JP2003187863A - Secondary battery using organic electrolyte - Google Patents

Secondary battery using organic electrolyte

Info

Publication number
JP2003187863A
JP2003187863A JP2001385398A JP2001385398A JP2003187863A JP 2003187863 A JP2003187863 A JP 2003187863A JP 2001385398 A JP2001385398 A JP 2001385398A JP 2001385398 A JP2001385398 A JP 2001385398A JP 2003187863 A JP2003187863 A JP 2003187863A
Authority
JP
Japan
Prior art keywords
lithium
organic
negative electrode
secondary battery
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001385398A
Other languages
Japanese (ja)
Inventor
Hisanori Sugawara
久典 菅原
Hideaki Katayama
秀昭 片山
Shuichi Wada
秀一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001385398A priority Critical patent/JP2003187863A/en
Publication of JP2003187863A publication Critical patent/JP2003187863A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a secondary battery using an organic electrolyte, which has superior safety by using a material capable of trapping gasses induced in overcharging operation. <P>SOLUTION: This secondary battery using an organic electrolyte comprises a positive and negative electrodes, and the organic electrolyte contains a mild acidic organic lithium salt, in particular, at least one component selected from a lithium acetate, lithium benzoate or a lithium phenoxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池に関し、さらに詳しくは、安全性にすぐれた有機電解
液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery, and more particularly to an organic electrolyte secondary battery having excellent safety.

【0002】[0002]

【従来の技術】有機電解液二次電池は、電解液の溶媒と
して有機溶媒を用いたものであり、容量が大きく、高電
圧、高エネルギー密度、高出力であるため、需要がます
ます増える傾向にある。上記の有機溶媒としては、これ
まで、エチレンカーボネートなどの環状エステルと、ジ
メチルカーボネート、ジエチルカーボネート、プロピオ
ン酸メチルなどの鎖状エステルとが混合して用いられて
きた。
2. Description of the Related Art An organic electrolyte secondary battery uses an organic solvent as a solvent for an electrolyte and has a large capacity, high voltage, high energy density, and high output. It is in. As the organic solvent, a cyclic ester such as ethylene carbonate and a chain ester such as dimethyl carbonate, diethyl carbonate and methyl propionate have been mixed and used so far.

【0003】このような有機電解液二次電池において
は、通常、充電器内の保護回路などで過充電を防止して
内部短絡を引き起こさないように対策されており、通常
の内部短絡では、電池が発熱するだけで異常な事態には
いたらない。しかし、充電器が故障した場合、とくに保
護回路が故障した場合を想定し、より危険度の高い条件
下で試験を行って安全性を確認することが望ましい。
In such an organic electrolyte secondary battery, a protection circuit or the like in the charger is usually used to prevent overcharging and prevent an internal short circuit. The fever just heats up, and it doesn't lead to an abnormal situation. However, assuming that the charger has failed, especially if the protection circuit has failed, it is desirable to confirm the safety by conducting a test under more dangerous conditions.

【0004】[0004]

【発明が解決しようとする課題】充電時に許容された以
上の電圧が電池に印加されると、電池は過充電され、電
池内の異常な化学反応で生成するガスにより内圧が上昇
し、その結果、電池が破裂するおそれがある。このた
め、電池の安全性を向上するには、過充電時の電池の内
圧上昇による破裂を防ぐことが必要不可欠である。
When a voltage higher than the allowable voltage is applied to the battery during charging, the battery is overcharged and the gas produced by an abnormal chemical reaction in the battery raises the internal pressure, which results in , The battery may explode. Therefore, in order to improve the safety of the battery, it is essential to prevent the battery from bursting due to an increase in internal pressure during overcharging.

【0005】このような内圧上昇を抑制するには、過充
電時に発生するガス量を低減することであり、その方法
としては、過充電時に発生したガスをトラップすること
が可能な物質を電池内に添加する方法が考えられる。し
かし、今のところ、この種の物質としてとくに適したも
のは見い出されていない。
In order to suppress such an increase in internal pressure, it is necessary to reduce the amount of gas generated during overcharge, and as a method therefor, a substance capable of trapping the gas generated during overcharge is used in the battery. The method of adding to is considered. However, so far, no particularly suitable substance of this kind has been found.

【0006】本発明は、このような事情に照らし、過充
電時に発生したガスをトラップするのに適した物質を探
求することにより、安全性にすぐれた有機電解液二次電
池を得ることを目的としている。
In view of such circumstances, the present invention seeks a substance suitable for trapping a gas generated during overcharge, thereby obtaining an organic electrolyte secondary battery having excellent safety. I am trying.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するため、鋭意検討した結果、トラップ剤とし
て弱酸性有機リチウム塩を使用し、これを有機電解液中
に含有させたところ、解離した弱酸性有機リチウム塩の
アニオンとプロトンが結合して、水素ガス源であるプロ
トンをトラップすることにより、過充電時に発生するガ
ス量が大きく低減され、これにより破裂の危険性の少な
い、安全性にすぐれた有機電解液二次電池が得られるこ
とを知り、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above object. As a result, a weakly acidic organic lithium salt was used as a trapping agent, and the weakly acidic organic lithium salt was contained in the organic electrolytic solution. However, the anion of the dissociated weakly acidic organic lithium salt and the proton are bound to trap the proton, which is the hydrogen gas source, so that the amount of gas generated during overcharge is greatly reduced, which reduces the risk of rupture. The present invention has been completed, knowing that an organic electrolyte secondary battery having excellent safety can be obtained.

