JPH04329268A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04329268A
JPH04329268A JP3130682A JP13068291A JPH04329268A JP H04329268 A JPH04329268 A JP H04329268A JP 3130682 A JP3130682 A JP 3130682A JP 13068291 A JP13068291 A JP 13068291A JP H04329268 A JPH04329268 A JP H04329268A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
lithium carbonate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3130682A
Other languages
Japanese (ja)
Other versions
JP3103899B2 (en
Inventor
Yoshikatsu Yamamoto
佳克 山本
Shigeru Fujita
茂 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03130682A priority Critical patent/JP3103899B2/en
Priority to EP92909565A priority patent/EP0536425B2/en
Priority to US07/962,583 priority patent/US5427875A/en
Priority to DE69205542T priority patent/DE69205542T3/en
Priority to PCT/JP1992/000541 priority patent/WO1992020112A1/en
Publication of JPH04329268A publication Critical patent/JPH04329268A/en
Application granted granted Critical
Publication of JP3103899B2 publication Critical patent/JP3103899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the heat generation with quick temperature rise and the relatively quick damage even if over-charging is performed with high current by forming a part, which is coated with lithium carbonate, in the surface of a positive electrode mainly composed of lithium compound oxide. CONSTITUTION:A positive electrode 2, which are mainly composed of LixMO2, and a negative electrode 2, which can be doped and undoped with lithium, are wound through a eparators 3, and the positive electrode 1 and the negative electrode 2 are housed in a battery can 5 under the condition that insulating plates 4 are placed in the upper and the lower of the winding body to form a nonaqueous electrolyte secondary battery. M means transition metal, and at least one kind of Co and Ni is desirable, and 0.05<=x<=1.10. Furthermore, a current cutting thin plate 8 to be pushed up by the pressure rise inside of a battery is comprised. The surface of the positive electrode 2 is coated with lithium carbonate, and even if over-charging is performed with high current abnormal reaction inside of the battery with over-charging is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、リチウム複合酸化物を
正極とし、電池内圧の上昇に応じて作動する電流遮断手
段とを備えた非水電解質二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery that uses a lithium composite oxide as a positive electrode and is equipped with current interrupting means that operates in response to an increase in battery internal pressure.

【0002】0002

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、小型化、ポータブル化が進み、これら電子機
器に使用される高エネルギー密度二次電池の要求が強ま
っている。従来より、これらの電子機器に使用される二
次電池としては、ニッケル・カドミウム電池や鉛電池等
が知られているが、これら電池は放電電位が低く、エネ
ルギー密度の高い電池を得るという点では未だ不十分で
ある。近年、リチウムやリチウム合金、もしくは炭素材
料のようなリチウムイオンをドープ・脱ドープ可能な物
質を負極として用い、また正極にリチウムコバルト複合
酸化物等のリチウム複合酸化物を使用する非水電解質二
次電池の研究・開発が行われている。この非水電解質二
次電池は、電池電圧が高く、高エネルギー密度を有し、
自己放電も少なく、且つサイクル特性に優れている。
BACKGROUND OF THE INVENTION In recent years, advances in electronic technology have led to higher performance, smaller size, and more portable electronic equipment, and there has been an increasing demand for high energy density secondary batteries used in these electronic equipment. Conventionally, nickel-cadmium batteries and lead batteries have been known as secondary batteries used in these electronic devices, but these batteries have a low discharge potential and are difficult to obtain in terms of obtaining batteries with high energy density. It is still insufficient. In recent years, secondary nonaqueous electrolytes have been developed that use materials that can be doped and dedoped with lithium ions, such as lithium, lithium alloys, or carbon materials, as negative electrodes, and lithium composite oxides such as lithium cobalt composite oxides as positive electrodes. Research and development of batteries is underway. This non-aqueous electrolyte secondary battery has high battery voltage and high energy density.
It has little self-discharge and excellent cycle characteristics.

【0003】ところで、一般に電池は、密閉型の構造で
ある場合、何らかの原因で電池内圧が上昇すると電池の
急速な破損が起こって電池がその機能を失い、或いは周
辺機器に対しても損傷を与えてしまうことがある。特に
、上述のような非水電解質二次電池を密閉型構造で作製
した場合、何らかの原因で充電時に所定以上の電気量の
電流が流れて過充電状態になると電池電圧が高くなり、
電解液等が分解やガス発生を生じて、電池内圧が上昇す
る。そして、このような過充電状態が続くと、電解質や
活物質の急速な分解といった異常反応が起こり、電池温
度が急速に上昇してしまうこともある。
By the way, in general, if a battery has a sealed structure, if the internal pressure of the battery increases for some reason, the battery will rapidly break, causing the battery to lose its function or even damage peripheral equipment. Sometimes it happens. In particular, when a non-aqueous electrolyte secondary battery as described above is manufactured with a sealed structure, if for some reason a current of more than a predetermined amount of electricity flows during charging, resulting in an overcharged state, the battery voltage will increase.
The electrolyte, etc. decomposes and generates gas, increasing the internal pressure of the battery. If such an overcharged state continues, abnormal reactions such as rapid decomposition of the electrolyte and active material may occur, resulting in a rapid rise in battery temperature.

【0004】かかる問題についての対策として、電池内
圧の上昇に応じて作動する電流遮断手段を備え、正極に
炭酸リチウムを含有する非水電解質二次電池が提案され
ている。この二次電池においては、例えば過充電状態が
進むと正極中の炭酸リチウムが電気化学的に分解されて
炭酸ガスが発生する。このガス発生により電池内圧が上
昇し始めると、この内圧の上昇により前記電流遮断手段
が作動し、充電電流が遮断される。これにより、電池内
部の異常反応の進行が停止され、電池温度の急速な上昇
や電池内圧の上昇が防止される。
As a countermeasure to this problem, a non-aqueous electrolyte secondary battery has been proposed, which is equipped with a current interrupting means that operates in response to an increase in battery internal pressure and whose positive electrode contains lithium carbonate. In this secondary battery, for example, when the overcharge state progresses, lithium carbonate in the positive electrode is electrochemically decomposed and carbon dioxide gas is generated. When the internal pressure of the battery begins to rise due to this gas generation, the current interrupting means is activated due to this increase in internal pressure, and the charging current is interrupted. This stops the progress of abnormal reactions inside the battery, and prevents a rapid rise in battery temperature and battery internal pressure.

