JP3449710B2 - Organic electrolytes Organic electrolytes for secondary batteries - Google Patents

Organic electrolytes Organic electrolytes for secondary batteries

Info

Publication number
JP3449710B2
JP3449710B2 JP2002232226A JP2002232226A JP3449710B2 JP 3449710 B2 JP3449710 B2 JP 3449710B2 JP 2002232226 A JP2002232226 A JP 2002232226A JP 2002232226 A JP2002232226 A JP 2002232226A JP 3449710 B2 JP3449710 B2 JP 3449710B2
Authority
JP
Japan
Prior art keywords
organic
organic electrolyte
electrolytic solution
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002232226A
Other languages
Japanese (ja)
Other versions
JP2003109660A (en
Inventor
房次 喜多
祐樹 石川
和伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2002232226A priority Critical patent/JP3449710B2/en
Publication of JP2003109660A publication Critical patent/JP2003109660A/en
Application granted granted Critical
Publication of JP3449710B2 publication Critical patent/JP3449710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池用の有機電解液に関し、さらに詳しくは、安全性が優
れた有機電解液二次電池を構成することができる有機電
解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte solution for an organic electrolyte solution secondary battery, and more particularly to an organic electrolyte solution which can form an organic electrolyte solution secondary battery having excellent safety.

【0002】[0002]

【従来の技術】有機電解液二次電池は電解液の溶媒とし
て有機溶媒を用いた二次電池であり、この有機電解液二
次電池は、容量が大きく、かつ高電圧、高エネルギー密
度、高出力であることから、ますます需要が増える傾向
にある。
2. Description of the Related Art An organic electrolytic solution secondary battery is a secondary battery using an organic solvent as a solvent for the electrolytic solution. The organic electrolytic solution secondary battery has a large capacity, high voltage, high energy density and high capacity. Since it is an output, the demand tends to increase more and more.

【0003】そして、この電池の有機電解液の溶媒(本
書においては、この「有機電解液の溶媒」を簡略化して
「電解液溶媒」と表現する)としては、これまで、エチ
レンカーボネートなどの環状エステルとジメチルカーボ
ネート、ジエチルカーボネート、プロピオン酸メチルな
どの鎖状エステルとが混合して用いられてきた。
As a solvent for the organic electrolytic solution of this battery (in this document, this "solvent for the organic electrolytic solution" is abbreviated as "electrolytic solution solvent"), a cyclic solvent such as ethylene carbonate has hitherto been used. Ester and chain ester such as dimethyl carbonate, diethyl carbonate and methyl propionate have been mixed and used.

【0004】しかし、この有機電解液二次電池について
さらなる安全性の向上を目指して検討を進めるうちに、
鎖状のエステルを有機電解液の主溶媒として用いた場合
や、負極の充放電可能な容量が多い場合には、電池の構
造に関して充分な工夫をしないと、電池が内部短絡した
場合や釘刺しされた場合の安全性が低下する傾向のある
ことがわかった。
[0004] However, while studying this organic electrolyte secondary battery with the aim of further improving safety,
If a chain ester is used as the main solvent of the organic electrolyte, or if the negative electrode has a large chargeable / dischargeable capacity, unless the battery structure is adequately devised, the battery may be short-circuited internally or nailed. It was found that there is a tendency for the safety to be lowered when given.

【0005】通常は、保護回路などで過充電を防止して
内部短絡を引き起こさないように対策されているし、通
常の内部短絡では電池が発熱するだけで異常な事態には
いたらない。また、釘刺しは滅多に起こるものではな
く、使用者がわざとやらない限り起こりにくい。起こり
得ることとしては、衝撃事故などで電池が部分的に潰さ
れることが想定される。
Usually, a protective circuit is used to prevent overcharging and prevent an internal short circuit. In a normal internal short circuit, the battery heats up and no abnormal situation occurs. Moreover, nail stabs are rare and rare unless they are intentionally performed by the user. It is possible that the battery may be partially crushed due to a shock accident or the like.

【0006】そのために、電池の圧壊試験を行っている
が、通常は安全である。しかし、数十個試験しただけで
は充分に安全であるとはいいがたく、より危険度の高い
条件下で試験を行って安全性を確認することが望まし
い。
For this reason, a battery crush test is conducted, but it is usually safe. However, it cannot be said that it is safe enough to test dozens of them, and it is desirable to confirm the safety by conducting a test under a more dangerous condition.

【0007】一方、釘刺し試験は、電池の圧壊試験に比
べて少ない部分で電池を確実に短絡させるので、短絡部
位に電流が集中して、より発熱しやすく、電池が部分的
に急速に高温になりやすい。そのため、電池の発熱によ
りフューズを生じるセパレータを介して帯状の正極と帯
状の負極が渦巻状に巻回された渦巻状電極体を有する電
池では、セパレータのフューズ(溶融による目づまり)
のばらつきが生じやすく、また短絡部位での電解液と負
極との反応による発熱が多くなるなどのため、電池の発
熱がさらに多くなる。従って、安全性確認のための苛酷
試験として釘刺し試験は有効である。さらに、釘刺し試
験を室温で行うよりも40℃の高温状態で行う方が、電
池がより高温にまで上昇しやすく、電池の熱暴走反応が
起きやすい。また、1/2釘刺しのように、釘を電池の
途中で止める方が、短絡部分が少なくなり電流がより集
中して発熱しやすい。従って、より高い安全性を得るに
は、このような加温下での1/2釘刺し試験にある程度
は耐えるものであることが望ましい。
On the other hand, in the nail piercing test, the battery is surely short-circuited in a smaller portion compared to the battery crushing test, so that the current is concentrated in the short-circuited portion and heat is generated more easily, and the battery is partially rapidly heated to a high temperature. It is easy to become. Therefore, in a battery having a spirally wound electrode body in which a strip-shaped positive electrode and a strip-shaped negative electrode are spirally wound through a separator that generates a fuse due to heat generation of the battery, the fuse of the separator (clogging due to melting)
Is more likely to occur, and the amount of heat generated by the reaction between the electrolytic solution and the negative electrode at the short-circuited portion is increased. Therefore, the amount of heat generated by the battery is further increased. Therefore, the nail penetration test is effective as a severe test for confirming safety. Furthermore, when the nail penetration test is performed at a high temperature of 40 ° C. rather than at room temperature, the temperature of the battery rises to a higher temperature and the thermal runaway reaction of the battery is more likely to occur. Further, when the nail is stopped in the middle of the battery as in the case of ½ nail sticking, the short-circuited portion is reduced and the current is more concentrated and heat is easily generated. Therefore, in order to obtain higher safety, it is desirable that it can withstand the ½ nail penetration test under such heating to some extent.