【0008】すなわち、本発明は、正極、負極および有
機電解液を有する有機電解液二次電池において、有機電
解液中に弱酸性有機リチウム塩を含有することを特徴と
する有機電解液二次電池に係るものであり、とくに、上
記の弱酸性有機リチウム塩が酢酸リチウム、安息香酸リ
チウムまたはリチウムフエノキシドの中より選ばれる少
なくとも1種である上記構成の有機電解液二次電池、上
記の弱酸性有機リチウム塩が、有機電解液100重量部
あたり、0.05重量部以上、5重量部以下である上記
構成の有機電解液二次電池に係るものである。また、本
発明は、正極がリチウム金属複合化合物を正極活物質と
し、負極がリチウムを吸蔵・放出できる炭素材料を負極
活物質とする上記構成の有機電解液二次電池と、さらに
負極がリチウム含有複合窒化物を負極活物質とする上記
構成の有機電解液二次電池とに係るものである。
That is, the present invention is an organic electrolyte secondary battery having a positive electrode, a negative electrode and an organic electrolyte, wherein the organic electrolyte contains a weakly acidic organic lithium salt. In particular, the weakly acidic organic lithium salt is at least one selected from lithium acetate, lithium benzoate, or lithium phenoxide, and the organic electrolyte secondary battery having the above-mentioned constitution, The present invention relates to the organic electrolyte secondary battery having the above-mentioned configuration, wherein the acidic organic lithium salt is 0.05 parts by weight or more and 5 parts by weight or less per 100 parts by weight of the organic electrolyte solution. The present invention also provides an organic electrolyte secondary battery having the above-mentioned configuration, in which the positive electrode is a lithium metal composite compound as a positive electrode active material, and the negative electrode is a carbon material capable of inserting and extracting lithium as a negative electrode active material, and the negative electrode further contains lithium. The present invention relates to the organic electrolyte secondary battery having the above-mentioned configuration, which uses the composite nitride as the negative electrode active material.

【0009】[0009]

【発明の実施の形態】本発明者らは、弱酸性有機リチウ
ム塩の有機電解液への添加による電池の安全性に及ぼす
効果について、詳細に検討した。これについて、詳しく
説明すると、本発明者らは、まず、内部短絡などを想定
してリチウムイオン電池の過充電試験を行ったところ、
通常の市販のリチウムイオン電池では危険性は低いが、
電池のエネルギー密度が高くなるにつれて危険性が増す
ことがわかった。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied in detail the effect of adding a weakly acidic organic lithium salt to an organic electrolyte solution on the safety of a battery. To explain this in detail, the present inventors first conducted an overcharge test of a lithium ion battery assuming an internal short circuit and the like,
The risk is low with ordinary commercial lithium-ion batteries,
It has been found that the danger increases as the energy density of the battery increases.

【0010】これら電池の負極には、通常、炭素材料な
どのリチウムを脱挿入できる化合物が使用されている
が、負極が過充電されリチウムが多少電着した場合、約
100℃付近から電解液と電着リチウムやリチウムが挿
入された炭素材料との間に発熱反応が生じる。一方、正
極はリチウムが脱離することで、電解液との反応開始温
度が低くなり、負極の反応熱により正極の熱暴走温度に
まで温度が上昇すると、電池は異常反応を起こし、ガス
が生成し、電池の内圧上昇が起こる。
A compound such as a carbon material capable of deintercalating lithium is usually used for the negative electrode of these batteries. However, when the negative electrode is overcharged and a little of the lithium is electrodeposited, it is treated with an electrolytic solution from about 100 ° C. An exothermic reaction occurs between the electrodeposited lithium and the carbon material in which lithium is inserted. On the other hand, the desorption of lithium in the positive electrode lowers the reaction start temperature with the electrolytic solution, and when the temperature rises to the thermal runaway temperature of the positive electrode due to the reaction heat of the negative electrode, the battery undergoes an abnormal reaction and gas is generated. However, the internal pressure of the battery rises.

【0011】また、単位体積あたりの容量が多いほど、
過充電時での反応物質が多くなり、生成するガス量が増
加し、内圧上昇が大きくなるため、過充電時のガス発生
を抑制する必要がある。また、電池サイズが大きい場合
も反応物質が多くなるため、過充電時のガス発生を抑制
する必要がある。
Further, the larger the volume per unit volume,
Since the amount of reactants at the time of overcharge increases, the amount of gas produced increases, and the internal pressure rises significantly, it is necessary to suppress the gas generation at the time of overcharge. Also, when the battery size is large, the amount of reactants increases, so it is necessary to suppress gas generation during overcharge.

【0012】電池の安全性の向上のために、電解液に不
燃性溶媒を添加したり、ポリマーを溶解させたり、芳香
族化合物を添加することが知られている。しかし、これ
らの手段では、その効果は十分とはいえなかった。これ
に対して、本発明のように、弱酸性有機リチウム塩を有
機電解液、とくに、鎖状エステルを主溶媒とした有機電
解液に添加すると、安全性の向上に格段にすぐれた効果
が得られることが見い出された。この理由は、以下のよ
うに、考えられる。
In order to improve the safety of the battery, it is known to add a non-flammable solvent, dissolve a polymer, or add an aromatic compound to the electrolytic solution. However, the effect cannot be said to be sufficient by these means. On the other hand, as in the present invention, when a weakly acidic organolithium salt is added to an organic electrolytic solution, particularly an organic electrolytic solution containing a chain ester as a main solvent, a markedly excellent effect for improving safety is obtained. It was found that The reason for this is considered as follows.

