JP3275998B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3275998B2
JP3275998B2 JP09479897A JP9479897A JP3275998B2 JP 3275998 B2 JP3275998 B2 JP 3275998B2 JP 09479897 A JP09479897 A JP 09479897A JP 9479897 A JP9479897 A JP 9479897A JP 3275998 B2 JP3275998 B2 JP 3275998B2
Authority
JP
Japan
Prior art keywords
battery
aromatic compound
organic electrolyte
alkyl group
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09479897A
Other languages
Japanese (ja)
Other versions
JPH10275632A (en
Inventor
房次 喜多
祐樹 石川
和伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP09479897A priority Critical patent/JP3275998B2/en
Publication of JPH10275632A publication Critical patent/JPH10275632A/en
Application granted granted Critical
Publication of JP3275998B2 publication Critical patent/JP3275998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池に関し、さらに詳しくは、安全性が優れた有機電解液
二次電池に関する。
The present invention relates to an organic electrolyte secondary battery, and more particularly, to an organic electrolyte secondary battery having excellent safety.

【0002】[0002]

【従来の技術】有機電解液二次電池は電解液の溶媒とし
て有機溶媒を用いた二次電池であり、この有機電解液二
次電池は、容量が大きく、かつ高電圧、高エネルギー密
度、高出力であることから、ますます需要が増える傾向
にある。
2. Description of the Related Art An organic electrolyte secondary battery is a secondary battery using an organic solvent as a solvent of the electrolyte. The organic electrolyte secondary battery has a large capacity, a high voltage, a high energy density, and a high capacity. Because of the output, the demand tends to increase more and more.

【0003】そして、この電池の有機電解液(以下、電
池を表すとき以外は、単に「電解液」という)の溶媒と
しては、これまで、エチレンカーボネートなどの環状エ
ステルとジメチルカーボネート、ジエチルカーボネー
ト、プロピオン酸メチルなどの鎖状エステルとが混合し
て用いられてきた。
[0003] As a solvent for an organic electrolytic solution of this battery (hereinafter simply referred to as "electrolyte solution" except when the battery is referred to), cyclic esters such as ethylene carbonate and dimethyl carbonate, diethyl carbonate, propionate have been used. It has been used in combination with a chain ester such as methyl acid.

【0004】しかし、この有機電解液二次電池について
さらなる安全性の向上を目指して検討を進めるうちに、
電解液の溶媒として鎖状のエステルを主溶媒として用い
た場合や、負極の充放電可能な容量が多い場合には、電
池の構造に関して充分な工夫をしないと、電池が内部短
絡した場合や釘刺しされた場合の安全性が低下する傾向
のあることがわかった。
However, as this organic electrolyte secondary battery has been studied for the purpose of further improving its safety,
If a chain ester is used as the main solvent as the solvent for the electrolyte, or if the negative electrode has a large chargeable / dischargeable capacity, the internal structure of the battery may cause an internal short circuit or It was found that the safety in the case of stabbing tended to decrease.

【0005】通常は、保護回路などで過充電を防止して
内部短絡を引き起こさないように対策されているし、通
常の内部短絡では電池が発熱するだけで異常な事態には
いたらない。また、釘刺しは滅多に起こるものではな
く、使用者がわざとやらない限り起こりにくい。起こり
得ることとしては、衝撃事故などで電池が部分的に潰さ
れることが想定される。
[0005] Usually, measures are taken to prevent overcharging by a protection circuit or the like so as not to cause an internal short circuit, and a normal internal short circuit does not cause an abnormal situation because the battery only generates heat. In addition, nail penetration rarely occurs and is unlikely to occur unless the user intentionally performs it. As a possibility, it is assumed that the battery is partially crushed due to an impact accident or the like.

【0006】そのために、電池の圧壊試験を行っている
が、通常は安全である。しかし、数十個試験しただけで
は充分に安全であるとはいいがたく、より危険度の高い
条件下で試験を行って安全性を確認することが望まし
い。
For this purpose, a crush test of the battery is performed, but it is usually safe. However, it is difficult to say that it is safe enough to test only a few dozen, but it is desirable to confirm the safety by conducting a test under more dangerous conditions.

【0007】一方、釘刺し試験は、電池の圧壊試験に比
べて少ない部分で電池を確実に短絡させるので、短絡部
位に電流が集中して、より発熱しやすく、電池が部分的
に急速に高温になりやすい。そのため、セパレータのフ
ューズ(溶融による目づまり)のばらつきが生じやす
く、また短絡部位での電解液と負極の反応による発熱が
多くなるなどのため、電池の発熱がさらに多くなる。従
って、安全性の過酷試験として釘刺し試験は有効であ
る。さらに、釘刺し試験を室温で行うよりも40℃の高
温状態で行う方が、電池がより高温にまで上昇しやす
く、電池の熱暴走反応が起きやすい。また、1/2釘刺
しのように、釘を電池の途中で止める方が、短絡部分が
少なくなり電流がより集中して発熱しやすい。従って、
より高い安全性を得るには、このような加温下での1/
2釘刺し試験にある程度は耐えるものであることが望ま
しい。
[0007] On the other hand, in the nail penetration test, the battery is reliably short-circuited in a smaller portion than the battery crush test. Easy to be. For this reason, variations in the fuses (clogging due to melting) of the separator are likely to occur, and the heat generated by the reaction between the electrolyte and the negative electrode at the short-circuited portion increases. Therefore, the nail penetration test is effective as a severe safety test. Further, when the nail penetration test is performed at a high temperature of 40 ° C. than at room temperature, the battery easily rises to a higher temperature, and the thermal runaway reaction of the battery is more likely to occur. Further, when the nail is stopped in the middle of the battery as in the case of a 釘 nail penetration, the short-circuit portion is reduced, and the current is more concentrated and heat is easily generated. Therefore,
To obtain higher safety, 1/1
(2) It is desirable to be able to withstand the nail penetration test to some extent.

【0008】[0008]

【発明が解決しようとする課題】ところで、カーボンな
どのリチウムを脱挿入できる化合物を負極に用いた場
合、金属リチウムを用いる場合よりも高温での電解液と
の反応性がはるかに低下し、電池の安全性が改善され
る。しかし、その安全性改善のためには、リチウムを脱
挿入できる化合物を用いた負極の表面に電解液と反応し
て形成された良質の皮膜の存在が不可欠である。
By the way, when a compound such as carbon capable of deintercalating lithium is used for the negative electrode, the reactivity with the electrolytic solution at a higher temperature is much lower than when metal lithium is used. Safety is improved. However , in order to improve the safety, it is essential to have a good quality film formed by reacting with the electrolytic solution on the surface of the negative electrode using a compound capable of deintercalating lithium.

