後、分解し、その巻回構造の電極体
の巻回外径を調べたところ最小値が16.4mmであ
り、その最小値部分と電池缶5の内径との差は0.5m
mであった。
The battery of Example 2 was used up to 2.75 V
After discharging at 00 mA, the battery was disassembled and the wound outer diameter of the wound electrode body was examined. The minimum value was 16.4 mm. The difference between the minimum value and the inner diameter of the battery can 5 was 0.1 mm. 5m
m.

【0050】実施例3 巻回構造の電極体の最外周部にセパレータ3が配置する
ようにした以外は、実施例1と同様にして筒形の有機電
解液二次電池を作製した。
Example 3 A cylindrical organic electrolyte secondary battery was manufactured in the same manner as in Example 1 except that the separator 3 was arranged at the outermost periphery of the wound electrode body.

【0051】この実施例3の電池缶の巻回構造の電極体
の最外周部およびその近傍を図4に基づいて説明する
と、巻回構造の電極体の最外周部にセパレータ3が配置
していて、負極集電体2aと電池缶5の内壁との間にセ
パレータ3が介在している。そして、それ以外は図2に
示す場合と同様に構成されている。
The outermost periphery of the wound electrode body of the battery can of Embodiment 3 and its vicinity will be described with reference to FIG. 4. The separator 3 is arranged at the outermost periphery of the wound electrode body. Thus, the separator 3 is interposed between the negative electrode current collector 2a and the inner wall of the battery can 5. Otherwise, the configuration is the same as that shown in FIG.

【0052】実施例4 実施例3と同様の構成であるが、その正極1の活物質含
有塗膜1bの形成部分を20mm短くし、かつ負極2の
活物質含有塗膜2bの形成部分を20mm短くした以外
は、実施例3と同様にして筒形の有機電解液二次電池を
作製した。
Example 4 The structure was the same as that of Example 3, except that the portion of the positive electrode 1 where the active material-containing coating film 1b was formed was shortened by 20 mm, and the portion of the negative electrode 2 where the active material-containing coating film 2b was formed was 20 mm. A cylindrical organic electrolyte secondary battery was fabricated in the same manner as in Example 3, except that the battery was shortened.

【0053】この実施例4の電池を2.75Vまで16
00mAで放電した後、分解し、巻回構造の電極体の巻
回外径を調べたところ最小値が16.2mmであり、そ
の最小値部分と電池缶5の内径との差は0.7mmであ
った。
The battery of this Example 4 was changed to
After discharge at 00 mA, the battery was disassembled and the winding outer diameter of the wound electrode body was examined. The minimum value was 16.2 mm. The difference between the minimum value and the inner diameter of the battery can 5 was 0.7 mm. Met.

【0054】比較例1 活物質含有塗膜1bを形成しない部分を2mm残して正
極集電体1aに活物質含有塗膜1bを形成し、また、負
極2側のリード体15を取り付けるために負極2の最外
周部に活物質含有塗膜2bを形成しない部分を5mm残
して負極集電体2aに活物質含有塗膜2bを形成し、か
つ巻回構造の電極体の最外周部にもセパレータ3が配置
するようにした以外は、実施例1と同様にして筒形の有
機電解液二次電池を作製した。
COMPARATIVE EXAMPLE 1 An active material-containing coating 1b was formed on the positive electrode current collector 1a except for a portion 2 mm where the active material-containing coating 1b was not formed. The active material-containing coating film 2b is formed on the negative electrode current collector 2a while leaving a portion where the active material-containing coating film 2b is not formed at the outermost peripheral portion of the electrode collector 2a. A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 1, except that 3 was arranged.

【0055】この比較例1の電池の巻回構造の電極体の
最外周部およびその近傍を図5に基づいて説明すると、
正極1の最外周部も上記のように活物質含有塗膜1bが
形成され、負極2の最外周部もリード体15との接触部
となる部分を除き活物質含有塗膜2bが形成され、かつ
セパレータ3が巻回構造の電極体の最外周部に配置して
いて、電池缶5と負極2の最外周部との間にセパレータ
3が介在している。
The outermost peripheral portion of the wound electrode structure of the battery of Comparative Example 1 and its vicinity will be described with reference to FIG.
The outermost peripheral portion of the positive electrode 1 is also formed with the active material-containing coating film 1b as described above, and the outermost peripheral portion of the negative electrode 2 is also formed with the active material-containing coating film 2b except for a portion to be in contact with the lead body 15, Further, the separator 3 is disposed at the outermost periphery of the wound electrode body, and the separator 3 is interposed between the battery can 5 and the outermost periphery of the negative electrode 2.