【0008】[0008]

【発明が解決しようとする課題】ところで、カーボンな
どのリチウムを脱挿入できる化合物を負極に用いた場
合、金属リチウムを用いる場合よりも高温での電解液と
の反応性がはるかに低下し、電池の安全性が改善され
る。そして、その安全性改善のためには、リチウムを脱
挿入できる化合物を用いた負極の表面に電解液と反応し
て形成された良質の皮膜の存在が不可欠である。
By the way, when a compound capable of deintercalating lithium such as carbon is used in the negative electrode, the reactivity with the electrolytic solution at a high temperature is much lower than that in the case of using metallic lithium. The safety of is improved. In order to improve the safety, the presence of a good-quality film formed by reacting with the electrolytic solution on the surface of the negative electrode using a compound capable of deintercalating lithium is essential.

【0009】負極の表面での電解液との反応について
は、D.Aurbachらが、カーボン上に有機炭酸塩
(ROCO2 Li)、Li2 CO3 や、アルコキシド
(ROLi)などが生成していることを報告している
〔J.Electrochemical Soc.,V
ol142(No.9),p2882(1995)〕。
また、同報文では、環状エステルのエチレンカーボネー
トと鎖状エステルのジエチルカーボネートとの混合溶媒
において、環状エステルのエチレンカーボネートに対す
る鎖状エステルのジエチルカーボネートの割合が1:1
より多くなると、サイクル特性に悪影響があると報告さ
れている。さらに、本発明者らの検討においても、特に
ジエチルカーボネートのような鎖状エステルの割合が多
くなると、とりわけメチル基を有する鎖状エステルの割
合が多くなると、短絡や釘刺しにおける安全性が低下す
る傾向のあることがわかってきた。
Regarding the reaction with the electrolytic solution on the surface of the negative electrode, see D. Aurbach et al. Have reported that organic carbonate (ROCO 2 Li), Li 2 CO 3 , alkoxide (ROLi), etc. are formed on carbon [J. Electrochemical Soc. , V
ol142 (No. 9), p2882 (1995)].
Further, in the same report, in a mixed solvent of cyclic ester ethylene carbonate and chain ester diethyl carbonate, the ratio of chain ester diethyl carbonate to cyclic ester ethylene carbonate was 1: 1.
Higher amounts are reported to adversely affect cycle performance. Further, also in the study by the present inventors, especially when the proportion of chain ester such as diethyl carbonate is large, especially when the proportion of chain ester having a methyl group is large, the safety in short circuit and nail sticking is lowered. It turns out that there is a tendency.

【0010】従って、本発明は、従来の有機電解液二次
電池用の有機電解液の安全性に関する問題点を解決し、
安全性が優れた有機電解液二次電池を構成することので
きる有機電解液を提供することを目的とする。
Therefore, the present invention solves the problems relating to the safety of conventional organic electrolyte solutions for organic electrolyte secondary batteries,
An object of the present invention is to provide an organic electrolyte solution that can form an organic electrolyte secondary battery with excellent safety.

【0011】[0011]

【課題を解決するための手段】本発明は、全電解液溶媒
中で鎖状エステルが主溶媒として50体積%を超えて用
いられ、かつ少なくともメチル基を有する鎖状エステル
を電解液溶媒として用いた有機電解液二次電池用の有機
電解液において、炭素数が4個以上のアルキル基を有す
る非イオン性芳香族化合物を含有させ、かつ全電解液溶
媒中にエチレンカーボネートを10体積%以上含有させ
ることにより、有機電解液二次電池に用いた際に、その
負極表面に皮膜を形成させることよって、上記課題を解
決したものである。
According to the present invention, a chain ester is used as a main solvent in an amount of more than 50% by volume in a whole electrolyte solution solvent, and a chain ester having at least a methyl group is used as an electrolyte solution solvent. In an organic electrolyte solution for an organic electrolyte solution secondary battery, a nonionic aromatic compound having an alkyl group having 4 or more carbon atoms is contained, and 10% by volume or more of ethylene carbonate is contained in all the electrolyte solution solvents. By doing so, when used in an organic electrolyte secondary battery, a film is formed on the surface of the negative electrode to solve the above-mentioned problems.

【0012】[0012]

【発明の実施の形態】本発明において用いる炭素数が4
個以上のアルキル基を有する非イオン性芳香族化合物と
しては、たとえば、トリメリット酸エステル、トリ−2
−エチルヘキシルトリメリテート〔C6 3 (COOC
8 173 〕などのトリメリット酸エステルの誘導体、
ジブチルフタレート〔C6 4 (COOC
4 9 2 〕、ブチルベンゼン(C6 5 −C4 9
ノルマルまたはターシャリーまたはイソ)、シクロヘキ
シルベンゼン(C6 11−C6 5 )などが挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The number of carbon atoms used in the present invention is 4
Examples of the nonionic aromatic compound having at least one alkyl group include trimellitic acid ester and tri-2
-Ethylhexyl trimellitate [C 6 H 3 (COOC
Derivatives of trimellitic acid esters, such as 8 H 17 ) 3 ],
Dibutyl phthalate [C 6 H 4 (COOC
4 H 9) 2], butylbenzene (C 6 H 5 -C 4 H 9,
Normal or tertiary or iso), cyclohexylbenzene (C 6 H 11 -C 6 H 5) , and the like.

【0013】上記非イオン性芳香族化合物のアルキル基
は、炭素数が4個以上であることが必要であり、望まし
くは炭素数が5個以上である。また、上記アルキル基
は、ベンゼン環に直接結合していても良いが、COO基
を介してベンゼン環に結合しているのがさらに望まし
い。つまり、アルキル基は長い方がまたCOO基のある
方が負極表面でのバリアー効果(高温で電極と電解液と
の急速な反応を抑える効果)が大きいからである。ここ
で、上記非イオン性芳香族化合物における非イオン性と
は、カチオン部やアニオン部を分子内に持たないことを
いう。
The alkyl group of the nonionic aromatic compound must have 4 or more carbon atoms, and preferably has 5 or more carbon atoms. The alkyl group may be directly bonded to the benzene ring, but is more preferably bonded to the benzene ring via a COO group. That is, the longer the alkyl group is and the more the COO group is, the larger the barrier effect on the negative electrode surface (the effect of suppressing the rapid reaction between the electrode and the electrolytic solution at high temperature) is. Here, the nonionic property of the nonionic aromatic compound means that the molecule does not have a cation part or an anion part.

【0014】本発明において、上記炭素数が4個以上の
アルキル基を有する非イオン性芳香族化合物の有機電解
液中での含有量は、電解液溶媒100容量部に対して
0.1容量部以上であることが望ましく、0.2容量部
以上であることがさらに望ましく、0.5容量部以上が
もっとも望ましい。なお、上記炭素数が4個以上のアル
キル基を有する非イオン性芳香族化合物が固体の場合
は、その密度で体積換算した値を用いる。また、上記炭
素数が4個以上のアルキル基を有する非イオン性芳香族
化合物の有機電解液中での含有量は、電解液溶媒100
容量部に対して10容量部以下が望ましく、2容量部以
下がさらに望ましく、1容量部以下がもっとも望まし
い。
In the present invention, the content of the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms in the organic electrolytic solution is 0.1 part by volume with respect to 100 parts by volume of the electrolytic solution solvent. It is desirable that the amount is not less than 0.2 part by volume, more desirably not less than 0.2 part by volume, most desirably not less than 0.5 part by volume. When the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms is solid, a value converted into volume by its density is used. Further, the content of the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms in the organic electrolytic solution is 100% by weight of the electrolytic solution solvent.
The capacity is preferably 10 or less, more preferably 2 or less, and most preferably 1 or less.