【0013】炭素材料のようにリチウムを脱挿入できる
化合物によって負極を作製すると、電解液と負極との高
温での反応性は、リチウムを用いた場合より、抑制され
ているが、負極の充放電可能な容量が増えることにより
電解液との反応性が増加し、反応が起こったときのガス
発生量が多くなり、内圧が上昇し破裂しやすくなる。し
かし、かかる電池構成においても、弱酸性有機リチウム
塩を有機電解液に添加すると、過充電時において解離し
た弱酸性有機リチウム塩のアニオンとプロトンが結合し
て、水素ガス源をトラップし、電池の内圧上昇が抑制さ
れ、電池の破裂が防止されて、安全性が大きく向上して
くることがわかった。
When a negative electrode is made of a compound capable of deintercalating lithium such as a carbon material, the reactivity between the electrolytic solution and the negative electrode at high temperature is suppressed more than when lithium is used, but the negative electrode is charged and discharged. The increase in the possible volume increases the reactivity with the electrolytic solution, increases the amount of gas generated when the reaction occurs, increases the internal pressure, and is likely to burst. However, even in such a battery configuration, when the weakly acidic organic lithium salt is added to the organic electrolytic solution, the anion and the proton of the weakly acidic organic lithium salt dissociated during overcharge are combined to trap the hydrogen gas source, It was found that the increase in internal pressure was suppressed, the battery was prevented from bursting, and safety was greatly improved.

【0014】本発明において、このような効果を発揮す
る弱酸性有機リチウム塩は、この塩のLiをHで置換し
た有機物質を1モル/リットルの水溶液にしたときに、
この水溶液のPKaが1≦PKa≦12の範囲に入るも
のが用いられる。このような弱酸性有機リチウム塩の好
ましい例として、酢酸リチウム、安息香酸リチウム、リ
チウムフエノキシドなどを挙げることができる。
In the present invention, the weakly acidic organolithium salt exhibiting such an effect is obtained by converting an organic substance obtained by substituting H of Li of this salt into an aqueous solution of 1 mol / liter.
A solution having a PKa within the range of 1 ≦ PKa ≦ 12 is used. Preferred examples of such weakly acidic organic lithium salt include lithium acetate, lithium benzoate, lithium phenoxide and the like.

【0015】このような弱酸性有機リチウム塩の使用量
は、有機電解液100重量部あたり、0.05重量部以
上とするのが望ましく、0.1重量部以上とするのがさ
らに望ましく、0.2重量部以上とするのが最も望まし
い。また、5重量部以下とするのが望ましく、2重量部
以下とするのがさらに望ましく、1重量部以下とするの
が最も望ましい。上記より少ないと、安全性を十分に向
上できず、また上記より多いと、電池のサイクル特性や
負荷特性が悪くなるおそれがある。
The amount of such weakly acidic organic lithium salt used is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and 0% by weight per 100 parts by weight of the organic electrolyte. Most preferably, the amount is not less than 2 parts by weight. Further, it is preferably 5 parts by weight or less, more preferably 2 parts by weight or less, and most preferably 1 part by weight or less. If it is less than the above, safety cannot be sufficiently improved, and if it is more than the above, the cycle characteristics and load characteristics of the battery may deteriorate.

【0016】本発明において、このような弱酸性有機リ
チウム塩を添加する有機電解液は、鎖状エステルを主溶
媒とした有機溶媒中に電解質を溶解させてなるものが用
いられる。この有機電解液における電解質の濃度は、と
くに限定されるものではないが、1モル/リットル以上
とすると、安全性が向上するので望ましく、1.2モル
/リットル以上とするのがさらに望ましい。また、1.
7モル/リットル以下とすると、良好な電気特性が保た
れるので望ましく、1.5モル/リットル以下とするの
がさらに望ましい。
In the present invention, as the organic electrolytic solution to which such a weakly acidic organic lithium salt is added, one prepared by dissolving an electrolyte in an organic solvent containing a chain ester as a main solvent is used. The concentration of the electrolyte in the organic electrolytic solution is not particularly limited, but if it is 1 mol / l or more, the safety is improved, and it is more preferably 1.2 mol / l or more. Also, 1.
When the amount is 7 mol / liter or less, good electric characteristics are maintained, which is desirable, and the amount is more preferably 1.5 mol / liter or less.

【0017】主溶媒として用いる鎖状エステルは、ジメ
チルカーボネート、メチルエチルカーボネート、ジエチ
ルカーボネート、プロピオン酸メチルなどの鎖状のCO
O−結合を有する有機溶媒である。主溶媒というのは、
これらの鎖状エステルを含む有機溶媒全体中で鎖状エス
テルが50体積%を超えることを意味する。鎖状エステ
ルが有機溶媒全体中で65体積%を超えると、釘差し試
験での電池の安全性が低下する傾向にあり、本発明の弱
酸性有機リチウム塩の添加効果が大きくなる。また、鎖
状エステルがメチル基を有する場合も電池の安全性が低
下する傾向にあり、本発明の弱酸性有機リチウム塩の添
加効果が顕著に現れる。
The chain ester used as the main solvent is a chain CO such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate or methyl propionate.
It is an organic solvent having an O-bond. The main solvent is
It means that the chain ester exceeds 50% by volume in the whole organic solvent containing these chain esters. When the chain ester exceeds 65% by volume in the whole organic solvent, the safety of the battery in the nailing test tends to be lowered, and the effect of adding the weakly acidic organic lithium salt of the present invention becomes large. In addition, when the chain ester has a methyl group, the safety of the battery tends to decrease, and the effect of adding the weakly acidic organic lithium salt of the present invention becomes remarkable.