【0056】この比較例1の電池を2.75Vまで16
00mAで放電した後、分解し、巻回構造の電極体の巻
回外径を調べたところ最小値が16.4mmであり、そ
の最小値部分と電池缶5の内径との差は0.5mmであ
った。
The battery of Comparative Example 1 was charged to 2.75 V
After discharging at 00 mA, the battery was disassembled and the winding outer diameter of the wound electrode body was examined. The minimum value was 16.4 mm. The difference between the minimum value and the inner diameter of the battery can 5 was 0.5 mm. Met.

【0057】比較例2 比較例1と同様の構成であるが、その正極1の活物質含
有塗膜1bの形成部分を20mm短くし、かつ負極2の
活物質含有塗膜2bの形成部分を20mm短くした以外
は、比較例1と同様にして筒形の有機電解液二次電池を
作製した。
COMPARATIVE EXAMPLE 2 The structure was the same as that of Comparative Example 1, except that the portion of the positive electrode 1 where the active material containing coating 1b was formed was shortened by 20 mm, and the portion of the negative electrode 2 where the active material containing coating 2b was formed was 20 mm. A cylindrical organic electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that the length was shortened.

【0058】この比較例2の電池を2.75Vまで16
00mAで放電した後、分解し、巻回構造の電極体の巻
回外径を調べたところ最小値が16.2mmであり、そ
の最小値部分と電池缶5の内径との差は0.7mmであ
った。
The battery of Comparative Example 2 was changed to 16
After discharge at 00 mA, the battery was disassembled and the winding outer diameter of the wound electrode body was examined. The minimum value was 16.2 mm. The difference between the minimum value and the inner diameter of the battery can 5 was 0.7 mm. Met.

【0059】上記実施例1〜4および比較例1〜2の電
池を、1600mAで2.75Vまで放電した後160
0mAで充電し、4.4Vに達した後は4.4Vの定電
圧に保つ条件で2時間30分充電を行った。その後、電
池を45℃の恒温槽に入れて2時間後に取り出し、電池
ホルダの上に置き、1/2釘刺し試験を行った。すなわ
ち、直径3mmのステンレス鋼製釘を電池の側面から電
池の直径の1/2のところまで突き刺し、各電池20個
中で異常発熱する電池の数を調べた。その結果を表1に
示す。表1中において結果を示す数値の分母は試験に供
した電池個数であり、分子は異常発熱した電池個数であ
る。なお、上記の異常発熱とは電池表面温度が150℃
以上になった場合をいう。
After discharging the batteries of Examples 1-4 and Comparative Examples 1-2 to 2.75 V at 1600 mA,
The battery was charged at 0 mA, and after reaching 4.4 V, the battery was charged for 2 hours and 30 minutes under the condition of maintaining a constant voltage of 4.4 V. Thereafter, the battery was placed in a 45 ° C. constant temperature bath, taken out 2 hours later, placed on a battery holder, and subjected to a 釘 nail penetration test. That is, a stainless steel nail having a diameter of 3 mm was pierced from the side of the battery to half the diameter of the battery, and the number of abnormally heated batteries among the 20 batteries was examined. Table 1 shows the results. In Table 1, the denominator of the numerical value indicating the result is the number of batteries subjected to the test, and the numerator is the number of batteries that abnormally generate heat. The above abnormal heat generation means that the battery surface temperature is 150 ° C.
This is the case when it is over.

【0060】[0060]

【表1】 [Table 1]

【0061】表1に示すように、実施例1〜4は、比較
例1〜2に比べて、異常発熱する電池個数がはるかに少
なく、高い安全性を有していた。すなわち、上記のよう
な45℃で2時間放置し、1/2釘刺しを行うという苛
酷な条件下の釘刺し試験では、異常発熱する電池個数が
1/5以下(上記のように20個試験した場合は異常発
熱する電池個数が4個以下)であれば、充分に高い安全
性を有していると判断されるが、実施例1〜4は、いず
れも、異常発熱する電池個数がそれ以下であり、充分に
高い安全性を有していた。
As shown in Table 1, Examples 1 to 4 had much less abnormal heat generation than Comparative Examples 1 and 2 and had high safety. In other words, in the nail penetration test under the severe conditions of leaving at 45 ° C. for 2 hours and performing a 1/2 nail penetration as described above, the number of abnormally heated batteries is 1/5 or less (as described above, 20 batteries were tested). If the number of batteries that generate abnormal heat is 4 or less), it is determined that the battery has sufficiently high safety. However, in Examples 1 to 4, the number of batteries that generate abnormal heat is It was below, and had sufficiently high safety.

【0062】上記実施例では、円筒形の有機電解液二次
電池について安全性を調べたが、角筒形の有機電解液二
次電池など、円筒形以外の形状の電池についても、本発
明によれば、上記円筒形の有機電解液二次電池と同様の
高い安全性を得ることができる。
In the above embodiment, the safety of a cylindrical organic electrolyte secondary battery was examined. However, batteries having a shape other than the cylindrical shape, such as a prismatic organic electrolyte secondary battery, are also included in the present invention. According to this, the same high safety as that of the cylindrical organic electrolyte secondary battery can be obtained.