【0005】[0005]

【発明が解決しようとする課題】しかし、近年、電池の
急速充電化に伴い、より高い充電電流での安全性が要求
されている。このため、上記電流遮断手段を備え、且つ
正極に炭酸リチウムを含有する非水電解質二次電池にお
いては、従来の充電電流では過充電時における安全性を
確保することができたが、更に高い電流で過充電を行う
と、急速な温度上昇を伴う発熱や比較的急速な破損とい
った損傷状態を呈することがある。そこで本発明は、電
流遮断手段を備えた非水電解質二次電池をさらに高い電
流で過充電しても、急速な温度上昇を伴う発熱や比較的
急速な破損が防止され、安全性の高い非水電解質二次電
池を提供することを目的とする。
[Problems to be Solved by the Invention] However, in recent years, with the rapid charging of batteries, safety at higher charging currents has been required. For this reason, in a non-aqueous electrolyte secondary battery that is equipped with the above-mentioned current interrupting means and contains lithium carbonate in the positive electrode, safety can be ensured in the event of overcharging with the conventional charging current, but even higher current If the battery is overcharged, it may exhibit damage conditions such as heat generation accompanied by a rapid temperature rise and relatively rapid damage. Therefore, the present invention provides a highly safe non-aqueous electrolyte secondary battery that prevents heat generation accompanied by rapid temperature rise and relatively rapid damage even if it is overcharged with a higher current. The purpose is to provide a water electrolyte secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明者らは上述の目的
を達成するために検討を重ねた結果、リチウム複合酸化
物を主体とする正極の表面に炭酸リチウムで被われた部
分を持たせることにより、急速な温度上昇を伴う発熱や
比較的急速な破損が防止されることを見出し、本発明に
至ったものである。即ち、本発明の非水電解質二次電池
は、Lix MO2 (但し、Mは遷移金属の少なくと
も1種を表し、0.05≦X≦1.10である。)を主
体とする正極と、リチウムをドープ・脱ドープし得る負
極と、非水電解質と、電池内圧の上昇に応じて作動する
電流遮断手段とを備えてなり、上記正極は表面に炭酸リ
チウムに被覆された部分を有することを特徴とするもの
である。
[Means for Solving the Problems] As a result of repeated studies to achieve the above-mentioned object, the present inventors have developed a method in which the surface of a positive electrode mainly composed of lithium composite oxide is covered with lithium carbonate. The inventors have discovered that, by doing so, heat generation accompanied by a rapid temperature rise and relatively rapid damage can be prevented, leading to the present invention. That is, the non-aqueous electrolyte secondary battery of the present invention has a positive electrode mainly composed of Lix MO2 (where M represents at least one transition metal and satisfies 0.05≦X≦1.10), The battery comprises a negative electrode capable of doping and dedoping, a nonaqueous electrolyte, and a current interrupting means that operates in response to an increase in battery internal pressure, and the positive electrode has a surface covered with lithium carbonate. That is.

【0007】本発明において、正極にはLix MO2
 (ただし、Mは遷移金属の少なくとも1種を表し、好
ましくはCoまたはNiの少なくとも1種を表す。また
、Xは0.05≦X≦1.10である。)を含んだ活物
質が使用される。かかる活物質としては、LiCoO2
 ,LiNiO2 ,LiNiy Co(1−y) O
2 (但し、0.05≦X≦1.10,0<y<1)で
表される複合酸化物が挙げられる。上記複合酸化物は、
たとえばリチウム,コバルト,ニッケルの炭酸塩を出発
原料とし、これら炭酸塩を組成に応じて混合し、酸素存
在雰囲気下600℃〜1000℃の温度範囲で焼成する
ことにより得られる。また、出発原料は炭酸塩に限定さ
れず、水酸化物,酸化物からも同様に合成可能である。 本発明においては、この正極の表面に炭酸リチウムによ
り被覆された部分をもたせる。上記正極の表面に炭酸リ
チウムで被われた部分を持たせる手段としては、例えば
活物質合成時に炭酸リチウムを残留させる方法や、活物
質を合成した後、得られた活物質に炭酸リチウムを混合
して所定の温度で炭酸リチウムを再溶融させる方法等が
考えられるが、これに限られるものではない。炭酸リチ
ウムの導入量は、正極活物質中0.5〜15重量%とさ
れることが好ましい。このように正極の表面に炭酸リチ
ウムに被覆された部分が形成されていることを確認する
方法としては、例えばエネルギー分散型X線分光法(E
DX)により正極活物質表面に存在する元素を解析する
方法がある。
[0007] In the present invention, Lix MO2 is used as the positive electrode.
(However, M represents at least one type of transition metal, preferably represents at least one type of Co or Ni. Also, X satisfies 0.05≦X≦1.10.) be done. Such active materials include LiCoO2
, LiNiO2 , LiNiy Co(1-y) O
2 (however, 0.05≦X≦1.10, 0<y<1). The above composite oxide is
For example, it can be obtained by using carbonates of lithium, cobalt, and nickel as starting materials, mixing these carbonates according to their compositions, and firing the mixture at a temperature range of 600° C. to 1000° C. in an atmosphere containing oxygen. Furthermore, the starting materials are not limited to carbonates, and can be similarly synthesized from hydroxides and oxides. In the present invention, the surface of the positive electrode is provided with a portion coated with lithium carbonate. Examples of methods for providing a portion covered with lithium carbonate on the surface of the positive electrode include a method in which lithium carbonate remains during synthesis of the active material, or a method in which lithium carbonate is mixed with the obtained active material after synthesizing the active material. A method of remelting lithium carbonate at a predetermined temperature may be considered, but is not limited to this method. The amount of lithium carbonate introduced is preferably 0.5 to 15% by weight in the positive electrode active material. As a method for confirming that a portion coated with lithium carbonate is formed on the surface of the positive electrode, for example, energy dispersive X-ray spectroscopy (E
There is a method of analyzing elements present on the surface of a positive electrode active material using DX).