【0009】負極の表面での電解液との反応について
は、D.Aurbachらが、カーボン上に有機炭酸塩
(ROCO2 Li)、Li2 CO3 や、アルコキシド
(ROLi)などが生成していることを報告している
〔J.Electrochemical Soc.,V
ol142(No.9),p2882(1995)〕。
また、同報文では、環状エステルのエチレンカーボネー
トと鎖状エステルのジエチルカーボネートとの混合溶媒
において、環状エステルのエチレンカーボネートに対す
る鎖状エステルのジエチルカーボネートの割合が1:1
より多くなると、サイクル特性に悪影響があると報告さ
れている。さらに、本発明者ら検討を行ったところ
特にジエチルカーボネートのような鎖状エステルの割
合が多くなると、とりわけメチル基を有する鎖状エステ
ルの割合が多くなると、短絡や釘刺しにおける安全性が
低下する傾向のあることがわかってきた。
Regarding the reaction with the electrolyte on the surface of the negative electrode, see D. Aurbach et al. Report that organic carbonates (ROCO 2 Li), Li 2 CO 3 , alkoxides (ROLi) and the like are formed on carbon [J. Electrochemical Soc. , V
ol142 (No. 9), p2882 (1995)].
In the same report, in a mixed solvent of cyclic ester ethylene carbonate and chain ester diethyl carbonate, the ratio of chain ester diethyl carbonate to cyclic ester ethylene carbonate is 1: 1.
It is reported that higher levels have an adverse effect on cycling characteristics. In addition, when the present inventors have carried out an investigation,
Especially when the ratio of the chain esters such as diethyl carbonate is increased, the especially the proportion of the linear ester increases with methyl group, safety in the short and nailing has been found that tend to be lowered.

【0010】従って、本発明は、従来の有機電解液二次
電池の安全性に関する問題点を解決し、安全性の優れた
有機電解液二次電池を提供することを目的とする。
Accordingly, an object of the present invention is to solve the problems related to the safety of the conventional organic electrolyte secondary battery and to provide an organic electrolyte secondary battery having excellent safety.

【0011】[0011]

【課題を解決するための手段】本発明は、充電時の開路
電圧がLi基準で4V以上を示すリチウム複合酸化物を
用いた正極、一部が電解液と反応して表面に皮膜が形成
された負極およびメチル基を有する鎖状エステルを含む
鎖状エステル類を主溶媒とする電解液を有する有機電解
液二次電池において、上記電解液に炭素数が4個以上の
アルキル基を有する非イオン性芳香族化合物を含有させ
ることによって、上記課題を解決したものである。
SUMMARY OF THE INVENTION The present invention provides an open circuit for charging.
A positive electrode using a lithium composite oxide having a voltage of 4 V or more based on Li, a negative electrode having a film formed on the surface by partially reacting with an electrolytic solution, and chain esters including a chain ester having a methyl group. In an organic electrolytic solution secondary battery having an electrolytic solution as a main solvent, the above problem has been solved by including a nonionic aromatic compound having an alkyl group having 4 or more carbon atoms in the electrolytic solution. is there.

【0012】[0012]

【発明の実施の形態】本発明において用いるアルキル基
を有する炭素数が4個以上の非イオン性芳香族化合物と
しては、たとえば、トリ−2−エチルヘキシルトリメリ
テート〔(C6 3 (COOC8 173 〕などのトリ
メリット酸エステルまたはその誘導体、ジブチルフタレ
ート〔(C6 4 (COOC4 9 2 〕、ターシャリ
ーまたはイソブチルベンゼン(C6 5 −C4 9 )、
シクロヘキシルベンゼン(C611−C6 5 )などが
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION As the nonionic aromatic compound having an alkyl group and having 4 or more carbon atoms , for example, tri-2-ethylhexyl trimellitate [(C 6 H 3 (COOC 8 H 17) 3] trimellitic acid ester or its derivative, such as, dibutyl phthalate [(C 6 H 4 (COOC 4 H 9) 2 ], tertiary or isobutyl benzene (C 6 H 5 -C 4 H 9),
Cyclohexyl benzene (C 6 H 11 -C 6 H 5) can be mentioned.

【0013】上記非イオン性芳香族化合物のアルキル基
、炭素数が4個以上であることが必要であり、より
ましくは炭素数が5個以上である。また、上記アルキル
基は、ベンゼン環に直接結合していても良いが、COO
基を介してベンゼン環に結合しているのがさらに望まし
い。つまり、アルキル基は長い方がまたCOO基のある
方が負極表面でのバリアー効果(高温で電極と電解液と
の急速な反応を抑える効果)が大きいからである。ここ
で、上記非イオン性芳香族化合物における非イオン性と
は、カチオン部やアニオン部を分子内に持たないことを
いう。
Alkyl groups of the non-ionic aromatic compound, it is necessary that the carbon number is 4 or more, more Nozomu <br/> Mashiku is 5 or more carbon atoms. Further, the alkyl group may be directly bonded to the benzene ring.
More preferably, it is attached to the benzene ring via a group. That is, the longer the alkyl group and the presence of the COO group, the greater the barrier effect on the negative electrode surface (the effect of suppressing a rapid reaction between the electrode and the electrolyte at a high temperature). Here, non-ionic in the non-ionic aromatic compound means that the compound does not have a cation part or an anion part in a molecule.

【0014】本発明において、上記特定のアルキル基を
有する非イオン性芳香族化合物の電解液中での含有量
は、電解液溶媒100容量部に対して0.1容量部以上
であることが望ましく、0.2容量部以上であることが
さらに望ましく、0.5容量部以上がもっとも望まし
い。なお、上記特定のアルキル基を有する非イオン性芳
香族化合物が固体の場合は、その密度で体積換算した値
を用いる。また、上記特定のアルキル基を有する非イオ
ン性芳香族化合物の電解液中での含有量は、電解液溶媒
100容量部に対して10容量部以下が望ましく、2容
量部以下がさらに望ましく、1容量部以下がもっとも望
ましい。
In the present invention, the content of the nonionic aromatic compound having the specific alkyl group in the electrolytic solution is preferably 0.1 part by volume or more based on 100 parts by volume of the electrolytic solution solvent. , 0.2 volume parts or more, and most preferably 0.5 volume parts or more. When the nonionic aromatic compound having the specific alkyl group is a solid, a value obtained by converting the density into a volume is used. The content of the nonionic aromatic compound having the specific alkyl group in the electrolytic solution is preferably 10 parts by volume or less, more preferably 2 parts by volume or less, with respect to 100 parts by volume of the electrolytic solution solvent. The capacity part or less is most desirable.

【0015】上記特定のアルキル基を有する非イオン性
芳香族化合物の電解液中での含有量が上記より少ない場
合は安全性を充分に向上させることができず、また、上
特定のアルキル基を有する非イオン性芳香族化合物の
電解液中での含有量が上記より多い場合は電池のサイク
ル特性や負荷特性が悪くなるおそれがある。
If the content of the nonionic aromatic compound having the specific alkyl group in the electrolyte is smaller than the above, the safety cannot be sufficiently improved, and the specific alkyl group cannot be used. If the content of the nonionic aromatic compound in the electrolyte is higher than the above, the cycle characteristics and load characteristics of the battery may be deteriorated.