【0018】上記の鎖状エステルとともに、誘電率が高
いエステル(誘電率30以上)を併用すると、鎖状エス
テル単独よりも、サイクル特性や電池の負荷特性が向上
するので、望ましい。誘電率の高いエステルには、プロ
ピレンカーボネート、エチレンカーボネート、ブチレン
カーボネート、γーブチロラクトン、エチレングリコー
ルサルファイトなどがあり、とくに環状構造のものが好
ましく、とりわけ環状のカーボネートが好ましく、エチ
レンカーボネートが最も好ましい。
It is desirable to use an ester having a high dielectric constant (dielectric constant of 30 or more) together with the above-mentioned chain ester because the cycle characteristics and the load characteristics of the battery are improved as compared with the chain ester alone. Examples of the ester having a high dielectric constant include propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, and ethylene glycol sulfite. Those having a cyclic structure are particularly preferable, and cyclic carbonate is particularly preferable, and ethylene carbonate is most preferable.

【0019】このような誘電率の高いエステルの使用量
としては、有機溶媒全体中で、40体積%未満であるの
が好ましく、30体積%以下であるのがより好ましく、
25体積%以下であるのがさらに好ましい。これらの誘
電率の高いエステルを併用すると、鎖状エステルをこれ
単独で使用するよりも、電池の安全性が向上するが、こ
の向上効果は、誘電率の高いエステルが有機溶媒全体中
で10体積%以上になると顕著になり、20体積%に達
するとより顕著になる。
The amount of the ester having such a high dielectric constant to be used is preferably less than 40% by volume, more preferably 30% by volume or less, in the whole organic solvent.
It is more preferably 25% by volume or less. When these esters with high dielectric constant are used together, the safety of the battery is improved as compared with the case of using the chain ester alone, but this improvement effect is that the ester with high dielectric constant is 10 volume in the whole organic solvent. %, It becomes remarkable, and when it reaches 20% by volume, it becomes more remarkable.

【0020】鎖状エステルと併用可能な有機溶媒として
は、上記の誘電率の高いエステルのほかに、たとえば、
1,2−ジメトキシエタン、1,3−ジオキソラン、テ
トラヒドロフラン、2−メチル−テトラヒドロフラン、
ジエチルエーテルなどを挙げることができる。その他、
アミンイミド系有機溶媒や、炭酸エステルのC=OのC
をSで置換した有機溶媒、炭酸エステルの水素原子の一
部をフッ素で置換した有機溶媒などを使用することもで
きる。
Examples of the organic solvent which can be used in combination with the chain ester include, in addition to the above-mentioned ester having a high dielectric constant,
1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran,
Examples thereof include diethyl ether. Other,
Amine imide-based organic solvent or C = O C of carbonic acid ester
It is also possible to use an organic solvent in which is substituted with S, an organic solvent in which a part of hydrogen atoms of the carbonic acid ester is substituted with fluorine, and the like.

【0021】上記した有機溶媒に溶解させる電解質とし
ては、LiClO4 、LiPF6 、LiBF4 、LiA
sF6 、LiSbF6 、LiCF3 SO3 、LiC4
9 SO3 、LiCF3 CO2 、Li2 2 4 (S
3 2 、LiN(CF3 SO22 、LiC(CF3
SO2 3 、LiCn 2n+1SO3 (n≧2)、LiN
(Rf3 OSO2 2 (ここで、Rfはフルオロアルキ
ル基)などが単独でまたは2種以上混合して用いられ
る。これらの中でも、とくに、LiPF6 やLiC4
9 SO3 などは、充放電特性が良好なことから、望まし
い。
As the electrolyte to be dissolved in the above organic solvent, LiClO 4 , LiPF 6 , LiBF 4 , LiA
sF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F
9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (S
O 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3
SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN
(Rf 3 OSO 2 ) 2 (where Rf is a fluoroalkyl group) and the like are used alone or in combination of two or more. Among these, especially LiPF 6 and LiC 4 F
9 SO 3 and the like are desirable because they have good charge and discharge characteristics.

【0022】本発明において、正極には、正極活物質に
導電助剤やポリフッ化ビニリデンなどの結着剤などを適
宜添加した合剤を、アルミニウム箔などの集電材料を芯
材として成形体に仕上げたものが用いられる。正極活物
質には、LiCoO2 などのリチウムコバルト化合物、
LiNiO2 などのリチウムニッケル化合物、LiMn
2 4 などのリチウムマンガン化合物、LiMnO2
どの層状リチウムマンガン化合物などのリチウム金属複
合化合物が用いられる。また、これらのほか、二酸化マ
ンガン、五酸化バナジウム、クロム酸化物などの金属酸
化物、二硫化チタン、二硫化モリブデンなどの金属硫化
物なども用いられる。
In the present invention, for the positive electrode, a mixture of a positive electrode active material to which a conductive additive or a binder such as polyvinylidene fluoride is appropriately added is formed into a molded body using a current collecting material such as aluminum foil as a core material. The finished one is used. The positive electrode active material is a lithium cobalt compound such as LiCoO 2 ,
Lithium nickel compounds such as LiNiO 2, LiMn
Lithium manganese compounds such as 2 O 4 and layered lithium manganese compounds such as LiMnO 2 are used. In addition to these, metal oxides such as manganese dioxide, vanadium pentoxide, and chromium oxide, and metal sulfides such as titanium disulfide and molybdenum disulfide are also used.