【0008】一方、負極には、本発明では例えば炭素材
料を用いるが、この炭素材料としては、リチウムをドー
プ・脱ドープ可能なものであれば良く、熱分解炭素類、
コークス類(ピッチコークス,ニードルコークス、石油
コークス等)、グラファイト類、ガラス状炭素類、有機
高分子化合物焼成体(フェノール樹脂、フラン樹脂等を
適当な温度で焼成し炭素化したもの)、炭素繊維、活性
炭等が挙げられる。あるいは、炭素材料以外に、金属リ
チウム,リチウム合金(たとえば、リチウム−アルミ合
金)の他、ポリアセチレン、ポリピロール等のポリマー
も使用可能である。
On the other hand, in the present invention, for example, a carbon material is used for the negative electrode, but this carbon material may be any material as long as it can be doped and dedoped with lithium, such as pyrolytic carbons,
Cokes (pitch coke, needle coke, petroleum coke, etc.), graphite, glassy carbons, fired organic polymer compounds (carbonized by firing phenol resin, furan resin, etc. at an appropriate temperature), carbon fiber , activated carbon, etc. Alternatively, in addition to carbon materials, metallic lithium, lithium alloys (for example, lithium-aluminum alloys), and polymers such as polyacetylene and polypyrrole can also be used.

【0009】電解液としては、例えばリチウム塩を電解
質とし、これを有機溶媒に溶解させた電解液が用いられ
る。ここで有機溶媒としては、特に限定されるものでは
ないが、プロピレンカーボネート、エチレンカーボネー
ト、1,2−ジメトキシエタン、γ−ブチルラクトン、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、スルホラン、アセトニトリル、
ジエチルカーボネート、ジプロピルカーボネート等の単
独もしくは2種類以上の混合溶媒が使用可能である。
[0009] As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and is dissolved in an organic solvent is used. Examples of organic solvents include, but are not limited to, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyl lactone,
Tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolane, sulfolane, acetonitrile,
Diethyl carbonate, dipropyl carbonate, and the like can be used alone or as a mixed solvent of two or more.

【0010】電解質としては、LiClO4 ,LiA
sF6 ,LiPF6 ,FiBF4 ,LiB(C6
 H5 )4 ,LiCl,LiBr,CH3 SO3
 Li,CF3 SO3 Li等が使用可能である。ま
た、上記電流遮断手段としては、通常この種の電池に設
けられる電流遮断手段が何れも採用可能であり、電池の
内圧に応じて電流を遮断できるものであれば如何なるも
のであっても良い。
[0010] As the electrolyte, LiClO4, LiA
sF6, LiPF6, FiBF4, LiB(C6
H5)4, LiCl, LiBr, CH3 SO3
Li, CF3 SO3 Li, etc. can be used. Further, as the current interrupting means, any current interrupting means normally provided in this type of battery can be employed, and any current interrupting means may be used as long as it can interrupt the current according to the internal pressure of the battery.

【0011】[0011]

【作用】炭酸リチウムで表面を被ったLiCoO2 を
正極に用いることにより、より高い電流での過充電で電
池の急速な温度上昇を伴う発熱や比較的急速な破損が防
止される。この理由は明らかではないが、次のように考
えられる。即ち、炭酸リチウムは、過充電で電気化学的
に分解されて炭酸ガスを発生させることにより、過充電
での安全性を確保している。ここで、炭酸リチウムを正
極中の正極活物質にただ単に混合するだけでは、炭酸リ
チウムの反応面積は小さい。このため、より高い充電電
流で過充電をした時には、炭酸リチウムの分解反応が間
に合わず、電池内での異常反応が進行する可能性がある
。 しかし、活物質表面に部分的に炭酸リチウムの層を設け
て活物質表面を被うことにより、炭酸リチウムの表面積
、すなわち反応面積が増大する。これにより、より高い
充電電流で過充電しても、炭酸リチウムの分解が速やか
に進み炭酸ガスの発生が促進されて、電池内での異常反
応の進行が抑制でき、電池の急速な温度上昇を伴う発熱
や比較的急速な破損の防止が可能になったものと思われ
る。
[Operation] By using LiCoO2 whose surface is coated with lithium carbonate as the positive electrode, overcharging at a higher current can prevent the battery from generating heat accompanied by a rapid temperature rise and from relatively rapid damage. Although the reason for this is not clear, it is thought to be as follows. That is, lithium carbonate is electrochemically decomposed during overcharging to generate carbon dioxide gas, thereby ensuring safety during overcharging. Here, if lithium carbonate is simply mixed with the positive electrode active material in the positive electrode, the reaction area of lithium carbonate is small. Therefore, when overcharging is performed with a higher charging current, the decomposition reaction of lithium carbonate may not be completed in time, and an abnormal reaction may proceed within the battery. However, by partially providing a layer of lithium carbonate on the surface of the active material to cover the surface of the active material, the surface area of lithium carbonate, that is, the reaction area, increases. As a result, even if overcharged with a higher charging current, lithium carbonate decomposes quickly, promoting the generation of carbon dioxide gas, suppressing the progress of abnormal reactions within the battery, and preventing a rapid temperature rise in the battery. This seems to have made it possible to prevent the accompanying heat generation and relatively rapid damage.