【0016】[0016]

【0017】[0017]

【0018】本発明者らは、芳香族化合物の電解液への
添加が電池の安全性に及ぼす効果を詳細に検討した。こ
れを詳しく説明すると、本発明者らは、まず、内部短絡
などを想定してリチウムイオン電池の釘刺し試験を行っ
たところ、通常の市販のリチウムイオン電池では危険性
が低いが、電池のエネルギー密度が高くなるにつれて危
険性が増していくことがわかった。
The present inventors have studied in detail the effect of adding an aromatic compound to an electrolyte on the safety of a battery. To explain this in detail, the present inventors first performed a nail penetration test of a lithium ion battery assuming an internal short circuit or the like. It was found that the risk increased as the density increased.

【0019】これらの電池の負極には通常炭素材料など
のリチウムを脱挿入できる化合物が使用されているが、
負極が過充電されて多少リチウムが電着した場合、約1
00℃付近から電解液と電着リチウムやリチウムが挿入
された炭素材料との間に発熱反応が生じる。一方、充電
時の開路電圧がLi基準で4V以上を示すリチウム複合
酸化物を用いた正極はリチウムが脱離することによっ
て、電解液との反応開始温度が低くなり、負極の反応熱
によって正極の熱暴走温度にまで温度が上昇すると、電
池は異常発熱を起こすことになる。
Compounds capable of deintercalating lithium, such as carbon materials, are usually used for the negative electrodes of these batteries.
If the negative electrode is overcharged and some lithium is electrodeposited, about 1
From around 00 ° C., an exothermic reaction occurs between the electrolytic solution and electrodeposited lithium or a carbon material into which lithium is inserted. Meanwhile, charging
In the positive electrode using a lithium composite oxide having an open circuit voltage of 4 V or more based on Li when lithium is desorbed, the temperature at which the reaction starts with the electrolytic solution decreases, and the heat of reaction of the negative electrode causes a thermal runaway temperature of the positive electrode. If the temperature rises to, the battery will generate abnormal heat.

【0020】このような連続反応を伴う発熱現象がある
ため、通常使用条件での電池の負極の充放電可能な容量
が電池の単位体積あたり85mAh/cm3 を越えた場
合には、電池が過充電された時の安全性が低下する。つ
まり、負極の単位体積あたりの放電可能な容量が多いほ
ど、過充電時に発熱した場合に電池単位体積あたりの発
熱量が多くなり、電池温度が正極の熱暴走温度にまで上
昇する可能性が高くなるのである。従って、単位体積あ
たりの負極容量の大きい電池ほど、負極と電解液との発
熱反応を抑制する必要がある。また、電池サイズが大き
い場合も発熱量が多くなるので、負極と電解液との発熱
反応を抑制する必要があり、本発明の上記特定のアルキ
ル基を有する非イオン性芳香族化合物を含有させる効果
が顕著に発現する。単電池のサイズが10cm3 以上、
特に15cm3 以上になると本発明の効果がより顕著に
発現する。
Due to such a heat generation phenomenon accompanied by a continuous reaction, when the chargeable / dischargeable capacity of the negative electrode of the battery under normal use conditions exceeds 85 mAh / cm 3 per unit volume of the battery, the battery becomes excessive. Safety when charged is reduced. In other words, the greater the dischargeable capacity per unit volume of the negative electrode, the greater the amount of heat generated per unit volume of the battery if heat is generated during overcharge, and the higher the possibility that the battery temperature will rise to the thermal runaway temperature of the positive electrode. It becomes. Therefore, it is necessary to suppress the exothermic reaction between the negative electrode and the electrolytic solution as the battery has a larger negative electrode capacity per unit volume. Moreover, since it becomes much calorific value when the battery size is large, it is necessary to suppress the exothermic reaction between the negative electrode and the electrolyte, a non-ionic aromatic having the specific alkyl <br/> Le group of the invention The effect of including the compound is remarkably exhibited. The size of the cell is 10 cm 3 or more,
In particular, when it is 15 cm 3 or more, the effect of the present invention is more remarkably exhibited.

【0021】電池の安全性向上のために、電解液に不燃
性溶媒を添加したり、ポリマーを溶解させたり、芳香族
化合物を添加することが知られているが、本発明は、上
記特定の非イオン性芳香族化合物をメチル基を有する
状エステルを含む鎖状エステル類を主溶媒とする電池に
用いることにより、安全性の向上に特に優れた効果を見
出したものである。本発明において、上記特定の非イオ
ン性芳香族化合物の添加により安全性を改善できる理由
は以下のように考えられる。
It is known to add a nonflammable solvent, dissolve a polymer, or add an aromatic compound to the electrolytic solution in order to improve the safety of the battery. By using a nonionic aromatic compound for a battery containing a chain ester containing a chain ester having a methyl group as a main solvent, a particularly excellent effect in improving safety has been found. In the present invention, the specific non-ion
The reason why the safety can be improved by adding a reactive aromatic compound is considered as follows.

【0022】カーボン材料のようにリチウムを脱挿入で
きる化合物によって負極を作製することにより、電解液
と負極との高温での反応性はリチウムを用いた場合より
も抑制されているが、負極の充放電可能な容量が増える
ことによって電解液との反応性が増加し、電池が発熱し
て負極と電解液との反応が起こったときの発熱量が多く
なり、温度が上昇しやすくなる。しかし、芳香族化合物
が電解液に添加されていると、該芳香族化合物が負極の
表面に吸着し、負極の表面と鎖状エステルとの直接の接
触を抑制するので、負極と電解液との反応性が低減され
て、温度上昇が制限されるものと考えられる。そして、
芳香族化合物は、特定のアルキル基を有するものの方が
効果が高いこともわかった。その詳細は後記の実施例で
明らかにする。
By preparing the negative electrode with a compound capable of deintercalating lithium such as a carbon material, the reactivity between the electrolyte and the negative electrode at a high temperature is suppressed as compared with the case where lithium is used. As the dischargeable capacity increases, the reactivity with the electrolytic solution increases, the amount of heat generated when the battery generates heat and the reaction between the negative electrode and the electrolytic solution occurs increases, and the temperature easily rises. However, when the aromatic compound is added to the electrolyte, the aromatic compound is adsorbed on the surface of the negative electrode and suppresses the direct contact between the surface of the negative electrode and the chain ester. It is believed that the reactivity is reduced and the temperature rise is limited. And
It was also found that the aromatic compound having a specific alkyl group was more effective. The details will be clarified in Examples described later.