【0023】上記の正極活物質の中でも、LiCo
2 、LiNiO2 、LiMn2 4 などの充電時の開
路電圧がLi基準で4V以上を示すようなリチウム金属
複合酸化物を用いると、高エネルギー密度が得られるの
で、望ましい。とくに、充電したLiCoO2 やLiN
iO2 では、電解液との反応開始温度が、LiMn2
4よりも低く、負極の発熱によって正極の熱暴走温度に
達しやすいので、本発明の弱酸性有機リチウム塩の添加
効果がより顕著に発揮される。
Among the above positive electrode active materials, LiCo
It is preferable to use a lithium metal composite oxide such as O 2 , LiNiO 2 or LiMn 2 O 4 which has an open circuit voltage at the time of charging of 4 V or more based on Li, because a high energy density can be obtained. In particular, charged LiCoO 2 and LiN
In the case of iO 2 , the reaction start temperature with the electrolytic solution is LiMn 2 O
Since the temperature is lower than 4, and the thermal runaway temperature of the positive electrode is easily reached due to heat generation of the negative electrode, the effect of adding the weakly acidic organic lithium salt of the present invention is more remarkably exhibited.

【0024】本発明において、負極には、負極活物質に
導電助剤やポリフッ化ビニリデンなどの結着剤などを適
宜添加した合剤を、銅箔などの集電材料を芯材として成
形体に仕上げたものが用いられる。負極活物質には、リ
チウムを吸蔵・放出できるもの(リチウムイオンをドー
プ・脱ドープできるもの)であればよく、たとえば、黒
鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機
高分子化合物の焼成体、メソカーボンマイクロビーズ、
炭素繊維、活性炭などの炭素材料や、LiαMβN
(0.2≦α≦2.9、0.1≦β≦0.8、M:遷移
金属元素を含む1種または2種以上の元素)で表される
リチウム含有複合窒化物などが用いられる。また、S
i、Sn、Inなどとリチウムとの合金や、Liに近い
低電位で充放電できるSi、Sn、Inなどの酸化物な
どを使用してもよい。
In the present invention, a mixture of a negative electrode active material to which a conductive additive, a binder such as polyvinylidene fluoride, etc. is appropriately added is formed into a molded body using a current collecting material such as copper foil as a core material. The finished one is used. The negative electrode active material may be any material capable of inserting and extracting lithium (material capable of doping and dedoping lithium ions), and examples thereof include graphite, pyrolytic carbons, cokes, glassy carbons, and organic polymer compounds. Fired body, mesocarbon microbeads,
Carbon materials such as carbon fiber and activated carbon, and LiαMβN
(0.2 ≦ α ≦ 2.9, 0.1 ≦ β ≦ 0.8, M: one or more elements containing a transition metal element), such as a lithium-containing composite nitride is used. . Also, S
An alloy of i, Sn, In, or the like and lithium, or an oxide of Si, Sn, In, or the like that can be charged / discharged at a low potential close to Li may be used.

【0025】負極活物質として炭素材料を用いる場合、
この炭素材料は、以下の特性を有しているのが望まし
い。まず、(002)面の層間距離d002 の下限値とし
ては、3.2Å以上が望ましく、3.25Å以上がより
望ましく、3.3Å以上がさらに望ましい。また、d
002 の上限値としては、3.5Å以下が望ましく、3.
45Å以下がより望ましく、3.4Å以下がさらに望ま
しい。さらに、c軸方向の結晶子の大きさLcの下限値
としては、30Å以上が望ましく、80Å以上がより望
ましく、250Å以上がさらに望ましい。また、Lcの
上限値としては、20,000Å以下が望ましく、1
0,000Å以下がより望ましく、5,000Å以下が
さらに望ましい。平均粒径としては、8〜15μm、と
くに10〜13μmが望ましい。純度としては、99.
9%以上が望ましい。
When a carbon material is used as the negative electrode active material,
This carbon material preferably has the following characteristics. First, the lower limit value of the interlayer distance d 002 of the (002) plane is preferably 3.2 Å or more, more preferably 3.25 Å or more, and further preferably 3.3 Å or more. Also, d
The upper limit of 002 is preferably 3.5 Å or less.
45 Å or less is more desirable, and 3.4 Å or less is even more desirable. Further, the lower limit of the crystallite size Lc in the c-axis direction is preferably 30 Å or more, more preferably 80 Å or more, and further preferably 250 Å or more. The upper limit of Lc is preferably 20,000 Å or less,
It is more preferably 10,000 Å or less, still more preferably 5,000 Å or less. The average particle size is preferably 8 to 15 μm, particularly 10 to 13 μm. The purity is 99.
9% or more is desirable.

【0026】[0026]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。ただし、本発明は、以下の実施例のみ
に限定されるものではない。なお,以下において、部と
あるのは重量部を意味するものとする。
EXAMPLES Next, examples of the present invention will be described to more specifically describe. However, the present invention is not limited to the following examples. In addition, in the following, "parts" means "parts by weight".

【0027】実施例1 メチルエチルカーボネートとエチレンカーボネートとを
体積比67:33で混合し、これに電解質としてLiP
6 を1.2モル/リットル溶解させて、有機電解液を
調製した。これに、この有機電解液100部あたり、弱
酸性有機リチウム塩としての酢酸リチウムを0.1部添
加し、よく混合した。
Example 1 Methyl ethyl carbonate and ethylene carbonate were mixed in a volume ratio of 67:33, and LiP was used as an electrolyte in the mixture.
F 6 was dissolved in 1.2 mol / liter to prepare an organic electrolytic solution. To this, 0.1 part of lithium acetate as a weakly acidic organic lithium salt was added per 100 parts of this organic electrolytic solution and mixed well.