【0012】0012

【実施例】以下、本発明の好適な実施例について実験結
果にもとづき説明する。先ず、後述の各実施例において
作製した非水電解質二次電池の構造を図1に示す。この
非水電解質二次電池は、図1に示すように、負極集電体
9に負極活物質を塗布してなる負極1と、正極集電体1
0に正極活物質を塗布してなる正極2とを、セパレータ
3を介して巻回し、この巻回体の上下に絶縁板4を載置
した状態で電池缶5に収納してなるものである。前記電
池缶5には、電池蓋7が封口ガスケット6を介してかし
こめることによって取付けられ、それぞれ負極リード1
1及び正極リード12を介して負極1或いは正極2と電
気的に接続され、電池の負極或いは正極として機能する
ように構成されている。
EXAMPLES Preferred examples of the present invention will be described below based on experimental results. First, FIG. 1 shows the structure of a non-aqueous electrolyte secondary battery produced in each of the Examples described below. As shown in FIG. 1, this nonaqueous electrolyte secondary battery includes a negative electrode 1 formed by applying a negative electrode active material to a negative electrode current collector 9, and a positive electrode current collector 1.
0 and a positive electrode 2 coated with a positive electrode active material are wound together with a separator 3 in between, and the wound body is housed in a battery can 5 with insulating plates 4 placed above and below the wound body. . A battery lid 7 is attached to the battery can 5 by tightening it through a sealing gasket 6, and a negative electrode lead 1 is attached to the battery can 5, respectively.
It is electrically connected to a negative electrode 1 or a positive electrode 2 via a positive electrode lead 12 and a negative electrode lead 12, and is configured to function as a negative electrode or a positive electrode of a battery.

【0013】そして、本実施例の非水電解質二次電池で
は、前記正極リード12は電流遮断用薄板8に溶接され
て取付けられ、この電流遮断用薄板8を介して電池蓋7
との電気的接続が図られている。このような構成を有す
る電池においては、電池内部の圧力が上昇すると、図2
に示すように、前記電流遮断用薄板8が押し上げられて
変形する。すると、正極リード12が電流遮断用薄板8
と溶接された部分を残して切断され、電流が遮断される
In the non-aqueous electrolyte secondary battery of this embodiment, the positive electrode lead 12 is attached to the current interrupting thin plate 8 by welding, and the battery lid 7 is attached via the current interrupting thin plate 8.
An electrical connection is made with the In a battery having such a configuration, when the pressure inside the battery increases,
As shown in FIG. 3, the current interrupting thin plate 8 is pushed up and deformed. Then, the positive electrode lead 12 is connected to the current interrupting thin plate 8.
The welded part is cut and the current is cut off.

【0014】実施例1 正極活物質(LiCoO2 )の合成を次のように行っ
た。先ず、炭酸リチウムと炭酸コバルトをLi/Co(
モル比)=1.15になるように混合し、空気中で90
0℃、5時間焼成した。この材料についてX線回折測定
を行った結果、LiCoO2 と炭酸リチウムとの混合
物であることが判った。また、この材料中の炭酸リチウ
ム量を定量したところ、6.2重量%の炭酸リチウムを
含んでいた。なお、上記炭酸リチウム量は、試料を硫酸
で分解し生成したCo2 を塩化バリウムと水酸化ナト
リウム溶液中に導入して吸収させた後、塩酸標準溶液で
滴定することによりCo2 を定量し、そのCo2 量
から換算して求めた。
Example 1 A positive electrode active material (LiCoO2) was synthesized as follows. First, lithium carbonate and cobalt carbonate are mixed into Li/Co(
Mix so that the molar ratio) = 1.15, and mix in air at 90%
It was baked at 0°C for 5 hours. As a result of performing X-ray diffraction measurements on this material, it was found that it was a mixture of LiCoO2 and lithium carbonate. Further, when the amount of lithium carbonate in this material was quantified, it was found that it contained 6.2% by weight of lithium carbonate. The above amount of lithium carbonate is determined by decomposing a sample with sulfuric acid, introducing Co2 into a barium chloride and sodium hydroxide solution, absorbing it, and then titrating it with a standard hydrochloric acid solution to quantify the Co2. It was calculated from the amount.

【0015】その後、自動乳鉢を用いてこの材料を粉砕
してLiCoO2 を得た。このようにして得られたL
iCoO2 を正極活物質として用い、この正極活物質
91重量%、導電材としてグラファイト6重量%、結着
剤としてポリフッ化ビニリデン3重量%の割合で混合し
て正極合剤を作成し、これをN−メチル−2−ピロリド
ンに分散してスラリー状とした。そして、このスラリー
を正極集電体10である帯状のアルミニウム箔の両面に
塗布し、乾燥後ローラープレス機で圧縮成形して正極2
を作成した。
[0015] Thereafter, this material was ground using an automatic mortar to obtain LiCoO2. L obtained in this way
Using iCoO2 as a positive electrode active material, a positive electrode mixture was prepared by mixing 91% by weight of this positive electrode active material, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder. -Methyl-2-pyrrolidone to form a slurry. Then, this slurry is applied to both sides of a strip-shaped aluminum foil that is the positive electrode current collector 10, and after drying, compression molding is performed using a roller press machine to form the positive electrode 2.
It was created.