【0023】電解液の主溶媒として用いる鎖状エステル
は、たとえば、ジメチルカーボネート、ジエチルカー
ボネート、メチルエチルカーボネート、プロピオン酸メ
チルなどの鎖状のCOO−結合を有する有機溶媒であ
る。主溶媒というのは、これらの鎖状エステルを含ん
だ全電解液溶媒中で鎖状エステルが50体積%を超え
ることを意味する。鎖状エステルが65体積%を超え
ると釘刺し試験での電池の安全性が低下する傾向にあ
り、アルキル基を有する非イオン性芳香族化合物の添加
効果が大きくなる。そして、鎖状エステルが70体積
%を超えるとアルキル基を有する非イオン性芳香族化合
物の添加効果がより一層大きくなり、鎖状エステル
75体積%を超えるとアルキル基を有する非イオン性芳
香族化合物の添加効果がさらに大きくなる。また、鎖状
エステルがメチル基を有する場合も電池の安全性が低
下しやすくなるので、アルキル基を有する非イオン性芳
香族化合物の添加効果がより一層顕著になる。
Chain ester used as main solvent of electrolyte
Classes are organic solvents having a chain COO-bond, such as, for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate. Because the main solvent, a chain ester in all electrolyte solvent containing these chain esters is meant that more than 50% by volume. Tend to chain esters is reduced battery safety in the nail penetration test exceeds 65 vol%, the effect of adding the non-ionic aromatic compound increases with an alkyl group. The effect of the addition of the chain esters are nonionic aromatic compound having more than the alkyl group of 70 vol% is more increased, the non-ionic having an alkyl group as chain esters is more than 75 vol% The effect of adding the aromatic compound is further increased. Further, since the chain esters tends to lower the safety of the battery may have a methyl group, the effect of adding the nonionic aromatic compound having an alkyl group is much more remarkable.

【0024】また、上記鎖状エステルに下記の誘電率
が高いエステル(誘電率30以上)を混合して用いる
と、鎖状エステルだけで用いる場合よりも、サイクル
特性や電池の負荷特性が向上するので、電池としてはよ
り望ましいものとなる。このような誘電率の高いエステ
ルとしては、たとえば、プロピレンカーボネート(P
C)、エチレンカーボネート(EC)、ブチレンカーボ
ネート(BC)、ガンマーブチロラクトン(γ−B
L)、エチレングリコールサルファイト(EGS)など
が挙げられ、特に環状構造のものが好ましく、とりわけ
環状のカーボネートが好ましく、エチレンカーボネート
(EC)が最も好ましい。
Further, when used in mixing the chain ester dielectric constant below is high such ester (dielectric constant 30 or higher), than the case of using only chain esters, the load characteristics of the cycle characteristics and battery Because of the improvement, it becomes more desirable as a battery. Examples of such an ester having a high dielectric constant include, for example, propylene carbonate (P
C), ethylene carbonate (EC), butylene carbonate (BC), gamma-butyrolactone (γ-B
L), ethylene glycol sulphite (EGS) and the like, particularly preferably having a cyclic structure, particularly preferably a cyclic carbonate, and most preferably ethylene carbonate (EC).

【0025】上記誘電率の高いエステルは電解液の全溶
媒中の40体積%未満が好ましく、より好ましくは30
体積%以下、さらに好ましくは25体積%以下である。
そして、これらの誘電率の高いエステルによる安全性の
向上は、上記誘電率の高いエステルが電解液の全溶媒中
で10体積%以上になると顕著になり、20体積%に達
するとさらに顕著になる。
The ester having a high dielectric constant is preferably less than 40% by volume of the total solvent of the electrolytic solution, more preferably 30% by volume.
% By volume or less, more preferably 25% by volume or less.
The improvement of the safety by these esters having a high dielectric constant becomes remarkable when the ester having a high dielectric constant becomes 10% by volume or more in the entire solvent of the electrolytic solution, and becomes further remarkable when it reaches 20% by volume. .

【0026】上記誘電率の高いエステル以外に鎖状エス
テルと併用可能な溶媒としては、たとえば1,2−ジ
メトキシエタン(DME)、1,3−ジオキソラン(D
O)、テトラヒドロフラン(THF)、2−メチル−テ
トラヒドロフラン(2Me−THF)、ジエチルエーテ
ル(DEE)などが挙げられる。そのほか、アミンイミ
ド系有機溶媒や、含イオウまたは含フッ素系有機溶媒な
ども用いることができる。
[0026] The above can be used in combination of solvents and chain esters in addition to high dielectric constant esters, such as 1,2-dimethoxyethane (DME), 1,3-dioxolane (D
O), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), diethyl ether (DEE) and the like. In addition, an amine imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, and the like can also be used.

【0027】電解液の電解質としては、たとえばLiC
lO4 、LiPF6 、LiBF4 、LiAsF6 、Li
SbF6 、LiCF3 SO3 、LiC49 SO3 、L
iCF3 CO2 、Li224 (SO32 、LiN
(CF3 SO22 、LiC(CF3 SO23 、Li
n 2n+1SO3 (n≧2)、LiN(Rf3 OS
2 2 〔ここでRfはフルオロアルキル基〕などが単
独でまたは2種以上混合して用いられるが、特にLiP
6 やLiC49 SO3 などが充放電特性が良好なこ
とから望ましい。電解液中における電解質の濃度は、特
に限定されるものではないが、濃度を1mol/l以上
にすると安全性が向上するので望ましく、1.2mol
/l以上がさらに望ましい。また、電解液中における電
解質の濃度が1.7mol/l以下であると良好な電気
特性が保たれるので望ましく、1.5mol/l以下で
あることがさらに望ましい。
As the electrolyte of the electrolytic solution, for example, LiC
10 4 , LiPF 6 , LiBF 4 , LiAsF 6 , Li
SbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , L
iCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN
(CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li
C n F 2n + 1 SO 3 (n ≧ 2), LiN (Rf 3 OS
O 2 ) 2 [Rf is a fluoroalkyl group] or the like may be used alone or in combination of two or more.
F 6 and LiC 4 F 9 SO 3 are desirable because of their good charge / discharge characteristics. The concentration of the electrolyte in the electrolytic solution is not particularly limited, but it is desirable that the concentration be 1 mol / l or more, since safety is improved.
/ L or more is more desirable. Further, when the concentration of the electrolyte in the electrolytic solution is 1.7 mol / l or less, good electric characteristics are maintained, and it is more preferable that the concentration is 1.5 mol / l or less.