【0028】正極活物質としてのLiCoO2 に導電助
剤として鱗片状黒鉛を重量比100:5で加えて混合
し、この混合物と、ポリフッ化ビニリデンをN−メチル
ピロリドンに溶解させた溶液とを混合してスラリーにし
た。この正極合剤スラリーを、100メッシュのフィル
ターを通過させて大きなものを取り除いたのち、厚さが
15μmのアルミニウム箔からなる正極集電体の両面に
均一に塗布して乾燥し、その後、ローラプレス機により
圧縮成形し、帯状正極を作製した。
[0028] To LiCoO 2 as the positive electrode active material, scaly graphite as a conductive additive was added and mixed at a weight ratio of 100: 5, and this mixture was mixed with a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone. And made into a slurry. This positive electrode mixture slurry was passed through a 100-mesh filter to remove large ones, and then uniformly applied on both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm and dried, and then roller press. A belt-shaped positive electrode was produced by compression molding with a machine.

【0029】また、負極活物質として黒鉛系炭素材料
(層間距離d002 :3.37Å、c軸方向の結晶子サイ
ズLc:950Å、平均粒径:10μm、純度:99.
9%)90部を、ポリフツ化ビニリデン10部をN−メ
チル−2−ピロリドンに溶解させた溶液とを、混合して
スラリーにした。この負極合剤スラリーを、100メッ
シュのフィルターを通過させて大きなものを取り除いた
のち、厚さが10μmの帯状の銅箔からなる負極集電体
の両面に均一に塗布して乾燥し、その後、ローラプレス
機により圧縮成形し、帯状負極を作製した。
As a negative electrode active material, a graphite-based carbon material (interlayer distance d 002 : 3.37Å, crystallite size Lc in the c-axis direction Lc: 950Å, average particle diameter: 10 μm, purity: 99.
90% of 9%) and a solution of 10 parts of polyvinylidene fluoride in N-methyl-2-pyrrolidone were mixed to form a slurry. This negative electrode mixture slurry was passed through a 100-mesh filter to remove large ones, and then uniformly coated on both surfaces of a negative electrode current collector made of strip-shaped copper foil having a thickness of 10 μm and dried, and then, A band-shaped negative electrode was produced by compression molding with a roller press.

【0030】上記の正極を、セパレータである厚さが2
5μmの微孔性ポリエチレンフィルムを介して、上記の
負極に重ね、捲回したのち、電池容器である外装缶(大
きさ:5mm×30mm×48mm)に収容した。単位体積あ
たりの活物質含有合剤の正極/負極の重量比は2.13
であった。この電池容器内に、上記の有機電解液を注入
し、有機電解液がセパレータなどに十分に浸透したの
ち、封口し、予備充電、エージングを行い、角型の有機
電解液二次電池を作製した。
The above positive electrode has a thickness of 2 as a separator.
It was placed on the above negative electrode through a 5 μm microporous polyethylene film, wound, and then housed in an outer can (size: 5 mm × 30 mm × 48 mm) as a battery container. The positive electrode / negative electrode weight ratio of the active material-containing mixture per unit volume is 2.13.
Met. In this battery container, the above organic electrolyte was injected, and after the organic electrolyte had sufficiently penetrated into the separator, etc., it was sealed, precharged and aged to produce a square organic electrolyte secondary battery. .

【0031】実施例2 弱酸性有機リチウム塩として、酢酸リチウム0.1部に
代えて、安息香酸リチウム0.1部を、有機電解液中に
添加するようにした以外は、実施例1と同様にして、角
型の有機電解液二次電池を作製した。
Example 2 The same as Example 1 except that 0.1 part of lithium benzoate was added to the organic electrolytic solution as the weakly acidic organic lithium salt instead of 0.1 part of lithium acetate. Then, a prismatic organic electrolyte secondary battery was produced.

【0032】実施例3 弱酸性有機リチウム塩として、酢酸リチウム0.1部に
代えて、リチウムフエノキシド0.1部を、有機電解液
中に添加するようにした以外は、実施例1と同様にし
て、角型の有機電解液二次電池を作製した。
Example 3 As Example 1 except that 0.1 part of lithium phenoxide was added to the organic electrolytic solution as the weakly acidic organic lithium salt instead of 0.1 part of lithium acetate. Similarly, a prismatic organic electrolyte secondary battery was produced.

【0033】実施例4 負極活物質としてのリチウム含有複合窒化物(Li2.6
Co0.4 N)に導電助剤としてカーボンブラックを重量
比70:30で加えて混合し、この混合物と、熱可塑性
樹脂(スチレン−ブタジエンゴム)をトルエンに溶解さ
せた溶液とを、混合してスラリーにした。この負極合剤
スラリーを、100メッシュのフィルターを通過させて
大きなものを取り除いたのち、厚さが10μmの帯状の
銅箔からなる負極集電体の両面に均一に塗布して乾燥
し、その後、ローラプレス機により圧縮成形し、帯状負
極を作製した。この負極を用いた以外は、実施例1と同
様にして、角型の有機電解液二次電池を作製した。な
お、この電池における単位体積あたりの活物質含有合剤
の正極/負極の重量比は、実施例1と同じ2.13であ
った。
Example 4 Lithium-containing composite nitride (Li 2.6
Co 0.4 N) with carbon black as a conduction aid at a weight ratio of 70:30 and mixed, and this mixture and a solution of a thermoplastic resin (styrene-butadiene rubber) dissolved in toluene are mixed to form a slurry. I chose This negative electrode mixture slurry was passed through a 100-mesh filter to remove large ones, and then uniformly coated on both surfaces of a negative electrode current collector made of strip-shaped copper foil having a thickness of 10 μm and dried, and then, A band-shaped negative electrode was produced by compression molding with a roller press. A rectangular organic electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. The positive electrode / negative electrode weight ratio of the active material-containing mixture per unit volume in this battery was 2.13, which was the same as in Example 1.