【0016】次に、負極活物質は、出発物質に石油ピッ
チを用い、これを酸素を含む官能基を10〜20%導入
(いわゆる酸素架橋)した後、不活性ガス中1000℃
で焼成し、得られたガラス状炭素に近い性質を有する難
黒鉛炭素材料を用いた。この炭素材料についてX線回折
測定を行った結果、(002)面の面間隔は3.76Å
で、また真比重は1.58であった。この炭素材料90
重量%、結着剤としてポリフッ化ビニリデン10重量%
の割合で混合して負極合剤を作成し、これをN−メチル
−2−ピロリドンに分散させてスラリー状とした。そし
て、このスラリーを負極集電体である帯状の銅箔の両面
に塗布し、乾燥後ローラープレス機で圧縮成形して負極
1を作成した。
Next, the negative electrode active material is prepared by using petroleum pitch as a starting material, introducing 10 to 20% of oxygen-containing functional groups (so-called oxygen crosslinking), and then heating it at 1000° C. in an inert gas.
A non-graphitic carbon material with properties similar to those of glassy carbon was used. As a result of X-ray diffraction measurement of this carbon material, the interplanar spacing of the (002) plane was 3.76 Å.
Also, the true specific gravity was 1.58. This carbon material 90
% by weight, 10% by weight of polyvinylidene fluoride as a binder
A negative electrode mixture was prepared by mixing at a ratio of 1, and this was dispersed in N-methyl-2-pyrrolidone to form a slurry. Then, this slurry was applied to both sides of a strip-shaped copper foil serving as a negative electrode current collector, and after drying, compression molding was performed using a roller press machine to create negative electrode 1.

【0017】そして、これら帯状の正極2、負極1及び
25μmの微孔性ポリプロピレンフィルムから成るセパ
レータ3を順々に積層してから渦巻型に多数回、巻回す
ることにより巻回体を作成した。続いて、ニッケルメッ
キを施した鉄製の電池缶5の底部に絶縁板4を挿入し、
上記巻回体を収納した。そして、負極の集電をとるため
にニッケル製の負極リード11の一端を負極1に圧着し
、他端を電池缶5に溶接した。また、正極の集電をとる
ためにアルミニウム製の正極リード12の一端を正極2
にとりつけ、他端を電池内圧に応じて電流を遮断する電
流遮断装置8を持つ電池蓋7に溶接した。この電池缶5
の中にプロピレンカーボネート50容量%とジエチルカ
ーボネート50容量%混合溶媒中にLiPF6 1 m
ol溶解させた電解液を注入した。そして、アスファル
トを塗布した絶縁封口ガスケット6を介して電池缶5を
かしめることで、電池蓋7を固定し直径14mm,高さ
50mm円筒型電池を作成した。
[0017]Then, these strip-shaped positive electrode 2, negative electrode 1, and separator 3 made of a 25 μm microporous polypropylene film were sequentially laminated and then spirally wound many times to create a wound body. . Next, the insulating plate 4 is inserted into the bottom of the nickel-plated iron battery can 5.
The above-mentioned rolled body was stored. Then, in order to collect current from the negative electrode, one end of the negative electrode lead 11 made of nickel was crimped to the negative electrode 1, and the other end was welded to the battery can 5. In addition, in order to collect current from the positive electrode, one end of the aluminum positive electrode lead 12 was connected to the positive electrode 2.
The other end was welded to a battery lid 7 having a current interrupting device 8 that interrupts current depending on the internal pressure of the battery. This battery can 5
1 m of LiPF6 in a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate.
An electrolytic solution in which ol was dissolved was injected. Then, by caulking the battery can 5 through the insulating sealing gasket 6 coated with asphalt, the battery lid 7 was fixed, and a cylindrical battery having a diameter of 14 mm and a height of 50 mm was created.

【0018】実施例2 正極活物質(LiCoO2 )の合成を次のように行っ
た。先ず、炭酸リチウムと炭酸コバルトをLi/Co(
モル比)=1になるように混合し、空気中で900℃、
5時間焼成した。この材料についてX線回折測定を行っ
た結果、JCPDSカードのLiCoO2 と良く一致
していた。その後、自動乳鉢を用いて上記材料を粉砕し
てLiCoO2 を得た。このようにして得られたLi
CoO2 93.8重量%と炭酸リチウム6.2重量%
とを良く混合した後、空気中で750℃、5時間焼成し
て正極活物質を得た。この正極活物質中の炭酸リチウム
量を定量したところ6.2重量%であった。そして、自
動乳鉢を用いてこの正極活物質を粉砕し、得られた正極
活物質91重量%、導電材としてグラファイト6重量%
、結着剤としてポリフッ化ビニリデン3重量%の割合で
混合して正極を作成し、これ以外は実施例1とまったく
同様にして円筒型電池を作成した。
Example 2 A positive electrode active material (LiCoO2) was synthesized as follows. First, lithium carbonate and cobalt carbonate are mixed into Li/Co(
Mix so that molar ratio) = 1, and heat at 900°C in air.
It was baked for 5 hours. The results of X-ray diffraction measurements of this material showed good agreement with LiCoO2 in the JCPDS card. Thereafter, the above material was crushed using an automatic mortar to obtain LiCoO2. Li obtained in this way
CoO2 93.8% by weight and lithium carbonate 6.2% by weight
After mixing well, the mixture was baked in air at 750°C for 5 hours to obtain a positive electrode active material. The amount of lithium carbonate in this positive electrode active material was determined to be 6.2% by weight. Then, this positive electrode active material was crushed using an automatic mortar, and the resulting positive electrode active material was 91% by weight, and graphite was used as a conductive material in an amount of 6% by weight.
A cylindrical battery was prepared in exactly the same manner as in Example 1 except that a positive electrode was prepared by mixing polyvinylidene fluoride in a proportion of 3% by weight as a binder.

【0019】比較例1 正極活物質(LiCoO2 )の合成を次のように行っ
た。先ず、炭酸リチウムと炭酸コバルトをLi/Co(
モル比)=1になるように混合し、空気中で900℃、
5時間焼成した。この材料についてX線回折測定を行っ
た結果、JCPDSカードのLiCoO2 と良く一致
していた。また、この正極活物質中の炭酸リチウムを定
量したところほとんど検出されず0%であった。その後
、自動乳鉢を用いて上記材料を粉砕してLiCoO2 
を得た。このようにして得られたLiCoO2 を正極
活物質として用い、この正極活物質91重量%、導電材
としてグラファイト6重量%、結着剤としてポリフッ化
ビニリデン3重量%の割合で混合して正極を作成し、こ
れ以外は実施例1とまったく同様にして円筒型電池を作
成した。
Comparative Example 1 A positive electrode active material (LiCoO2) was synthesized as follows. First, lithium carbonate and cobalt carbonate are mixed into Li/Co(
Mix so that molar ratio) = 1, and heat at 900°C in air.
It was baked for 5 hours. The results of X-ray diffraction measurements of this material showed good agreement with LiCoO2 in the JCPDS card. Furthermore, when the amount of lithium carbonate in this positive electrode active material was quantified, it was hardly detected and was 0%. Thereafter, the above materials were crushed using an automatic mortar to form LiCoO2
I got it. Using the LiCoO2 thus obtained as a positive electrode active material, a positive electrode was prepared by mixing 91% by weight of this positive electrode active material, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder. However, a cylindrical battery was produced in exactly the same manner as in Example 1 except for this.