【0063】[0063]

【発明の効果】以上説明したように、本発明では、高容
量化を図った場合においても、安全性の高い有機電解液
二次電池を提供することができた。
As described above, according to the present invention, a highly safe organic electrolyte secondary battery can be provided even when the capacity is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る有機電解液二次電池の一例を概略
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing an example of an organic electrolyte secondary battery according to the present invention.

【図2】実施例1の電池の巻回構造の電極体の最外周部
およびその近傍を拡大して示す断面図である。
FIG. 2 is an enlarged cross-sectional view showing the outermost peripheral portion of the electrode body of the wound structure of the battery of Example 1 and its vicinity.

【図3】実施例2の電池の巻回構造の電極体の最外周部
およびその近傍を拡大して示す断面図である。
FIG. 3 is an enlarged cross-sectional view showing the outermost peripheral portion of the electrode body of the wound structure of the battery of Example 2 and its vicinity.

【図4】実施例3の電池の巻回構造の電極体の最外周部
およびその近傍を拡大して示す断面図である。
FIG. 4 is an enlarged cross-sectional view showing the outermost peripheral portion of the electrode body of the wound structure of the battery of Example 3 and its vicinity.

【図5】比較例1の電池の巻回構造の電極体の最外周部
およびその近傍を拡大して示す断面図である。
FIG. 5 is an enlarged cross-sectional view showing the outermost peripheral portion of the electrode body of the wound structure of the battery of Comparative Example 1 and its vicinity.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 活物質含有塗膜 2 負極 2a 負極集電体 2b 活物質含有塗膜 3 セパレータ 4 電解液 5 電池缶 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode current collector 1b Active material containing coating film 2 Negative electrode 2a Negative electrode current collector 2b Active material containing coating film 3 Separator 4 Electrolyte 5 Battery can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 和伸 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazunobu Matsumoto 1-88 Ushitora 1-chome, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属箔からなる正極集電体の少なくとも
一方の面に活物質含有塗膜を形成してなる正極と、金属
箔からなる負極集電体の少なくとも一方の面に活物質含
有塗膜を形成してなる負極とを、セパレータを介して巻
回した巻回構造の電極体を電池缶に収容してなる有機電
解液二次電池において、上記巻回構造の電極体における
正極の少なくとも最外周部に活物質含有塗膜を形成せず
正極集電体のみの部分を設け、かつ上記巻回構造の電極
体における負極の少なくとも最外周部に活物質含有塗膜
を形成せず負極集電体のみの部分を設け、上記部分の正
極集電体と負極集電体とをセパレータを介して配置した
ことを特徴とする有機電解液二次電池。
A positive electrode comprising an active material-containing coating film formed on at least one surface of a positive electrode current collector made of a metal foil, and an active material-containing coating film formed on at least one surface of a negative electrode current collector made of a metal foil. A negative electrode formed with a film, an organic electrolyte secondary battery containing a wound electrode body wound in a battery can with a separator interposed therebetween, at least the positive electrode in the wound electrode body. A portion of the positive electrode current collector alone is provided without forming an active material-containing coating on the outermost peripheral portion, and the negative electrode collector is formed without forming an active material-containing coating on at least the outermost peripheral portion of the negative electrode in the wound electrode body. An organic electrolyte secondary battery comprising: a portion including only a current collector; and the positive electrode current collector and the negative electrode current collector in the above-described portions are disposed via a separator.
【請求項2】 満充電での負極の充放電可能な容量が電
池の単位体積あたり96mAh/cm3 以上であり、か
つ上記活物質含有塗膜を形成していない正極集電体およ
び上記活物質含有塗膜を形成していない負極集電体が巻
回構造の電極体においてそれぞれ1周以上存在する請求
項1記載の有機電解液二次電池。
2. The positive electrode current collector, wherein the chargeable / dischargeable capacity of the negative electrode at full charge is 96 mAh / cm 3 or more per unit volume of the battery, and the active material containing the active material-containing coating film is not formed. 2. The organic electrolyte secondary battery according to claim 1, wherein the negative electrode current collector having no formed coating film is present at least once in each of the wound electrode bodies.
【請求項3】 巻回構造の電極体が円筒状または楕円筒
状であって、その巻回外径の最小値が放電状態において
電池缶の内径より0.4〜0.7mm小さい請求項1ま
たは2記載の有機電解液二次電池。
3. An electrode body having a wound structure having a cylindrical or elliptical cylindrical shape, wherein the minimum value of the wound outer diameter is 0.4 to 0.7 mm smaller than the inner diameter of the battery can in a discharged state. Or the organic electrolyte secondary battery according to 2.
JP36352597A 1997-12-15 1997-12-15 Organic electrolyte secondary battery Expired - Lifetime JP3988901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36352597A JP3988901B2 (en) 1997-12-15 1997-12-15 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36352597A JP3988901B2 (en) 1997-12-15 1997-12-15 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11176478A true JPH11176478A (en) 1999-07-02
JP3988901B2 JP3988901B2 (en) 2007-10-10