【0015】上記炭素数が4個以上のアルキル基を有す
る非イオン性芳香族化合物の有機電解液中での含有量が
上記より少ない場合は安全性を充分に向上させることが
できなくなるおそれがあり、また、上記炭素数が4個以
上のアルキル基を有する非イオン性芳香族化合物の有機
電解液中での含有量が上記より多い場合は電池のサイク
ル特性や負荷特性が悪くなるおそれがある。
If the content of the above-mentioned nonionic aromatic compound having an alkyl group having 4 or more carbon atoms in the organic electrolyte is less than the above, safety may not be sufficiently improved. If the content of the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms in the organic electrolytic solution is larger than the above, the cycle characteristics and load characteristics of the battery may be deteriorated.

【0016】本発明者らは、芳香族化合物の有機電解液
への添加が電池の安全性に及ぼす効果を詳細に検討し
た。これを詳しく説明すると、本発明者らは、まず、内
部短絡などを想定してリチウムイオン電池の釘刺し試験
を行ったところ、通常の市販のリチウムイオン電池では
危険性が低いが、電池のエネルギー密度が高くなるにつ
れて危険性が増していくことがわかった。
The present inventors have examined in detail the effect of the addition of the aromatic compound to the organic electrolytic solution on the safety of the battery. Explaining this in detail, the present inventors first conducted a nail penetration test of a lithium-ion battery assuming an internal short circuit, etc., and although the risk is low with a normal commercially available lithium-ion battery, the energy of the battery is low. It was found that the danger increases as the density increases.

【0017】これらの電池の負極には通常炭素材料など
のリチウムを脱挿入できる化合物が使用されているが、
負極が過充電されて多少リチウムが電着した場合、約1
00℃付近から電解液と電着リチウムやリチウムが挿入
された炭素材料との間に発熱反応が生じる。一方、正極
はリチウムが脱離することによって、電解液との反応開
始温度が低くなり、負極の反応熱によって正極の熱暴走
温度にまで温度が上昇すると、電池は異常発熱を起こす
ことになる。
A compound such as a carbon material capable of deintercalating lithium is usually used for the negative electrode of these batteries.
About 1 if the negative electrode is overcharged and some lithium is electrodeposited
An exothermic reaction occurs between the electrolytic solution and the electrodeposited lithium or the carbon material in which lithium is inserted from around 00 ° C. On the other hand, the desorption of lithium in the positive electrode lowers the reaction initiation temperature with the electrolytic solution, and when the temperature rises to the thermal runaway temperature of the positive electrode due to the reaction heat of the negative electrode, the battery will abnormally generate heat.

【0018】このような連続反応を伴う発熱現象がある
ため、負極の単位体積あたりの放電可能な容量が多いほ
ど、過充電時に発熱した場合に電池単位体積あたりの発
熱量が多くなり、電池温度が正極の熱暴走温度にまで上
昇する可能性が高くなるのである。従って、単位体積あ
たりの負極容量の大きい電池ほど、負極と電解液との発
熱反応を抑制する必要がある。また、電池サイズが大き
い場合も発熱量が多くなるので、負極と電解液との発熱
反応を抑制する必要があり、本発明の炭素数が4個以上
のアルキル基を有する非イオン性芳香族化合物を含有さ
せる効果が顕著に発現する。単電池のサイズが10cm
3 以上、特に15cm3 以上になると発熱量が多くなる
ので、本発明の効果がより顕著に発現する。
Because of the exothermic phenomenon associated with such a continuous reaction, the larger the dischargeable capacity per unit volume of the negative electrode, the greater the amount of heat generated per unit volume of the battery when heat is generated during overcharge, and the battery temperature Is likely to rise to the thermal runaway temperature of the positive electrode. Therefore, it is necessary to suppress the exothermic reaction between the negative electrode and the electrolytic solution as the battery has a larger negative electrode capacity per unit volume. In addition, since the amount of heat generated increases even when the battery size is large, it is necessary to suppress the exothermic reaction between the negative electrode and the electrolytic solution, and the nonionic aromatic compound having an alkyl group of 4 or more carbon atoms of the present invention The effect of including is remarkably exhibited. Single cell size is 10 cm
When it is 3 or more, especially 15 cm 3 or more, the calorific value increases, so that the effect of the present invention is more significantly exhibited.

【0019】本発明において、上記炭素数が4個以上の
アルキル基を有する非イオン性芳香族化合物を含有する
有機電解液を用いることによって安全性を改善できる理
由は以下のように考えられる。
In the present invention, the reason why the safety can be improved by using the organic electrolytic solution containing the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms is considered as follows.

【0020】カーボン材料のようにリチウムを脱挿入で
きる化合物によって負極を作製することにより、電解液
と負極との高温での反応性は金属リチウムを負極に用い
た場合よりも抑制されているが、負極の充放電可能な容
量が増えることによって電解液との反応性が増加し、電
池が発熱して負極と電解液との反応が起こったときの発
熱量が多くなり、温度が上昇しやすくなる。しかし、炭
素数が4個以上の非イオン性芳香族化合物が有機電解液
中に添加されていると、該芳香族化合物が負極の表面に
吸着し、負極の表面と鎖状エステルとの直接の接触を抑
制するので、負極と電解液との反応性が低減されて、温
度上昇が制限されるものと考えられる。そして、芳香族
化合物は、炭素数が4個以上のアルキル基を有するもの
の方が効果が高いこともわかった。その詳細は後記の実
施例で明らかにする。
By preparing the negative electrode with a compound capable of deintercalating lithium such as a carbon material, the reactivity of the electrolytic solution and the negative electrode at high temperature is suppressed more than in the case where metallic lithium is used for the negative electrode. The increase in the chargeable / dischargeable capacity of the negative electrode increases the reactivity with the electrolytic solution, and the amount of heat generated when the battery heats up and the reaction between the negative electrode and the electrolytic solution increases, making it easy for the temperature to rise. . However, when a nonionic aromatic compound having 4 or more carbon atoms is added to the organic electrolytic solution, the aromatic compound is adsorbed on the surface of the negative electrode and the direct contact between the surface of the negative electrode and the chain ester occurs. Since the contact is suppressed, it is considered that the reactivity between the negative electrode and the electrolytic solution is reduced and the temperature rise is limited. It was also found that the aromatic compound having an alkyl group having 4 or more carbon atoms was more effective. The details will be clarified in Examples described later.