【0020】比較例2 上述の比較例1で得られたLiCoO2 を用い、Li
CoO2 93.8重量%・炭酸リチウム6.2重量%
として得られる混合品を91重量%、導電材としてグラ
ファイトを6重量%、結着剤としてポリフッ化ビニリデ
ン3重量%の割合で混合して正極を作成し、これ以外は
実施例1とまったく同様にして円筒型電池を作成した。
Comparative Example 2 Using LiCoO2 obtained in Comparative Example 1 above, Li
CoO2 93.8% by weight, lithium carbonate 6.2% by weight
A positive electrode was prepared by mixing 91% by weight of the mixture obtained as above, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder. A cylindrical battery was created.

【0021】上述の各実施例及び比較例で得られた電池
を各々20個づつ用意し、これら電池を電流1.5A,
及び3.7Aで過充電状態にして、電池の急速な温度上
昇を伴う発熱や比較例急速な破損が生じた電池(損傷品
)の発生率を調査した。この結果を表1に示す。
Twenty batteries obtained in each of the above-mentioned Examples and Comparative Examples were prepared, and these batteries were heated to a current of 1.5 A.
The rate of occurrence of batteries (damaged products) in which heat generation accompanied by a rapid temperature rise of the battery and rapid damage in the comparative example occurred when the battery was overcharged at 3.7 A was investigated. The results are shown in Table 1.

【表1】[Table 1]

【0022】表1に示すように、充電電流1.5Aでの
過充電では、炭酸リチウムを含有しない比較例1を除い
て損傷品の発生はなかった。そして、さらに高い充電電
流3.7Aでの過充電では、活物質合成時に炭酸リチウ
ムを残留させた実施例1と、活物質合成後に炭酸リチウ
ムを混合して750℃で炭酸リチウムを再溶融させた実
施例2では、損傷品の発生がなかったのに対して、活物
質合成後に単に炭酸リチウムを混合した比較例2では、
炭酸リチウムを含有しない比較例1と同様に殆どの電池
に損傷が見られた。
As shown in Table 1, during overcharging at a charging current of 1.5 A, no damaged products occurred except for Comparative Example 1 which did not contain lithium carbonate. For overcharging at an even higher charging current of 3.7 A, Example 1 in which lithium carbonate remained during active material synthesis was mixed with lithium carbonate after active material synthesis, and the lithium carbonate was remelted at 750°C. In Example 2, no damaged products were generated, whereas in Comparative Example 2, in which lithium carbonate was simply mixed after active material synthesis,
Damage was observed in most of the batteries as in Comparative Example 1 which did not contain lithium carbonate.

【0023】そこで、実施例1の活物質合成時に炭酸リ
チウムを残留させた正極活物質、及び比較例2の活物質
合成後に炭酸リチウムを混合した正極活物質ついてX線
回折測定を行った。この結果を図3及び図4に示す。図
3は、実施例1の活物質合成時に炭酸リチウムを残留さ
せた正極活物質のX線回折図であり、図4は比較例2の
活物質合成後に炭酸リチウムを混合した正極活物質のX
線回折図である。図3及び図4に示すように、実施例1
の正極活物質と比較例2の正極活物質のX線回折図に大
きな差はなく、LiCoO2 と炭酸リチウムの混合物
であることが判った。
Therefore, X-ray diffraction measurements were performed on the positive electrode active material in which lithium carbonate remained during the active material synthesis of Example 1 and the positive electrode active material in which lithium carbonate was mixed after the active material synthesis in Comparative Example 2. The results are shown in FIGS. 3 and 4. FIG. 3 is an X-ray diffraction diagram of the positive electrode active material in which lithium carbonate was left in the synthesis of the active material of Example 1, and FIG.
It is a line diffraction diagram. As shown in FIGS. 3 and 4, Example 1
There was no significant difference in the X-ray diffraction patterns of the positive electrode active material of Comparative Example 2 and that of the positive electrode active material of Comparative Example 2, indicating that the positive electrode active material was a mixture of LiCoO2 and lithium carbonate.

【0024】次に、ケベックス(KEVEX)社製のエ
ネルギー分散型X線分光分析(EDX)装置を用いて、
上述の実施例1の正極活物質と比較例2の正極活物質の
微小領域の表面の元素分析を行った。この結果を図5及
び図6に示す。図5は、実施例1の活物質合成時に炭酸
リチウムを残留させた正極活物質の表面スペクトルを示
し、図6は比較例2の活物質合成後に炭酸リチウムを混
合した正極活物質の表面スペクトルを示す。
Next, using an energy dispersive X-ray spectrometer (EDX) manufactured by KEVEX,
Elemental analysis of the surfaces of minute regions of the positive electrode active material of Example 1 and the positive electrode active material of Comparative Example 2 described above was conducted. The results are shown in FIGS. 5 and 6. Figure 5 shows the surface spectrum of the positive electrode active material in which lithium carbonate remained during the active material synthesis of Example 1, and Figure 6 shows the surface spectrum of the positive electrode active material in which lithium carbonate was mixed after the active material synthesis of Comparative Example 2. show.