【0028】正極活物質として用いるリチウム複合酸化
物は、充電時の開路電圧がLi基準で4V以上を示すリ
チウム複合酸化物であるが、このような充電時の開路電
圧がLi基準で4V以上を示すリチウム複合酸化物とし
ては、たとえばLiCoO2などのリチウムコバルト酸
化物、LiMn2 4 などのリチウムマンガン酸化物、
LiNiO2 などのリチウムニッケル酸化物を挙げるこ
とができ、このような充電時の開路電圧がLi基準で4
V以上を示すリチウム複合酸化物を正極活物質として用
いた場合には、高エネルギー密度が得られる。
The lithium composite oxide used as the positive electrode active material has an open circuit voltage at the time of charging of 4 V or more on the basis of Li.
Although this is a composite oxide of titanium,
Lithium composite oxide whose pressure shows 4 V or more based on Li
Te is, for example, lithium cobalt oxide such as LiCoO 2, lithium manganese oxide such as LiMn 2 O 4,
A lithium nickel oxide such as LiNiO 2 can be used , and the open circuit voltage during such charging is 4 based on Li.
Use lithium composite oxide showing V or more as positive electrode active material
If you were the Ru high energy density is obtained.

【0029】そして、正極は、たとえばそれらの正極活
物質に導電助剤やポリフッ化ビニリデンなどの結着剤な
どを適宜添加した合剤を、アルミニウム箔などの集電材
料を芯材として成形体に仕上げたものが用いられる。
For the positive electrode, for example, a mixture obtained by appropriately adding a conductive additive or a binder such as polyvinylidene fluoride to the positive electrode active material is formed into a molded body using a current collector material such as aluminum foil as a core material. Finished products are used.

【0030】に充電したLiCoO2 やLiNiO2
は、電解液との反応開始温度がLiMn2 4 より低
く、負極の発熱によって正極の熱暴走温度に達しやすい
ので、本発明の効果がより顕著に発揮される。
[0030] LiCoO 2 and LiNiO 2 were charged in Japanese
Has a lower temperature than LiMn 2 O 4 for initiating a reaction with the electrolytic solution, and tends to reach the thermal runaway temperature of the positive electrode due to the heat generated by the negative electrode, so that the effect of the present invention is more remarkably exhibited.

【0031】負極に用いる材料としては、リチウムイオ
ンをドープ、脱ドープできるものであればよく、たとえ
ば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素
類、有機高分子化合物の焼成体、メソカーボンマイクロ
ビーズ、炭素繊維、活性炭などの炭素材料あるいはS
i、Sn、Inなどとリチウムとの合金あるいはLiに
近い低電位で充放電できるSi、Sn、Inなどの酸化
物などを用いることができる。
The material used for the negative electrode may be any material capable of doping and undoping lithium ions. Examples of the material include graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, meso materials. Carbon material such as carbon microbeads, carbon fiber, activated carbon or S
An alloy of lithium with i, Sn, In, or the like, or an oxide of Si, Sn, In, or the like that can be charged and discharged at a low potential close to Li can be used.

【0032】負極に炭素材料を用いる場合、該炭素材料
は下記の特性を持つものが望ましい。すなわち、その
(002)面の層間距離d002 に関しては、3.5Å以
下が望ましく、より望ましくは3.45Å以下、さらに
望ましくは3.4Å以下である。また、c軸方向の結晶
子の大きさLcは、30Å以上が望ましく、より望まし
くは80Å以上、さらに望ましくは250Å以上であ
る。そして、その平均粒径は8〜15μm、特に10〜
13μmが望ましく、純度は99.9%以上が望まし
く。
When a carbon material is used for the negative electrode, the carbon material desirably has the following characteristics. That is, the interlayer distance d 002 of the (002) plane is desirably 3.5 ° or less, more desirably 3.45 ° or less, and further desirably 3.4 ° or less. The crystallite size Lc in the c-axis direction is desirably 30 ° or more, more desirably 80 ° or more, and further desirably 250 ° or more. And the average particle size is 8 to 15 μm, especially 10 to 10 μm.
13 μm is desirable, and the purity is desirably 99.9% or more.

【0033】[0033]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0034】実施例1 メチルエチルカーボネートとエチレンカーボネートとを
体積比76:24で混合し、この混合溶媒100容量部
に対してトリ−2−エチルヘキシルトリメリテート
〔(C6 3 (COOC8 173 、以下、「TOT
M」と略す)を1容量部添加して混合し、LiPF6
1.4mol/l溶解させて、組成が1.4mol/l
LiPF6 /EC:MEC(24:76体積比)+1
%TOTMで示される電解液を調製した。
Example 1 Methyl ethyl carbonate and ethylene carbonate were mixed in a volume ratio of 76:24, and tri-2-ethylhexyl trimellitate [(C 6 H 3 (COOC 8 H) was added to 100 parts by volume of the mixed solvent. 17 ) 3 ;
M ") was added and mixed, and LiPF 6 was dissolved at 1.4 mol / l to give a composition of 1.4 mol / l.
LiPF 6 / EC: MEC (24:76 volume ratio) +1
An electrolytic solution represented by% TOTM was prepared.

【0035】上記電解液におけるECはエチレンカーボ
ネートの略称であり、MECはメチルエチルカーボネー
トの略称である。従って、上記電解液を示す1.4mo
l/l LiPF6 /EC:MEC(24:76体積
比)+1%TOTMは、メチルエチルカーボネート76
体積%とエチレンカーボネート24体積%との混合溶媒
にLiPF6 を1.4mol/l溶解させ、かつ上記混
合溶媒100容量部に対してTOTMを1容量部溶解さ
せたものであることを示している。
EC in the above electrolyte is an abbreviation for ethylene carbonate, and MEC is an abbreviation for methyl ethyl carbonate. Therefore, the above-mentioned electrolyte solution of 1.4mo
1 / l LiPF 6 / EC: MEC (24:76 volume ratio) + 1% TOTM is methyl ethyl carbonate 76
It shows that 1.4 mol / l of LiPF 6 was dissolved in a mixed solvent of 20% by volume of ethylene carbonate and 24% by volume of ethylene carbonate, and 1 part by volume of TOTM was dissolved in 100 parts by volume of the mixed solvent. .

【0036】これとは別に、正極活物質としてのLiC
oO2 に導電助剤としてリン状黒鉛を重量比100:7
で加えて混合し、この混合物と、ポリフッ化ビニリデン
をN−メチルピロリドンに溶解させた溶液とを混合して
スラリーにした。この正極合剤スラリーを70メッシュ
の網を通過させて大きなものを取り除いた後、厚さ20
μmのアルミニウム箔からなる正極集電体の両面に均一
に塗付して乾燥し、その後、ローラプレス機により圧縮
成形し、切断した後、リード体を溶接して、帯状の正極
を作製した。
Separately, LiC as a positive electrode active material
Phosphorous graphite is added to oO 2 as a conductive additive in a weight ratio of 100: 7.
The mixture was mixed with a solution prepared by dissolving polyvinylidene fluoride in N-methylpyrrolidone to form a slurry. After passing the positive electrode mixture slurry through a 70-mesh net to remove a large one,
The positive electrode current collector made of a μm aluminum foil was uniformly applied to both sides and dried, then compression-molded by a roller press, cut, and then welded to a lead body to produce a belt-shaped positive electrode.