【0021】電解液溶媒のうち主溶媒として用いる鎖状
エステルは、たとえば、ジメチルカーボネート、ジエチ
ルカーボネート、メチルエチルカーボネート、プロピオ
ン酸メチルなどの鎖状のCOO−結合を有する有機溶媒
である。主溶媒というのは、これらの鎖状エステルを含
んだ全電解液溶媒中で鎖状エステルが50体積%を超え
ることを意味する。鎖状エステルが65体積%を超える
と釘刺し試験での電池の安全性が低下する傾向があり、
炭素数が4個以上のアルキル基を有する非イオン性芳香
族化合物の添加効果が大きくなる。そして、鎖状エステ
ルが70体積%を超えると上記アルキル基を有する非イ
オン性芳香族化合物の添加効果がより一層大きくなり、
鎖状エステルが75体積%を超えると上記アルキル基を
有する非イオン性芳香族化合物の添加効果がさらに大き
くなる。また、鎖状エステルがメチル基を有する場合も
電池の安全性が低下しやすくなるので、上記アルキル基
を有する非イオン性芳香族化合物の添加効果がより一層
顕著になる。
The chain ester used as the main solvent in the electrolytic solution solvent is, for example, an organic solvent having a chain COO-bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and methyl propionate. The main solvent means that the chain ester exceeds 50% by volume in the total electrolyte solvent containing these chain esters. If the chain ester content exceeds 65% by volume, the battery safety in the nail penetration test tends to decrease,
The effect of adding the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms is increased. When the chain ester exceeds 70% by volume, the effect of adding the nonionic aromatic compound having the above alkyl group is further increased,
When the chain ester content exceeds 75% by volume, the effect of adding the nonionic aromatic compound having an alkyl group is further enhanced. Also, when the chain ester has a methyl group, the safety of the battery is likely to be lowered, so that the effect of adding the nonionic aromatic compound having an alkyl group becomes more remarkable.

【0022】また、上記鎖状エステルに下記の誘電率が
高いエステル(誘電率30以上)を混合して用いると、
鎖状エステルだけで用いる場合よりも、サイクル特性や
電池の負荷特性が向上し、また、安全性も向上するの
で、電池としてはより望ましいものとなる。上記のよう
な安全性の向上は、誘電率の高いエステルが全電解液溶
媒(有機電解液の全溶媒)中で10体積%以上になると
顕著になる。このような誘電率の高いエステルとして
は、たとえば、プロピレンカーボネート(PC)、エチ
レンカーボネート(EC)、ブチレンカーボネート(B
C)、ガンマーブチロラクトン(γ−BL)、エチレン
グリコールサルファイト(EGS)などが挙げられ、特
に環状構造のものが好ましく、とりわけ環状のカーボネ
ートが好ましく、エチレンカーボネート(EC)が最も
好ましい。従って、本発明においては、前記炭素数が4
個以上のアルキル基を有する非イオン性芳香族化合物と
ともに、全電解液溶媒中にエチレンカーボネートを10
体積%以上含有させる。
When the above chain ester is mixed with the following ester having a high dielectric constant (dielectric constant of 30 or more),
Since the cycle characteristics and the load characteristics of the battery are improved and the safety is improved as compared with the case where only the chain ester is used, the battery is more desirable. The above-described improvement in safety becomes remarkable when the ester having a high dielectric constant is 10% by volume or more in the entire electrolytic solution solvent (total solvent of the organic electrolytic solution). Examples of such an ester having a high dielectric constant include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (B
C), gamma-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like are preferable, and those having a cyclic structure are particularly preferable, cyclic carbonate is particularly preferable, and ethylene carbonate (EC) is most preferable. Therefore, in the present invention, the carbon number is 4
With a nonionic aromatic compound having at least one alkyl group, ethylene carbonate is added in an amount of 10% in all electrolyte solvent.
It is contained by volume% or more.

【0023】上記誘電率の高いエステルは全電解液溶媒
中の40体積%未満が好ましく、より好ましくは30体
積%以下、さらに好ましくは25体積%以下である。
The ester having a high dielectric constant is preferably less than 40% by volume, more preferably 30% by volume or less, and further preferably 25% by volume or less in the total electrolyte solvent.

【0024】上記誘電率の高いエステル以外に鎖状エス
テルと併用可能な溶媒としては、たとえば1,2−ジメ
トキシエタン(DME)、1,3−ジオキソラン(D
O)、テトラヒドロフラン(THF)、2−メチル−テ
トラヒドロフラン(2Me−THF)、ジエチルエーテ
ル(DEE)などが挙げられる。そのほか、アミンイミ
ド系有機溶媒や、含イオウまたは含フッ素系有機溶媒な
ども用いることができる。
Examples of the solvent that can be used in combination with the chain ester other than the above-mentioned ester having a high dielectric constant include 1,2-dimethoxyethane (DME) and 1,3-dioxolane (D).
O), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), diethyl ether (DEE) and the like. In addition, an amine imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, or the like can be used.

【0025】有機電解液の電解質としては、たとえば、
LiClO4 、LiPF6 、LiBF4 、LiAs
6 、LiSbF6 、LiCF3 SO3 、LiC4 9
SO3 、LiCF3 CO2 、Li2 2 4 (SO3
2 、LiN(CF3 SO2 2 、LiC(CF3
2 3 、LiCn 2n+1SO3 (n≧2)、LiN
(Rf3OSO2 2 〔ここでRfはフルオロアルキル
基〕などが単独でまたは2種以上混合して用いられる
が、特にLiPF6 やLiC4 9 SO3 などが充放電
特性が良好なことから望ましい。有機電解液中における
電解質の濃度は、特に限定されるものではないが、濃度
を1mol/l以上にすると安全性が向上するので望ま
しく、1.2mol/l以上がさらに望ましい。また、
有機電解液中における電解質の濃度が1.7mol/l
以下であると良好な電気特性が保たれるので望ましく、
1.5mol/l以下であることがさらに望ましい。
As the electrolyte of the organic electrolytic solution, for example,
LiClO 4 , LiPF 6 , LiBF 4 , LiAs
F 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9
SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 )
2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 S
O 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN
(Rf 3 OSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like may be used alone or as a mixture of two or more, and particularly LiPF 6 and LiC 4 F 9 SO 3 have good charge and discharge characteristics. From desirable. The concentration of the electrolyte in the organic electrolytic solution is not particularly limited, but it is desirable that the concentration be 1 mol / l or more because safety is improved, and 1.2 mol / l or more is more desirable. Also,
The concentration of the electrolyte in the organic electrolytic solution is 1.7 mol / l
It is desirable that it is less than the following, because good electrical characteristics are maintained,
It is more desirable that the amount is 1.5 mol / l or less.