【0034】比較例1 負極活物質としての黒鉛系炭素材料(実施例1と同じも
の)89.2部、リン酸リチウム0.9部、ポリフツ化
ビニリデン9.9部をN−メチル−2−ピロリドンに溶
解させた溶液を、混合してスラリーにした。この負極合
剤スラリーを、100メッシュのフィルターを通過させ
て大きなものを取り除いたのち、厚さが10μmの帯状
の銅箔からなる負極集電体の両面に均一に塗布して乾燥
し、その後、ローラプレス機により圧縮成形し、帯状負
極を作製した。この負極を用い、かつ有機電解液中に弱
酸性有機リチウム塩としての酢酸リチウム0.1部を添
加しなかった以外は、実施例1と同様にして、角型の有
機電解液二次電池を作製した。なお、この電池における
単位体積あたりの活物質含有合剤の正極/負極の重量比
は、実施例1と同じ2.13であった。
Comparative Example 1 89.2 parts of a graphite-based carbon material (the same as in Example 1) as a negative electrode active material, 0.9 part of lithium phosphate, 9.9 parts of polyvinylidene fluoride were added to N-methyl-2-. The solutions dissolved in pyrrolidone were mixed into a slurry. This negative electrode mixture slurry was passed through a 100-mesh filter to remove large ones, and then uniformly coated on both surfaces of a negative electrode current collector made of strip-shaped copper foil having a thickness of 10 μm and dried, and then, A band-shaped negative electrode was produced by compression molding with a roller press. A rectangular organic electrolyte secondary battery was prepared in the same manner as in Example 1 except that this negative electrode was used and 0.1 part of lithium acetate as a weakly acidic organic lithium salt was not added to the organic electrolyte. It was made. The positive electrode / negative electrode weight ratio of the active material-containing mixture per unit volume in this battery was 2.13, which was the same as in Example 1.

【0035】比較例2 弱酸性有機リチウム塩としての酢酸リチウム0.1部に
代えて、炭酸リチウム0.1部を、有機電解液中に添加
するようにした以外は、実施例1と同様にして、角型の
有機電解液二次電池を作製した。
Comparative Example 2 The same as Example 1 except that 0.1 part of lithium carbonate was added to the organic electrolyte instead of 0.1 part of lithium acetate as the weakly acidic organic lithium salt. Thus, a prismatic organic electrolyte secondary battery was produced.

【0036】比較例3 弱酸性有機リチウム塩としての酢酸リチウム0.1部を
有機電解液中に添加するのを省いた以外は、実施例1と
同様にして、角型の有機電解液二次電池を作製した。
Comparative Example 3 Secondary organic electrolyte secondary electrolyte solution was prepared in the same manner as in Example 1 except that 0.1 part of lithium acetate as a weakly acidic organic lithium salt was omitted from the organic electrolyte solution. A battery was made.

【0037】上記の実施例1〜4および比較例1〜3の
各有機電解液二次電池について、600mAで3Vまで
放電したのち、600mAで充電し、4.2Vに達した
のちは4.2Vの定電圧に保つ条件で2時間30分の充
電を行った。その後、電池を600mA、12Vの条件
で過充電試験を行い、過充電試験終了後、電池内のガス
を抜き取り、ガス量測定およびガス組成分析を行った。
水素ガス量は、ガス組成分析結果から、計算で求めたも
のである。これらの結果は、表1に示されるとおりであ
った。
With respect to each of the organic electrolyte secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 described above, after discharging to 3 V at 600 mA, charging to 600 mA and then 4.2 V after reaching 4.2 V. The battery was charged for 2 hours and 30 minutes under the condition that the constant voltage was maintained. Then, the battery was subjected to an overcharge test under the conditions of 600 mA and 12 V, and after the overcharge test was completed, the gas in the battery was extracted, and the gas amount was measured and the gas composition was analyzed.
The hydrogen gas amount is calculated from the gas composition analysis result. The results are shown in Table 1.

【0038】 [0038]

【0039】上記の表1の結果から明らかなように、実
施例1〜4のように有機電解液中にガストラップ剤とし
て弱酸性有機リチウム塩を添加すると、これを添加しな
い比較例3に比べて、過充電時に発生するガス量を低減
できる、とくに水素ガスを低減できること、また、実施
例1,4のように弱酸性有機リチウム塩としてとくに酢
酸リチウムを添加すると、上記効果が顕著となることが
わかる。これに対し、比較例1,2のように本発明とは
異なるガストラップ剤を有機電解液や負極中に添加する
と、上記効果に乏しいことが明らかである。
As is clear from the results of Table 1 above, when a weakly acidic organic lithium salt was added as a gas trap agent to the organic electrolyte as in Examples 1 to 4, it was compared with Comparative Example 3 in which it was not added. Then, the amount of gas generated during overcharge can be reduced, especially hydrogen gas can be reduced, and the addition of lithium acetate as a weakly acidic organic lithium salt as in Examples 1 and 4 makes the above effect remarkable. I understand. On the other hand, when the gas trapping agent different from the present invention is added to the organic electrolytic solution or the negative electrode as in Comparative Examples 1 and 2, it is clear that the above effect is poor.