【0025】図6より、比較例2の活物質合成後に炭酸
リチウムを混合した正極活物質については、Coのスペ
クトルが顕著に現れた。また、粒子一つ一つについて元
素分析を行うと、Coのスペクトルの有る部分と無い部
分が存在し、Coのスペクトルが有る部分は、図7に示
すように、LiCoO2 に相当しており、一方Coの
スペクトルが無い部分は、図8に示すように、炭酸リチ
ウムに相当していた。このことから、比較例2の正極活
物質では、LiCoO2 と炭酸リチウムは分かれて混
在した状態で存在していることが判った。これに対して
、図5に示すように、実施例1の活物質合成時に炭酸リ
チウムを残留させた正極活物質については、LiCoO
2 に相当するCoのスペクトルが顕著に現れずにピー
ク強度が弱く、そして粒子一つ一つについて元素分析を
行ってもCoのスペクトルの強度は若干変化するものの
、比較例2の正極活物質であったようなCoのスペクト
ルの大きな変化はなかった。
From FIG. 6, in the positive electrode active material in which lithium carbonate was mixed after the synthesis of the active material of Comparative Example 2, the spectrum of Co clearly appeared. Furthermore, when elemental analysis is performed on each particle, there are parts with a Co spectrum and parts without it, and the parts with a Co spectrum correspond to LiCoO2, as shown in Figure 7. As shown in FIG. 8, the area without the Co spectrum corresponded to lithium carbonate. From this, it was found that in the positive electrode active material of Comparative Example 2, LiCoO2 and lithium carbonate were separated and present in a mixed state. On the other hand, as shown in FIG. 5, for the positive electrode active material in which lithium carbonate remained during the active material synthesis of Example 1, LiCoO
Although the Co spectrum corresponding to Comparative Example 2 does not appear conspicuously and has a weak peak intensity, and the intensity of the Co spectrum changes slightly even if elemental analysis is performed on each particle, the positive electrode active material of Comparative Example 2 There was no significant change in the Co spectrum as there was.

【0026】このことから、活物質合成時に炭酸リチウ
ムを残留させた正極活物質は、活物質合成後に炭酸リチ
ウムを混合した正極活物質のように、LiCoO2 と
炭酸リチウムが分かれて混在した状態で存在しているの
ではなく、炭酸リチウムがLiCoO2 の表面を被っ
た状態で存在していることがわかる。そのため、LiC
oO2 に相当するCoのスペクトルが顕著に現れずに
ピーク強度が弱くなっている。また、実施例2の活物質
合成後に炭酸リチウムを混合して750℃で炭酸リチウ
ムを再溶融させた正極活物質は、X線回折図及びEDX
の結果は実施例1と同じであった。このことから、実施
例2の正極活物質は、実施例1の正極活物質と同様に、
炭酸リチウムがLiCoO2 表面を被った状態で存在
していると考えられる。
[0026] From this, a positive electrode active material in which lithium carbonate was left during the synthesis of the active material, like a positive electrode active material in which lithium carbonate was mixed after the synthesis of the active material, exists in a state where LiCoO2 and lithium carbonate are separated and mixed. It can be seen that lithium carbonate exists in a state covering the surface of LiCoO2, rather than being completely covered with it. Therefore, LiC
The spectrum of Co corresponding to oO2 does not appear prominently and the peak intensity is weak. In addition, the positive electrode active material obtained by mixing lithium carbonate and remelting the lithium carbonate at 750°C after the synthesis of the active material in Example 2 has an X-ray diffraction diagram and an EDX
The results were the same as in Example 1. From this, the positive electrode active material of Example 2, like the positive electrode active material of Example 1,
It is thought that lithium carbonate exists in a state covering the LiCoO2 surface.

【0027】従って、正極中の炭酸リチウムがLiCo
O2 にただ単に混在した状態から、LiCoO2 表
面を被った状態にすることにより、より高い電流で過充
電しても電池の急速な温度上昇を伴う発熱や比較的急速
な破損の防止が可能となった。なお、本実施例では、正
極活物質としてLiCoO2 を用いたが、他の正極活
物質(たとえば、LiX Niy Co(1−y) O
2 (但し0.05≦X≦1.10,0<y≦1))で
も同様な効果が確認された。
Therefore, the lithium carbonate in the positive electrode is LiCo
By changing the state from simply being mixed with O2 to covering the surface of LiCoO2, it becomes possible to prevent heat generation and relatively rapid damage due to rapid temperature rise of the battery even when overcharging at a higher current. Ta. In this example, LiCoO2 was used as the positive electrode active material, but other positive electrode active materials (for example, LiX Niy Co(1-y) O
2 (however, 0.05≦X≦1.10, 0<y≦1)), similar effects were confirmed.

【0028】[0028]

【発明の効果】以上の説明からも明らかなように、本発
明においては、表面が炭酸リチウムに被われた部分を持
つLix MO2 を正極に使用することにより、さら
に高い電流で過充電しても、過充電に伴う電池内部の異
常反応が阻止され、電池の急速な温度上昇を伴う発熱や
比較的急速な破損を防止できる。従って、高エネルギー
密度でサイクル特性に優れ、かつ安全性の高い非水電解
質二次電池を提供することができる。また、この非水電
解質二次電池の工業的及び商業的価値は大である。
[Effects of the Invention] As is clear from the above description, in the present invention, by using Lix MO2, whose surface is covered with lithium carbonate, as the positive electrode, it can be overcharged at even higher currents. This prevents abnormal reactions inside the battery due to overcharging, and prevents heat generation and relatively rapid damage due to rapid temperature rise of the battery. Therefore, it is possible to provide a nonaqueous electrolyte secondary battery with high energy density, excellent cycle characteristics, and high safety. Moreover, this non-aqueous electrolyte secondary battery has great industrial and commercial value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の非水電解質二次電池の構成例を示す概
略断面図である。
FIG. 1 is a schematic cross-sectional view showing a configuration example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】電流遮断手段の動作状態を示す概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing the operating state of the current interrupting means.