【0026】本発明の有機電解液を用いて有機電解液二
次電池を構成するにあたって、正極活物質としては、た
とえば、LiCoO2 などのリチウムコバルト酸化物、
LiMn2 4 などのリチウムマンガン酸化物、LiN
iO2 などのリチウムニッケル酸化物、二酸化マンガ
ン、五酸化バナジウム、クロム酸化物、などの金属酸化
物または二硫化チタン、二硫化モリブデンなどの金属硫
化物が用いられる。
In constructing an organic electrolytic solution secondary battery using the organic electrolytic solution of the present invention, the positive electrode active material is, for example, lithium cobalt oxide such as LiCoO 2 .
LiMn 2 O 4 and other lithium manganese oxides, LiN
Lithium nickel oxide such as iO 2 , metal oxide such as manganese dioxide, vanadium pentoxide and chromium oxide, or metal sulfide such as titanium disulfide and molybdenum disulfide is used.

【0027】そして、正極は、たとえば、それらの正極
活物質に導電助剤やポリフッ化ビニリデンなどの結着剤
などを適宜添加した合剤を、アルミニウム箔などの集電
材料を芯材として帯状の成形体に仕上げたものが用いら
れる。
For the positive electrode, for example, a mixture of the positive electrode active material and a binder such as a conductive auxiliary agent or polyvinylidene fluoride is added to the positive electrode, and the current collector material such as an aluminum foil is used as a core material. A finished product is used.

【0028】特にLiNiO2 、LiCoO2 、LiM
2 4 などの充電時の開路電圧がLi基準で4V以上
を示すリチウム複合酸化物を正極活物質として用いる場
合には、高エネルギー密度が得られるので望ましい。特
に充電したLiCoO2 やLiNiO2 は、電解液溶媒
との反応開始温度がLiMn2 4 より低く、負極の発
熱によって正極の熱暴走温度に達しやすいので、本発明
の効果がより顕著に発揮される。
In particular, LiNiO 2 , LiCoO 2 , LiM
When a lithium composite oxide having an open circuit voltage at the time of charging of 4 V or more based on Li such as n 2 O 4 is used as the positive electrode active material, high energy density can be obtained, which is desirable. Particularly, charged LiCoO 2 and LiNiO 2 have a lower reaction initiation temperature with the electrolyte solvent than LiMn 2 O 4 and easily reach the thermal runaway temperature of the positive electrode due to heat generation of the negative electrode, so that the effect of the present invention is more significantly exerted. It

【0029】また、本発明の有機電解液を用いて有機電
解液二次電池を構成するにあたって、負極に用いる材料
としては、リチウムイオンをドープ・脱ドープできるも
のであればよく、たとえば、黒鉛、熱分解炭素類、コー
クス類、ガラス状炭素類、有機高分子化合物の焼成体、
メソカーボンマイクロビーズ、炭素繊維、活性炭などの
炭素材料あるいはSi、Sn、Inなどの酸化物などを
用いることができる。
In forming an organic electrolyte secondary battery using the organic electrolyte of the present invention, the material used for the negative electrode may be any material that can dope and de-dope lithium ions, such as graphite, Pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds,
It is possible to use carbon materials such as mesocarbon microbeads, carbon fibers and activated carbon, or oxides such as Si, Sn and In.

【0030】負極に炭素材料を用いる場合、該炭素材料
は下記の特性を持つものが望ましい。すなわち、その
(002)面の層間距離d002 に関しては、0.35n
m以下が望ましく、より望ましくは0.345nm以
下、さらに望ましくは0.34nm以下である。また、
c軸方向の結晶子の大きさLcは、3nm以上が望まし
く、より望ましくは8nm以上、さらに望ましくは25
nm以上である。そして、その平均粒径は8〜15μ
m、特に10〜13μmが望ましく、純度は99.9%
以上が望ましい。
When a carbon material is used for the negative electrode, the carbon material preferably has the following characteristics. That is, the interlayer distance d 002 of the (002) plane is 0.35n
The thickness is preferably m or less, more preferably 0.345 nm or less, and further preferably 0.34 nm or less. Also,
The crystallite size Lc in the c-axis direction is preferably 3 nm or more, more preferably 8 nm or more, and further preferably 25 nm.
nm or more. And the average particle size is 8 to 15 μm.
m, especially 10 to 13 μm is desirable, and the purity is 99.9%
The above is desirable.

【0031】[0031]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to only those examples.

【0032】実施例1 メチルエチルカーボネートとエチレンカーボネートとを
体積比76:24で混合し、この混合溶媒100容量部
に対してトリ−2−エチルヘキシルトリメリテート〔C
6 3 (COOC8 173 〕を1容量部添加して混合
し、LiPF6を1.4mol/l溶解させて有機電解
液を調製した。
Example 1 Methyl ethyl carbonate and ethylene carbonate were mixed at a volume ratio of 76:24, and tri-2-ethylhexyl trimellitate [C was mixed with 100 parts by volume of this mixed solvent.
6 H 3 (COOC 8 H 17 ) 3 ] was added and mixed in an amount of 1 part by volume, and LiPF 6 was dissolved in 1.4 mol / l to prepare an organic electrolytic solution.

【0033】これとは別に、正極活物質としてのLiC
oO2 に導電助剤としてリン状黒鉛を質量比100:7
で加えて混合し、この混合物と、ポリフッ化ビニリデン
をN−メチルピロリドンに溶解させた溶液とを混合して
スラリーにした。この正極合剤スラリーを70メッシュ
の網を通過させて大きなものを取り除いた後、厚さ20
μmのアルミニウム箔からなる正極集電体の両面に均一
に塗付して乾燥し、その後、ローラプレス機により圧縮
成形し、切断した後、リード体を溶接して、帯状の正極
を作製した。
Separately, LiC as a positive electrode active material is used.
Phosphorous graphite as a conductive additive in oO 2 in a mass ratio of 100: 7
And mixed with each other, and this mixture was mixed with a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone to form a slurry. The positive electrode mixture slurry was passed through a 70-mesh net to remove large ones, and then a thickness of 20
A positive electrode current collector made of an aluminum foil having a thickness of μm was evenly applied on both sides and dried, then compression molded by a roller press machine, cut, and then a lead body was welded to produce a strip-shaped positive electrode.

【0034】つぎに、黒鉛系炭素材料(ただし、層間距
離d002 =0.337nm、c軸方向の結晶子サイズL
c=95nm、平均粒径10μm、純度99.9%とい
う特性を持つ黒鉛系炭素材料)90質量部を、フッ化ビ
ニリデン10質量部をN−メチルピロリドンに溶解させ
た溶液と混合してスラリーにした。この負極合剤スラリ
ーを70メッシュの網を通過させて大きなものを取り除
いた後、厚さ10μmの帯状の銅箔からなる負極集電体
の両面に均一に塗付して乾燥し、その後、ローラプレス
機により圧縮成形し、切断した後、リード体を溶接し
て、帯状の負極を作製した。
Next, a graphite-based carbon material (provided that the interlayer distance d 002 = 0.337 nm and the crystallite size L in the c-axis direction) was used.
90 parts by mass of a graphite-based carbon material having the characteristics of c = 95 nm, average particle size of 10 μm, and purity of 99.9%) is mixed with a solution prepared by dissolving 10 parts by mass of vinylidene fluoride in N-methylpyrrolidone to form a slurry. did. This negative electrode mixture slurry was passed through a 70-mesh net to remove large ones, and then uniformly coated on both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm and dried, and then a roller was used. After compression molding with a press and cutting, a lead body was welded to produce a strip-shaped negative electrode.