【0040】[0040]

【発明の効果】以上のように、本発明は、正極、負極お
よび有機電解液を有する有機電解液二次電池において、
有機電解液に弱酸性有機リチウム塩を含有させることに
より、上記電池の安全性を向上でき、とくに弱酸性有機
リチウム塩として酢酸リチウムを含有させることによ
り、上記電池の安全性を大幅に向上できる。
INDUSTRIAL APPLICABILITY As described above, the present invention provides an organic electrolyte secondary battery having a positive electrode, a negative electrode and an organic electrolyte solution.
By including a weakly acidic organic lithium salt in the organic electrolytic solution, the safety of the battery can be improved, and particularly by including lithium acetate as the weakly acidic organic lithium salt, the safety of the battery can be significantly improved.

フロントページの続き (72)発明者 和田 秀一 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ12 AK03 AL01 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ16 HJ01 5H050 AA15 BA17 CA04 CA07 CB01 CB07 CB08 HA01 Continued front page    (72) Inventor Shuichi Wada             Hitachima, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F-term (reference) 5H029 AJ12 AK03 AL01 AL06 AM03                       AM05 AM07 BJ02 BJ14 DJ16                       HJ01                 5H050 AA15 BA17 CA04 CA07 CB01                       CB07 CB08 HA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および有機電解液を有する有
機電解液二次電池において、有機電解液中に弱酸性有機
リチウム塩を含有することを特徴とする有機電解液二次
電池。
1. An organic electrolytic solution secondary battery having a positive electrode, a negative electrode and an organic electrolytic solution, wherein the organic electrolytic solution contains a weakly acidic organic lithium salt.
【請求項2】 弱酸性有機リチウム塩は、酢酸リチウ
ム、安息香酸リチウムまたはリチウムフエノキシドの中
より選ばれる少なくとも1種である請求項1に記載の有
機電解液二次電池。
2. The organic electrolyte secondary battery according to claim 1, wherein the weakly acidic organic lithium salt is at least one selected from lithium acetate, lithium benzoate, and lithium phenoxide.
【請求項3】 弱酸性有機リチウム塩は、有機電解液1
00重量部あたり、0.05重量部以上、5重量部以下
である請求項1または2に記載の有機電解液二次電池。
3. The weakly acidic organic lithium salt is used as the organic electrolytic solution 1.
The organic electrolyte secondary battery according to claim 1, wherein the amount is 0.05 parts by weight or more and 5 parts by weight or less per 00 parts by weight.
【請求項4】 正極は、リチウム金属複合化合物を正極
活物質とし、負極は、リチウムを吸蔵・放出できる炭素
材料を負極活物質とする請求項1〜3のいずれかに記載
の有機電解液二次電池。
4. The organic electrolyte solution according to claim 1, wherein the positive electrode uses a lithium metal composite compound as a positive electrode active material, and the negative electrode uses a carbon material capable of inserting and extracting lithium as a negative electrode active material. Next battery.
【請求項5】 負極は、リチウム含有複合窒化物を負極
活物質とする請求項1〜3のいずれかに記載の有機電解
液二次電池。
5. The organic electrolyte secondary battery according to claim 1, wherein the negative electrode uses a lithium-containing composite nitride as a negative electrode active material.
JP2001385398A 2001-12-19 2001-12-19 Secondary battery using organic electrolyte Withdrawn JP2003187863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385398A JP2003187863A (en) 2001-12-19 2001-12-19 Secondary battery using organic electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385398A JP2003187863A (en) 2001-12-19 2001-12-19 Secondary battery using organic electrolyte

Publications (1)

Publication Number Publication Date
JP2003187863A true JP2003187863A (en) 2003-07-04

Family

ID=27594823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385398A Withdrawn JP2003187863A (en) 2001-12-19 2001-12-19 Secondary battery using organic electrolyte

Country Status (1)

Country Link
JP (1) JP2003187863A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149654A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary battery and secondary battery using the same
JP2007149656A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery using the same
JP2007273257A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Nonaqueous secondary battery and method of charging same
JP2008311209A (en) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
EP2750235A1 (en) * 2012-05-31 2014-07-02 LG Chem, Ltd. Lithium secondary battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007149654A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary battery and secondary battery using the same
JP2007149656A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery using the same
JP2007273257A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Nonaqueous secondary battery and method of charging same
JP2008311209A (en) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
EP2750235A1 (en) * 2012-05-31 2014-07-02 LG Chem, Ltd. Lithium secondary battery
EP2750235A4 (en) * 2012-05-31 2014-07-30 Lg Chemical Ltd Lithium secondary battery
US9287559B2 (en) 2012-05-31 2016-03-15 Lg Chem, Ltd. Lithium secondary battery

Similar Documents

Publication Publication Date Title
EP2190054B1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP3492173B2 (en) Non-aqueous battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP3354057B2 (en) Organic electrolyte secondary battery
JPH04328278A (en) Nonaqueous electrolyte secondary battery
JP3275998B2 (en) Organic electrolyte secondary battery
JP5109349B2 (en) Secondary battery
JP4149042B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2009164053A (en) Battery
JPH07272756A (en) Nonaqueous electrolytic secondary battery
JP3748843B2 (en) Organic electrolyte secondary battery
JPH11176478A (en) Organic electrolyte secondary battery
JP2003187863A (en) Secondary battery using organic electrolyte
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JPH08329946A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3580511B2 (en) Organic electrolyte secondary battery
JP3449710B2 (en) Organic electrolytes Organic electrolytes for secondary batteries
JP3247103B1 (en) Organic electrolyte secondary battery
JP2003132949A (en) Nonaqueous secondary battery and its manufacturing method
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JPH1140195A (en) Nonaqueous electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301