Family

ID=18479532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36352597A Expired - Lifetime JP3988901B2 (en) 1997-12-15 1997-12-15 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3988901B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085000A (en) * 1999-09-14 2001-03-30 At Battery:Kk Thin battery and manufacturing method therefor
JP2002216853A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell, and manufacturing method of the same
US7060388B2 (en) 2001-08-24 2006-06-13 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007103295A (en) * 2005-10-07 2007-04-19 Gs Yuasa Corporation:Kk Non-aqueous electrolyte secondary battery
JP2009087600A (en) * 2007-09-28 2009-04-23 Mitsubishi Heavy Ind Ltd Lithium secondary battery
US7527892B2 (en) 1998-02-13 2009-05-05 Sony Corporation Nonaqueous electrolyte battery having exposed electrode collector portions
US8335886B2 (en) 2008-11-05 2012-12-18 Samsung Electronics Co., Ltd. Wear leveling method for non-volatile memory device having single and multi level memory cell blocks
WO2016199384A1 (en) * 2015-06-09 2016-12-15 ソニー株式会社 Battery, battery pack, electronic instrument, electric car, power storage device and power system
JP2019145448A (en) * 2018-02-23 2019-08-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US10505215B2 (en) 2012-08-08 2019-12-10 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11936068B2 (en) 2016-07-08 2024-03-19 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electromotive vehicle, power storage device, and electric power system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527892B2 (en) 1998-02-13 2009-05-05 Sony Corporation Nonaqueous electrolyte battery having exposed electrode collector portions
JP2001085000A (en) * 1999-09-14 2001-03-30 At Battery:Kk Thin battery and manufacturing method therefor
JP2002216853A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell, and manufacturing method of the same
US7060388B2 (en) 2001-08-24 2006-06-13 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007103295A (en) * 2005-10-07 2007-04-19 Gs Yuasa Corporation:Kk Non-aqueous electrolyte secondary battery
JP2009087600A (en) * 2007-09-28 2009-04-23 Mitsubishi Heavy Ind Ltd Lithium secondary battery
US8335886B2 (en) 2008-11-05 2012-12-18 Samsung Electronics Co., Ltd. Wear leveling method for non-volatile memory device having single and multi level memory cell blocks
US10505215B2 (en) 2012-08-08 2019-12-10 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016199384A1 (en) * 2015-06-09 2016-12-15 ソニー株式会社 Battery, battery pack, electronic instrument, electric car, power storage device and power system
JPWO2016199384A1 (en) * 2015-06-09 2017-06-22 ソニー株式会社 Batteries, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
KR20180016329A (en) 2015-06-09 2018-02-14 소니 주식회사 Battery, battery pack, electronic instrument, electric car, power storage device and power system
JP2018170302A (en) * 2015-06-09 2018-11-01 株式会社村田製作所 Battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
US10147973B2 (en) 2015-06-09 2018-12-04 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
US11936068B2 (en) 2016-07-08 2024-03-19 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electromotive vehicle, power storage device, and electric power system
JP2019145448A (en) * 2018-02-23 2019-08-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3988901B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP5260838B2 (en) Non-aqueous secondary battery
JP4052537B2 (en) Non-aqueous secondary battery
JP2000077061A (en) Lithium ion battery
JPH10275632A (en) Organic electrolyte secondary battery
JP2012234822A (en) Nonaqueous secondary battery
JP2003092148A (en) Nonaqueous secondary battery
JP4798729B2 (en) Lithium ion secondary battery
WO2012147425A1 (en) Cylindrical lithium ion secondary battery and manufacturing method therefor
JP3988901B2 (en) Organic electrolyte secondary battery
US20230299434A1 (en) Nonaqueous electrolyte secondary battery
JP2002270184A (en) Non-aqueous secondary battery
JP4055190B2 (en) Non-aqueous secondary battery
JP3447285B2 (en) Non-aqueous secondary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP5583419B2 (en) Lithium ion secondary battery
JP3449710B2 (en) Organic electrolytes Organic electrolytes for secondary batteries
JP3247103B1 (en) Organic electrolyte secondary battery
JP2004253159A (en) Nonaqueous electrolyte secondary battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP4526044B2 (en) Lithium ion secondary battery
JPH11265700A (en) Nonaqueous electrolyte secondary battery
JPH10199567A (en) Nonaqueous electrolyte secondary cell
JP7350761B2 (en) Nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery system
JP3449706B2 (en) Organic electrolyte secondary battery and charging method thereof
JP4115006B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term