【0035】前記帯状正極を厚さ25μmの微孔性ポリ
エチレンフィルムを介して上記帯状負極に重ね、渦巻状
に巻回して渦巻状電極体とした後、外径18mmの有底
円筒状の電池ケース内に充填し、正極および負極のリー
ド体の溶接を行った。ここで、負極の充放電容量は、こ
の電池の通常充電条件(1400mAの定電流で充電
し、4.1Vに達した後は4.1Vの定電圧で充電する
操作を2時間30分行う)では、85mAh/cm3
あった。
The band-shaped positive electrode was superposed on the band-shaped negative electrode via a microporous polyethylene film having a thickness of 25 μm and wound in a spiral shape to form a spiral electrode body, and then a cylindrical battery case having a bottom with an outer diameter of 18 mm. Then, the lead bodies of the positive electrode and the negative electrode were welded. Here, the charge and discharge capacity of the negative electrode is the normal charge condition of this battery (the operation of charging at a constant current of 1400 mA and, after reaching 4.1 V, charging at a constant voltage of 4.1 V for 2 hours 30 minutes). Then, it was 85 mAh / cm 3 .

【0036】つぎに上記有機電解液を電池ケース内に注
入し、該有機電解液がセパレータなどに充分に浸透した
後、封口し、予備充電、エイジングを行い、図1に示す
構造の筒形の有機電解液二次電池を作製した。
Next, the above-mentioned organic electrolytic solution is injected into the battery case, and after the organic electrolytic solution has sufficiently penetrated into the separator or the like, the organic electrolytic solution is sealed, precharged and aged, and the tubular structure having the structure shown in FIG. 1 is formed. An organic electrolyte secondary battery was produced.

【0037】図1に示す電池について概略的に説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用された集電体などは図示しておら
ず、これらの正極1と負極2はセパレータ3を介して渦
巻状に巻回され、渦巻状電極体として、有機電解液と共
に、ステンレス鋼製の電池ケース4内に収容されてい
る。
The battery shown in FIG. 1 will be briefly described. 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector and the like used in the production of the positive electrode 1 and the negative electrode 2 are not shown, and the positive electrode 1 and the negative electrode 2 are spirally formed with the separator 3 interposed therebetween. The spirally wound electrode body is housed in a battery case 4 made of stainless steel together with an organic electrolytic solution.

【0038】上記有機電解液には前記のようにトリ−2
−エチルヘキシルトリメリテートを含有させており、上
記電池ケース4は負極端子を兼ねていて、その底部には
絶縁体5が配置され、渦巻状電極体上にも絶縁体6が配
置されている。そして、電池ケース4の開口部には環状
の絶縁パッキング7を介して封口体8が配置され、電池
ケース4の開口端部の内方への締め付けにより電池内部
を密閉構造にしている。ただし、上記封口体8には、電
池内部に発生したガスをある一定圧力まで上昇した段階
で電池外部に排出して、電池の高圧下での破裂を防止す
るための可逆式のベント機構が組み込まれている。
As described above, the organic electrolyte solution contains tri-2.
-Ethylhexyl trimellitate is contained, the battery case 4 also serves as a negative electrode terminal, the insulator 5 is arranged on the bottom thereof, and the insulator 6 is also arranged on the spiral electrode body. Then, a sealing body 8 is arranged in the opening of the battery case 4 via an annular insulating packing 7, and the inside of the battery is sealed by tightening the opening end of the battery case 4 inward. However, the sealing body 8 incorporates a reversible vent mechanism for preventing the gas generated inside the battery from exploding to the outside of the battery when it rises to a certain constant pressure and preventing the battery from bursting under high pressure. Has been.

【0039】実施例2 トリ−2−エチルヘキシルトリメリテートに代えてジブ
チルフタレート〔C64 (COOC4 9 2 〕を用
いた以外は実施例1と同様に有機電解液を調製し、該有
機電解液を用いた以外は実施例1と同様に筒形の有機電
解液二次電池を作製した。
Example 2 An organic electrolytic solution was prepared in the same manner as in Example 1 except that dibutyl phthalate [C 6 H 4 (COOC 4 H 9 ) 2 ] was used instead of tri-2-ethylhexyl trimellitate. A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the organic electrolyte was used.

【0040】比較例1 トリ−2−エチルヘキシルトリメリテートに代えてジメ
チルフタレート〔C64 (COOCH3 2 〕を用い
た以外は実施例1と同様に有機電解液を調製し、該有機
電解液を用いた以外は実施例1と同様に筒形の有機電解
液二次電池を作製した。
Comparative Example 1 An organic electrolyte solution was prepared in the same manner as in Example 1 except that dimethyl phthalate [C 6 H 4 (COOCH 3 ) 2 ] was used instead of tri-2-ethylhexyl trimellitate. A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the electrolytic solution was used.

【0041】比較例2 トリ−2−エチルヘキシルトリメリテートに代えてトル
エンを用いた以外は実施例1と同様に有機電解液を調製
し、該有機電解液を用いた以外は実施例1と同様に筒形
の有機電解液二次電池を作製した。
Comparative Example 2 An organic electrolytic solution was prepared in the same manner as in Example 1 except that toluene was used instead of tri-2-ethylhexyl trimellitate, and the same as in Example 1 except that the organic electrolytic solution was used. A cylindrical organic electrolyte secondary battery was manufactured.

【0042】比較例3 有機電解液にトリ−2−エチルヘキシルトリメリテート
を含有させなかった以外は実施例1と同様に有機電解液
を調製し、該有機電解液を用いた以外は実施例1と同様
に筒形の有機電解液二次電池を作製した。
Comparative Example 3 An organic electrolytic solution was prepared in the same manner as in Example 1 except that the organic electrolytic solution did not contain tri-2-ethylhexyl trimellitate, and Example 1 was used except that the organic electrolytic solution was used. A cylindrical organic electrolyte secondary battery was prepared in the same manner as in.

【0043】比較例4 エチレンカーボネートとメチルエチルカーボネートとの
比率を体積比で1:1にした以外は比較例3と同様に有
機電解液を調製し、該有機電解液を用いた以外は実施例
1と同様に筒形の有機電解液二次電池を作製した。
Comparative Example 4 An organic electrolytic solution was prepared in the same manner as Comparative Example 3 except that the volume ratio of ethylene carbonate to methyl ethyl carbonate was 1: 1. A cylindrical organic electrolyte secondary battery was produced in the same manner as in 1.