【0037】つぎに、黒鉛系炭素材料(ただし、層間距
離d002 =3.37Å、c軸方向の結晶子サイズLc=
950Å、平均粒径10μm、純度99.9%という特
性を持つ黒鉛系炭素材料)90重量部を、フッ化ビニリ
デン10重量部をN−メチルピロリドンに溶解させた溶
液と混合してスラリーにした。この負極合剤スラリーを
70メッシュの網を通過させて大きなものを取り除いた
後、厚さ10μmの帯状の銅箔からなる負極集電体の両
面に均一に塗付して乾燥し、その後、ローラプレス機に
より圧縮成形し、切断した後、リード体を溶接して、帯
状の負極を作製した。
Next, a graphite-based carbon material (interlayer distance d 002 = 3.37 °, crystallite size Lc in the c-axis direction =
90 parts by weight of a graphite-based carbon material having characteristics of 950 °, an average particle diameter of 10 μm, and a purity of 99.9%) were mixed with a solution obtained by dissolving 10 parts by weight of vinylidene fluoride in N-methylpyrrolidone to form a slurry. The negative electrode mixture slurry was passed through a 70-mesh net to remove large particles, and then uniformly applied to both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm, dried, and then rolled. After compression molding with a press machine and cutting, the lead body was welded to produce a strip-shaped negative electrode.

【0038】前記帯状正極を厚さ25μmの微孔性ポリ
エチレンフィルムを介して上記帯状負極に重ね、渦巻状
に巻回して渦巻状電極体とした後、外径18mmの有底
円筒状の電池ケース内に充填し、正極および負極のリー
ド体の溶接を行った。ここで、正極と負極との互いに対
向した部分の単位体積あたりの活物質含有合剤の正極/
負極重量比は2.06であった。負極の充放電容量は、
この電池の通常充電条件(1400mAで充電し、4.
1Vに達した後は4.1Vの定電圧で充電する操作を2
時間30分行う)では、85mAh/cm3 であった。
The above-mentioned band-shaped positive electrode is overlapped on the above-mentioned band-shaped negative electrode via a microporous polyethylene film having a thickness of 25 μm, and is spirally wound into a spiral electrode body. And the lead bodies of the positive electrode and the negative electrode were welded. Here, the positive electrode of the active material-containing mixture per unit volume of the opposed parts of the positive electrode and the negative electrode /
The negative electrode weight ratio was 2.06. The charge and discharge capacity of the negative electrode is
The battery was charged under normal charging conditions (charged at 1400 mA;
After reaching 1 V, the charging operation at a constant voltage of 4.1 V
(Performed for 30 minutes), the value was 85 mAh / cm 3 .

【0039】つぎに電解液を電池ケース内に注入し、電
解液がセパレータなどに充分に浸透した後、封口し、予
備充電、エイジングを行い、図1に示す構造の筒形の有
機電解液二次電池を作製した。
Next, the electrolytic solution was poured into the battery case, and after the electrolytic solution sufficiently permeated into the separator and the like, sealing was performed, preliminary charging and aging were performed, and a cylindrical organic electrolytic solution having a structure shown in FIG. A secondary battery was manufactured.

【0040】図1に示す電池について概略的に説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用された集電体などは図示しておら
ず、これらの正極1と負極2はセパレータ3を介して渦
巻状に巻回され、渦巻状電極体として、電解液と共に、
ステンレス鋼製の電池ケース4内に収容されている。
The battery shown in FIG. 1 will be described briefly. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show the current collectors used for producing the positive electrode 1 and the negative electrode 2 in order to avoid complication, and the positive electrode 1 and the negative electrode 2 are spirally interposed through the separator 3. Wound, as a spiral electrode body, together with the electrolyte,
It is housed in a battery case 4 made of stainless steel.

【0041】上記電解液には前記のようにTOTM(す
なわち、トリ−2−エチルヘキシルトリメリテート)を
含有させており、上記電池ケース4は負極端子を兼ねて
いて、その底部には絶縁体5が配置され、渦巻状電極体
上にも絶縁体6が配置されている。そして、電池ケース
4の開口部には環状の絶縁パッキング7を介して封口体
8が配置され、電池ケース4の開口端部の内方への締め
付けにより電池内部を密閉構造にしている。ただし、上
記封口体8には、電池内部に発生したガスをある一定圧
力まで上昇した段階で電池外部に排出して、電池の高圧
下での破裂を防止するための可逆式のベント機構が組み
込まれている。
As described above, the electrolyte contains TOTM (that is, tri-2-ethylhexyl trimellitate), and the battery case 4 also serves as a negative electrode terminal, and an insulator 5 Are arranged, and the insulator 6 is also arranged on the spiral electrode body. A sealing body 8 is arranged at the opening of the battery case 4 via an annular insulating packing 7, and the inside of the battery is sealed by tightening the opening end of the battery case 4 inward. However, a reversible vent mechanism for preventing the gas generated inside the battery from being ruptured under a high pressure by discharging the gas generated inside the battery to a certain pressure when the gas is raised to a certain pressure and preventing the battery from being ruptured under a high pressure. Have been.

【0042】実施例2 TOTMに代えてジブチルフタレート〔C6 4 (CO
OC4 9 2 〕を用いた以外は、実施例1と同様にし
て筒形の有機電解液二次電池を作製した。
Example 2 Instead of TOTM, dibutyl phthalate [C 6 H 4 (CO
A cylindrical organic electrolyte secondary battery was fabricated in the same manner as in Example 1 except that OC 4 H 9 ) 2 ] was used.

【0043】[0043]

【0044】[0044]

【0045】比較例1 電解液にアルキル基を有する非イオン性芳香族化合物を
含有させなかった以外は、実施例1と同様にして筒形の
有機電解液二次電池を作製した。
Comparative Example 1 A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the electrolyte did not contain a nonionic aromatic compound having an alkyl group.

【0046】比較例2 エチレンカーボネート(EC)とメチルエチルカーボネ
ート(MEC)との比率を体積比で1:2にした以外
は、比較例1と同様にして筒形の有機電解液二次電池を
作製した。
Comparative Example 2 A cylindrical organic electrolyte secondary battery was prepared in the same manner as in Comparative Example 1 except that the volume ratio of ethylene carbonate (EC) to methyl ethyl carbonate (MEC) was 1: 2. Produced.

【0047】比較例3 エチレンカーボネート(EC)とメチルエチルカーボネ
ート(MEC)との比率を体積比で1:1にした以外
は、比較例1と同様にして筒形の有機電解液二次電池を
作製した。
Comparative Example 3 A cylindrical organic electrolyte secondary battery was prepared in the same manner as in Comparative Example 1 except that the ratio of ethylene carbonate (EC) to methyl ethyl carbonate (MEC) was changed to 1: 1 by volume. Produced.