【図3】活物質合成時に炭酸リチウムを残留させた正極
活物質のX線回折図である。
FIG. 3 is an X-ray diffraction diagram of a positive electrode active material in which lithium carbonate remained during active material synthesis.

【図4】活物質合成後に炭酸リチウムを混合した正極活
物質のX線回折図である。
FIG. 4 is an X-ray diffraction diagram of a positive electrode active material mixed with lithium carbonate after active material synthesis.

【図5】活物質合成時に炭酸リチウムを残留させた正極
活物質のエネルギー分散型X線分光法(EDX)による
表面スペクトルを示す特性図である。
FIG. 5 is a characteristic diagram showing a surface spectrum obtained by energy dispersive X-ray spectroscopy (EDX) of a positive electrode active material in which lithium carbonate remained during active material synthesis.

【図6】活物質合成後に炭酸リチウムを混合した正極活
物質のEDXによる表面スペクトルを示す特性図である
FIG. 6 is a characteristic diagram showing an EDX surface spectrum of a positive electrode active material mixed with lithium carbonate after active material synthesis.

【図7】活物質合成後に炭酸リチウムを混合した正極活
物質の粒子毎の元素分析結果において、Coのスペクト
ルの有る部分のEDXによる表面スペクトルを示す特性
図である。
FIG. 7 is a characteristic diagram showing the EDX surface spectrum of a portion of the Co spectrum in the elemental analysis of each particle of a positive electrode active material mixed with lithium carbonate after active material synthesis.

【図8】活物質合成後に炭酸リチウムを混合した正極活
物質の粒子毎の元素分析結果において、Coのスペクト
ルの無い部分のEDXによる表面スペクトルを示す特性
図である。
FIG. 8 is a characteristic diagram showing a surface spectrum by EDX of a portion without a Co spectrum in the elemental analysis of each particle of a positive electrode active material mixed with lithium carbonate after active material synthesis.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 8・・・電流遮断用薄板 1...Negative electrode 2...Positive electrode 3...Separator 8...Thin plate for current interruption

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Lix MO2 (但し、Mは遷移金
属の少なくとも1種を表し、0.05≦X≦1.10で
ある。)を主体とする正極と、リチウムをドープ・脱ド
ープし得る負極と、非水電解質と、電池内圧の上昇に応
じて作動する電流遮断手段とを備えてなり、上記正極が
表面に炭酸リチウムに被覆された部分を有することを特
徴とする非水電解質二次電池。
[Claim 1] A positive electrode mainly composed of Lix MO2 (where M represents at least one transition metal and satisfies 0.05≦X≦1.10), and a negative electrode that can be doped and dedoped with lithium. A non-aqueous electrolyte secondary battery comprising: a non-aqueous electrolyte; and a current interrupting means that operates in response to an increase in battery internal pressure, the positive electrode having a surface coated with lithium carbonate. .
JP03130682A 1991-04-26 1991-05-02 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3103899B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03130682A JP3103899B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery
EP92909565A EP0536425B2 (en) 1991-04-26 1992-04-24 Nonaqueous electrolyte secondary battery
US07/962,583 US5427875A (en) 1991-04-26 1992-04-24 Non-aqueous electrolyte secondary cell
DE69205542T DE69205542T3 (en) 1991-04-26 1992-04-24 SECONDARY BATTERY WITH NON-AQUE ELECTROLYTE.
PCT/JP1992/000541 WO1992020112A1 (en) 1991-04-26 1992-04-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03130682A JP3103899B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04329268A true JPH04329268A (en) 1992-11-18
JP3103899B2 JP3103899B2 (en) 2000-10-30

Family

ID=15040098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03130682A Expired - Lifetime JP3103899B2 (en) 1991-04-26 1991-05-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3103899B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151155A (en) * 2000-11-13 2002-05-24 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
US7964309B2 (en) 2007-04-27 2011-06-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell and method for producing same
WO2011121691A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
JP2012084420A (en) * 2010-10-13 2012-04-26 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2013152810A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Sealed battery and manufacturing method therefor
US11145860B2 (en) * 2017-07-28 2021-10-12 Lg Chem, Ltd. Positive electrode for secondary battery and lithium secondary battery including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268406B2 (en) * 2012-06-13 2018-01-31 株式会社アドバネクス Insert color
JP6268405B2 (en) * 2012-06-13 2018-01-31 株式会社アドバネクス Insert nut

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151155A (en) * 2000-11-13 2002-05-24 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
US7964309B2 (en) 2007-04-27 2011-06-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell and method for producing same
WO2011121691A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
JP5391328B2 (en) * 2010-03-31 2014-01-15 パナソニック株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery using the positive electrode
US8658312B2 (en) 2010-03-31 2014-02-25 Panasonic Corporation Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
JP2012084420A (en) * 2010-10-13 2012-04-26 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2013152810A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Sealed battery and manufacturing method therefor
US11145860B2 (en) * 2017-07-28 2021-10-12 Lg Chem, Ltd. Positive electrode for secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP3103899B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
WO1992020112A1 (en) Nonaqueous electrolyte secondary battery
JP4325112B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
JPH07296853A (en) Method for charging
JPH10275632A (en) Organic electrolyte secondary battery
JP5109349B2 (en) Secondary battery
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP3049727B2 (en) Non-aqueous electrolyte secondary battery
JPH04332479A (en) Nonaqueous electrolyte secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JPH09213375A (en) Non-aqueous electrolyte secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JP3449710B2 (en) Organic electrolytes Organic electrolytes for secondary batteries
JP3247103B1 (en) Organic electrolyte secondary battery
JP4240422B2 (en) Organic electrolyte secondary battery
JP2003187863A (en) Secondary battery using organic electrolyte
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP3230279B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP4798742B2 (en) Non-aqueous secondary battery
JP2003077478A (en) Lithium ion secondary battery
JPH05242913A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11