【0044】上記実施例1〜2および比較例1〜4の電
池を、1400mAで2.75Vまで放電した後140
0mAの定電流で充電し、4.18Vに達した後は4.
18Vの定電圧に保つ条件で2時間30分の充電を行っ
た。その後、電池を40℃の恒温槽に入れて2時間後に
取り出し、木製で溝をきった電池ホルダー上に置き、軸
部の直径が3mmのステンレス鋼製の釘を電池の側面中
心に直角にかつ速やかに電池外径の1/2の深さまで刺
し、異常発熱の有無を調べた。その結果を表1に示す。
The batteries of Examples 1 and 2 and Comparative Examples 1 to 4 were discharged at 1400 mA to 2.75 V and then discharged to 140 V.
After charging with a constant current of 0 mA and reaching 4.18 V, 4.
Charging was performed for 2 hours and 30 minutes under the condition of keeping a constant voltage of 18V. After that, the battery was placed in a constant temperature bath at 40 ° C., taken out after 2 hours, placed on a battery holder with a wooden groove, and a stainless steel nail with a shaft diameter of 3 mm was placed perpendicular to the center of the side surface of the battery. Immediately, the battery was pierced to a depth of 1/2 of the outer diameter of the battery and examined for abnormal heat generation. The results are shown in Table 1.

【0045】この試験には実施例1〜2、比較例1〜4
の電池とも20個ずつを用い、表1には試験に供した電
池個数を分母に示し、異常発熱のあった電池個数を分子
に示す態様で異常発熱の割合を示す。上記40℃での1
/2釘刺し試験は安全性を確認する試験としてきわめて
苛酷な条件下での試験である。
In this test, Examples 1-2 and Comparative Examples 1-4
For each battery, 20 batteries are used, and in Table 1, the number of batteries used in the test is shown in the denominator, and the number of batteries with abnormal heat generation is shown in the numerator to show the ratio of abnormal heat generation. 1 at 40 ℃ above
The / 2 nail penetration test is a test for confirming safety under extremely severe conditions.

【0046】[0046]

【表1】 [Table 1]

【0047】表1に示すように、本発明の有機電解液を
用いた実施例1〜2の電池は、有機電解液中の鎖状エス
テルが50体積%を超えているにもかかわらず異常発熱
の割合が少なく、有機電解液中に炭素数が4個以上のア
ルキル基を有する非イオン性芳香族化合物を含有させ、
かつ全電解液溶媒中にエチレンカーボネートを10体積
%以上含有させることによって釘刺し試験での安全性が
向上することがわかる。特に実施例1のように、非イオ
ン性芳香族化合物のアルキル基の炭素数が5個以上の場
合は、より効果が大きくなる。しかし、比較例1〜2の
電池のように、有機電解液中に含有させる非イオン性芳
香族化合物のアルキル基の炭素数が少ない場合は効果が
小さい。その中でも、比較例2のようにアルキル基がベ
ンゼン環に直接結合しているよりも、比較例1のように
アルキル基がCOO基を介してベンゼン環に結合してい
るものの方が効果が大きい。また、比較例4のようにメ
チルエチルカーボネートなどの鎖状エステルが少なかっ
たり、あるいは鎖状エステルがエチル基だけを有する場
合には安全性がよく、炭素数が4個以上のアルキル基を
有する非イオン性芳香族化合物の添加の効果は少なくな
る傾向にある。
As shown in Table 1, the batteries of Examples 1 and 2 using the organic electrolytic solution of the present invention generated abnormal heat even though the chain ester in the organic electrolytic solution exceeded 50% by volume. And the organic electrolyte contains a nonionic aromatic compound having an alkyl group having 4 or more carbon atoms,
Moreover, it can be seen that the safety in the nail penetration test is improved by including 10% by volume or more of ethylene carbonate in the solvent for all electrolytes. In particular, as in Example 1, when the alkyl group of the nonionic aromatic compound has 5 or more carbon atoms, the effect is further enhanced. However, as in the batteries of Comparative Examples 1 and 2, the effect is small when the number of carbon atoms of the alkyl group of the nonionic aromatic compound contained in the organic electrolytic solution is small. Among them, the one in which the alkyl group is bonded to the benzene ring through the COO group as in Comparative Example 1 is more effective than the one in which the alkyl group is directly bonded to the benzene ring as in Comparative Example 2. . Further, as in Comparative Example 4, when the amount of chain ester such as methyl ethyl carbonate is small or when the chain ester has only an ethyl group, the safety is good, and the non-chain having a carbon number of 4 or more is The effect of adding the ionic aromatic compound tends to decrease.

【0048】[0048]