【0048】比較例4 電極作製時に正極と負極との互いに対向した部分の単位
体積あたりの活物質含有合剤の正極/負極の重量比が
1.95である電極を作製し、正極と負極の合計厚み、
渦巻状電極体の巻回径は同じにして、負極の充放電容量
が1300mAhの電池を作製した以外は、比較例3と
同様にして筒形の有機電解液二次電池を作製した。負極
の充放電可能な容量は79mAh/cm3 であった。比較例5 TOTMに代えてジメチルフタレート〔C 6 4 (CO
OCH 3 2 〕を用いた以外は、実施例1と同様にして
筒形の有機電解液二次電池を作製した。 比較例6 TOTMに代えてトルエンを用いた以外は、実施例1と
同様にして筒形の有機電解液二次電池を作製した。
COMPARATIVE EXAMPLE 4 An electrode was prepared in which the weight ratio of the positive electrode / negative electrode of the active material-containing mixture per unit volume of the positive electrode and the negative electrode was 1.95 per unit volume of the positive electrode and the negative electrode at the time of electrode preparation. Total thickness,
A cylindrical organic electrolyte secondary battery was produced in the same manner as in Comparative Example 3, except that a spirally wound electrode body was made to have the same winding diameter and a negative electrode having a charge / discharge capacity of 1300 mAh was produced. The chargeable / dischargeable capacity of the negative electrode was 79 mAh / cm 3 . Comparative Example 5 Dimethyl phthalate [C 6 H 4 (CO
OCH 3 ) 2 ] except that OCH 3 ) 2 ] was used.
A cylindrical organic electrolyte secondary battery was produced. Comparative Example 6 Example 1 was repeated except that toluene was used instead of TOTM.
Similarly, a cylindrical organic electrolyte secondary battery was produced.

【0049】上記実施例1〜および比較例1〜の電
池を、1400mAで2.75Vまで放電した後140
0mAで充電し、4.18Vに達した後は4.18Vの
定電圧に保つ条件で2時間30分の充電を行った。その
後、電池を40℃の恒温槽に入れて2時間後に取り出
し、木製で溝をきった電池ホルダー上に置き、軸部の直
径が3mmのステンレス鋼製の釘を電池の側面中心に直
角にかつ速やかに電池外径の1/2の深さまで刺し、異
常発熱の有無を調べた。その結果を表1に示す。
After discharging the batteries of Examples 1 and 2 and Comparative Examples 1 to 6 to 2.75 V at 1400 mA, 140
After the battery was charged at 0 mA and reached 4.18 V, the battery was charged for 2 hours and 30 minutes under the condition of maintaining a constant voltage of 4.18 V. Thereafter, the battery was placed in a constant temperature bath at 40 ° C., taken out 2 hours later, placed on a wooden and grooved battery holder, and a stainless steel nail having a shaft diameter of 3 mm was perpendicular to the center of the side of the battery. Immediately, the battery was stabbed to a depth of の of the outer diameter of the battery to check for abnormal heat generation. Table 1 shows the results.

【0050】この試験には実施例1〜2、比較例1〜6
の電池とも20個ずつを用い、表1には試験に供した電
池個数を分母に示し、異常発熱のあった電池個数を分子
に示す態様で異常発熱の割合を示す。上記40℃での1
/2釘刺し試験は安全性を確認する試験としてきわめて
苛酷な条件下での試験である
Examples 1 and 2 and Comparative Examples 1 to 6
In Table 1, the number of batteries subjected to the test is shown in the denominator, and the number of batteries having abnormal heat generation is shown in the numerator, and the ratio of abnormal heat generation is shown in Table 1. 1 at 40 ° C
/ 2 nail penetration test is a test of in a very severe conditions as a test to confirm the safety.

【0051】[0051]

【表1】 [Table 1]

【0052】表1に示すように、実施例1〜2は、メチ
ル基を有する鎖状エステルを含む鎖状エステル類が50
体積%を超え電解液の主溶媒を構成しているが、非イオ
ン性芳香族化合物を含有させなかった比較例1やメチル
基を有する非イオン性芳香族化合物を含有させた比較例
5〜6に比べて、異常発熱の割合が半分以下に低減さ
、電解液中に炭素数が4個以上のアルキル基を有する
非イオン性芳香族化合物を含有させることによって釘刺
し試験での安全性が向上することがわかる。特に非イオ
ン性芳香族化合物のアルキル基の炭素数を5個以上とし
た実施例1では、異常発熱の発生がなかった。また、比
較例2〜3のようにメチルエチルカーボネートなどの鎖
状エステルが少なかったり、あるいは鎖状エステルがエ
チル基だけを有する場合には安全性がよく、アルキル基
を有する非イオン性芳香族化合物の添加の効果は少なく
なる傾向にある。さらに、比較例4のように負極の充放
電容量が小さい場合にも安全性が良くなり、アルキル基
を有する非イオン性芳香族化合物の添加の効果は少なく
なることがわかる。
[0052] As shown in Table 1, Example 1-2, methylate
Chain esters including a chain ester having a hydroxyl group
Comparative Example 1 in which the main solvent of the electrolytic solution exceeded the volume% but did not contain the nonionic aromatic compound, and Comparative Examples 5 to 6 which contained the nonionic aromatic compound having a methyl group. The rate of abnormal heat generation has been reduced to less than half
Is seen to improve the safety in the nail penetration test by the number of carbon atoms in the electrolytic solution to contain a non-ionic aromatic compound having 4 or more alkyl groups. Especially non-io
The alkyl group of the aromatic aromatic compound has 5 or more carbon atoms
In Example 1, no abnormal heat generation occurred. In addition, when the number of chain esters such as methyl ethyl carbonate is small as in Comparative Examples 2 to 3, or when the chain ester has only an ethyl group, the safety is good, and the nonionic aromatic compound having an alkyl group is good. Tends to be less effective. Furthermore, even when the charge / discharge capacity of the negative electrode is small as in Comparative Example 4, the safety is improved, and the effect of adding the nonionic aromatic compound having an alkyl group is reduced.