【発明の効果】以上説明したように、本発明では、全電
解液溶媒中で鎖状エステルが主溶媒として50体積%を
超えて用いられ、かつ少なくともメチル基を有する鎖状
エステルを電解液溶媒として用いた有機電解液におい
て、上記有機電解液中に炭素数が4個以上のアルキル基
を有する非イオン性芳香族化合物を含有させ、かつ全電
解液溶媒中にエチレンカーボネートを10体積%以上含
有させることによって、このような有機電解液を用いる
電池の安全性を改善することができた。
As described above, in the present invention, the chain ester is used as the main solvent in an amount of more than 50% by volume in the whole electrolyte solution solvent, and the chain ester having at least a methyl group is used as the electrolyte solution solvent. In the organic electrolytic solution used as above, a nonionic aromatic compound having an alkyl group having 4 or more carbon atoms is contained in the organic electrolytic solution, and ethylene carbonate is contained in an amount of 10% by volume or more in all electrolytic solution solvents. By doing so, the safety of the battery using such an organic electrolyte can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機電解液を用いた有機電解液二次電
池の一例を模式的に示す部分断面斜視図である。
FIG. 1 is a partial cross-sectional perspective view schematically showing an example of an organic electrolytic solution secondary battery using the organic electrolytic solution of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 Negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−275632(JP,A) 特開 平5−36439(JP,A) 特開 平10−74537(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 CA(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-10-275632 (JP, A) JP-A-5-36439 (JP, A) JP-A-10-74537 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 10/40 CA (STN)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 全電解液溶媒中で鎖状エステルが主溶媒
として50体積%を超えて用いられ、かつ少なくともメ
チル基を有する鎖状エステルを電解液溶媒として用いた
有機電解液二次電池用の有機電解液であって、上記有機
電解液中に炭素数が4個以上のアルキル基を有する非イ
オン性芳香族化合物を含有させ、かつ全電解液溶媒中に
エチレンカーボネートを10体積%以上含有させること
により、有機電解液二次電池に用いた際に、その負極表
面に皮膜を形成することを特徴とする有機電解液二次電
池用の有機電解液。
1. A chain ester is used as a main solvent in an amount of more than 50% by volume in all the electrolytic solution solvents, and a chain ester having at least a methyl group is used as the electrolytic solution solvent.
Organic electrolyte solution An organic electrolyte solution for a secondary battery , wherein the above-mentioned organic electrolyte solution contains a nonionic aromatic compound having an alkyl group having 4 or more carbon atoms, and ethylene is contained in the entire electrolyte solution solvent. Rukoto is contained carbonate least 10 vol%
When used in an organic electrolyte secondary battery,
Organic electrolyte secondary battery characterized by forming a film on the surface
Organic electrolyte for ponds .
【請求項2】 非イオン性芳香族化合物の炭素数が4個
以上のアルキル基が、ベンゼン環に直接結合している請
求項1記載の有機電解液二次電池用の有機電解液。
Wherein the alkyl group of 4 or more carbon atoms of a non-ionic aromatic compound, <br/> Motomeko 1 for organic electrolyte secondary battery according to a benzene ring that has engaged straight knotting organic electrolyte solution.
【請求項3】 イオン性芳香族化合物が、ブチルベン
ゼンまたはシクロヘキシルベンゼンである請求項2記載
有機電解液二次電池用の有機電解液。
3. A non-ionic aromatic compound, an organic electrolytic solution for an organic electrolyte secondary battery according to claim 2, wherein a butylbenzene or cyclohexylbenzene.
【請求項4】 アルキル基の炭素数が5個以上である請
求項2記載の有機電解液二次電池用の有機電解液。
Wherein the alkyl group organic electrolytic solution for an organic electrolyte secondary battery according to claim 2 Symbol placement carbon number of 5 or more.
【請求項5】 非イオン性芳香族化合物の炭素数が4個
以上のアルキル基が、COO基を介してベンゼン環に結
合している請求項1記載の有機電解液二次電池用の有機
電解液。
5. The nonionic aromatic compound has 4 carbon atoms.
The above alkyl groups are bonded to the benzene ring via the COO group.
The organic electrolyte for a secondary battery according to claim 1,
Electrolyte.
【請求項6】 非イオン性芳香族化合物が、トリメリッ
ト酸エステル、トリメリット酸エステルの誘導体または
ジブチルフタレートである請求項5記載の有機電解液二
次電池用の有機電解液。
6. The nonionic aromatic compound is a trimellitic compound.
Tomic acid ester, trimellitic acid ester derivative or
The organic electrolyte solution according to claim 5, which is dibutyl phthalate.
Organic electrolyte for secondary batteries.
【請求項7】 アルキル基の炭素数が5個以上である請
求項5記載の有機電解液二次電池用の有機電解液。
7. A contract in which an alkyl group has 5 or more carbon atoms.
The organic electrolyte solution for an organic electrolyte secondary battery according to claim 5.
【請求項8】 全電解液溶媒中で鎖状エステルが50体
積%を超えて76体積%までの範囲で用いられる請求項
1〜7のいずれかに記載の有機電解液二次電池用の有機
電解液。
8. A chain ester of 50 units in all electrolyte solvents
Used in a range of more than product% and up to 76% by volume.
Organic for electrolyte secondary battery according to any one of 1 to 7
Electrolyte.
【請求項9】 全電解液溶媒中で鎖状エステルが65体
積%を超えている請求項1〜のいずれかに記載の有機
電解液二次電池用の有機電解液。
9. The organic according to any one of Motomeko 1-8 chain ester in all electrolyte solvents that have exceeded 65 vol%
Electrolyte solution Organic electrolyte solution for secondary batteries .
【請求項10】 炭素数が4個以上のアルキル基を有す
る非イオン性芳香族化合物の有機電解液中での含有量
が、電解液溶媒100容量部に対して0.1容量部以上
10容量部以下である請求項1〜のいずれかに記載の
有機電解液二次電池用の有機電解液。
10. The content of the nonionic aromatic compound having an alkyl group having 4 or more carbon atoms in the organic electrolytic solution is 0.1 part by volume or more and 10 volumes by volume with respect to 100 parts by volume of the electrolytic solution solvent. parts or less of any of claims 1-9
Organic Electrolyte Organic electrolyte for secondary batteries .
JP2002232226A 2002-08-09 2002-08-09 Organic electrolytes Organic electrolytes for secondary batteries Expired - Lifetime JP3449710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232226A JP3449710B2 (en) 2002-08-09 2002-08-09 Organic electrolytes Organic electrolytes for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232226A JP3449710B2 (en) 2002-08-09 2002-08-09 Organic electrolytes Organic electrolytes for secondary batteries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001385375A Division JP3449706B2 (en) 2001-12-19 2001-12-19 Organic electrolyte secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JP2003109660A JP2003109660A (en) 2003-04-11
JP3449710B2 true JP3449710B2 (en) 2003-09-22

Family

ID=19196303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232226A Expired - Lifetime JP3449710B2 (en) 2002-08-09 2002-08-09 Organic electrolytes Organic electrolytes for secondary batteries

Country Status (1)

Country Link
JP (1) JP3449710B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1691441B1 (en) 2003-11-13 2012-03-07 Ube Industries, Ltd. Non-aqueous electrolyte solution and lithium secondary battery comprising the same
CN100459274C (en) * 2003-11-13 2009-02-04 宇部兴产株式会社 Nonaqueous electrolyte solution and lithium secondary battery
WO2008136175A1 (en) 2007-04-25 2008-11-13 Nippon Chemi-Con Corporation Sealing material for electrolytic capacitor and electrolytic capacitor employing the sealing material
WO2013147094A1 (en) 2012-03-30 2013-10-03 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte cell using same
JP5811311B2 (en) 2013-09-26 2015-11-11 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery using the same

Also Published As

Publication number Publication date
JP2003109660A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP3275998B2 (en) Organic electrolyte secondary battery
JP3354057B2 (en) Organic electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2005123183A (en) Non-aqueous electrolyte secondary battery and composite batteries
JPH04328278A (en) Nonaqueous electrolyte secondary battery
JP4995376B2 (en) Non-aqueous electrolyte secondary battery
US8431267B2 (en) Nonaqueous secondary battery
JP5602128B2 (en) Lithium ion battery
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008159419A (en) Nonaqueous electrolyte secondary battery
JP2014007088A (en) Nonaqueous electrolytic secondary battery and method for manufacturing the same
JP2012234822A (en) Nonaqueous secondary battery
JP2011154963A (en) Nonaqueous electrolyte battery
JP4798729B2 (en) Lithium ion secondary battery
JP3988901B2 (en) Organic electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JPH07272756A (en) Nonaqueous electrolytic secondary battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP3449710B2 (en) Organic electrolytes Organic electrolytes for secondary batteries
JP3247103B1 (en) Organic electrolyte secondary battery
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP5503882B2 (en) Lithium ion battery
JP2015046243A (en) Lithium ion secondary battery
JP3449706B2 (en) Organic electrolyte secondary battery and charging method thereof
JP2003187863A (en) Secondary battery using organic electrolyte

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term