【0053】[0053]

【発明の効果】以上説明したように、本発明では、充電
時の開路電圧がLi基準で4V以上を示すリチウム複合
酸化物を用いた正極、一部が電解液と反応して表面に皮
膜が形成された負極およびメチル基を有する鎖状エステ
ルを含む鎖状エステル類を主溶媒とする電解液を有する
有機電解液二次電池において、上記電解液に炭素数が4
個以上のアルキル基を有する非イオン性芳香族化合物を
含有させることによって、電池の安全性を改善すること
ができた。特に負極の充放電可能な容量が電池単位体積
あたり85mAh/cm3 を超える場合は安全性の向上
効果が大きい。また、炭素数が5個以上のアルキル基を
有する非イオン性芳香族化合物を用いた場合は、安全性
の向上効果が大きかった。
As described above, according to the present invention, the charging
Positive electrode using lithium composite oxide whose open circuit voltage shows 4 V or more on the basis of Li, a negative electrode partially reacted with an electrolytic solution to form a film on the surface, and a chain containing a methyl group-containing chain ester In an organic electrolyte secondary battery having an electrolyte containing an ester as a main solvent, the electrolyte has 4 carbon atoms.
By adding a nonionic aromatic compound having at least two alkyl groups, the safety of the battery could be improved. In particular, when the chargeable / dischargeable capacity of the negative electrode exceeds 85 mAh / cm 3 per unit volume of the battery, the effect of improving safety is great. When a nonionic aromatic compound having an alkyl group having 5 or more carbon atoms was used, the effect of improving safety was large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る有機電解液二次電池の一例を模式
的に示す部分断面斜視図である。
FIG. 1 is a partial sectional perspective view schematically showing an example of an organic electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−22069(JP,A) 特開 平5−36439(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-22069 (JP, A) JP-A-5-36439 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充電時の開路電圧がLi基準で4V以上
を示すリチウム複合酸化物を用いた正極、一部が有機電
解液と反応して表面に皮膜が形成された負極およびメチ
ル基を有する鎖状エステルを含む鎖状エステル類を主溶
媒とする有機電解液を有する有機電解液二次電池であっ
て、上記有機電解液に炭素数が4個以上のアルキル基を
有する非イオン性芳香族化合物を含有することを特徴と
する有機電解液二次電池。
An open circuit voltage during charging is 4 V or more based on Li.
Positive electrode using lithium composite oxide showing , negative electrode partly reacted with organic electrolyte to form a film on the surface, and organic electrolysis using chain esters containing chain ester having methyl group as main solvent An organic electrolyte secondary battery having a liquid, wherein the organic electrolyte contains a nonionic aromatic compound having an alkyl group having 4 or more carbon atoms.
【請求項2】 鎖状エステルがメチル基を有する鎖状エ
ステルであり、かつ、負極の充放電可能な容量が電池単
位体積あたり85mAh/cm3 以上であることを特徴
とする請求項1記載の有機電解液二次電池。
2. The method according to claim 1, wherein the chain ester is a chain ester having a methyl group, and the chargeable / dischargeable capacity of the negative electrode is 85 mAh / cm 3 or more per unit volume of the battery. Organic electrolyte secondary battery.
【請求項3】 アルキル基を有する非イオン性芳香族化
合物が、炭素数5個以上のアルキル基を有する非イオン
性芳香族化合物であることを特徴とする請求項1記載の
有機電解液二次電池。
3. The organic electrolyte secondary according to claim 1, wherein the nonionic aromatic compound having an alkyl group is a nonionic aromatic compound having an alkyl group having 5 or more carbon atoms. battery.
【請求項4】 アルキル基を有する非イオン性芳香族化
合物のアルキル基とベンゼン環とがCOO基を介して結
合していることを特徴とする請求項3記載の有機電解液
二次電池。
4. The organic electrolyte secondary battery according to claim 3, wherein the alkyl group of the nonionic aromatic compound having an alkyl group and the benzene ring are bonded via a COO group.
【請求項5】 アルキル基を有する非イオン性芳香族化
合物がトリメリット酸エステルまたはその誘導体である
ことを特徴とする請求項4記載の有機電解液二次電池。
5. The organic electrolyte secondary battery according to claim 4, wherein the nonionic aromatic compound having an alkyl group is trimellitic acid ester or a derivative thereof.
JP09479897A 1997-03-28 1997-03-28 Organic electrolyte secondary battery Expired - Lifetime JP3275998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09479897A JP3275998B2 (en) 1997-03-28 1997-03-28 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09479897A JP3275998B2 (en) 1997-03-28 1997-03-28 Organic electrolyte secondary battery

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2001138198A Division JP3449703B2 (en) 2001-05-09 2001-05-09 Organic electrolyte secondary battery
JP2001200449A Division JP3247103B1 (en) 2001-07-02 2001-07-02 Organic electrolyte secondary battery
JP2001385375A Division JP3449706B2 (en) 2001-12-19 2001-12-19 Organic electrolyte secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JPH10275632A JPH10275632A (en) 1998-10-13
JP3275998B2 true JP3275998B2 (en) 2002-04-22

Family

ID=14120091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09479897A Expired - Lifetime JP3275998B2 (en) 1997-03-28 1997-03-28 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3275998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2355228A1 (en) 2010-02-03 2011-08-10 Hitachi Ltd. Overcharge inhibitor, and nonaqueous electrolyte solution and secondary battery using the same
US8765310B2 (en) 2010-04-27 2014-07-01 Hitachi, Ltd. Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411691B2 (en) * 1999-06-30 2010-02-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery charge control system, and equipment using the same
JP3113652B1 (en) * 1999-06-30 2000-12-04 三洋電機株式会社 Lithium secondary battery
JP3558007B2 (en) 1999-09-30 2004-08-25 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) * 1999-09-30 2012-12-26 宇部興産株式会社 Lithium secondary battery
CA2424735C (en) 2000-10-03 2009-11-24 Ube Industries, Ltd. Lithium secondary battery and non-aqueous electrolytic solution
CN100344027C (en) * 2000-10-03 2007-10-17 宇部兴产株式会社 Lithium secondary cell and nonaqueous electrolyte
JP4695748B2 (en) * 2000-10-12 2011-06-08 パナソニック株式会社 Nonaqueous battery electrolyte and nonaqueous secondary battery
EP1361622B1 (en) * 2001-01-24 2008-06-04 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary batteries
JP4573474B2 (en) * 2001-08-06 2010-11-04 日立マクセル株式会社 Non-aqueous secondary battery
JP4652984B2 (en) * 2002-01-24 2011-03-16 日立マクセル株式会社 Electronic equipment with built-in non-aqueous secondary battery
US20040142245A1 (en) * 2002-01-24 2004-07-22 Takushi Ishikawa Nonaqueous secondary cell and electronic device incorporating same
JP4056302B2 (en) * 2002-06-21 2008-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US7537861B2 (en) 2002-07-31 2009-05-26 Ube Industries, Ltd. Lithium secondary battery employing fluorine-substituted cyclohexylbenzene containing electrolytic solution
JP4326323B2 (en) * 2003-12-24 2009-09-02 三洋電機株式会社 Non-aqueous electrolyte battery
JP4794180B2 (en) 2005-02-24 2011-10-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4943242B2 (en) 2007-06-20 2012-05-30 ソニー株式会社 Lithium ion secondary battery
JP2011154963A (en) 2010-01-28 2011-08-11 Sony Corp Nonaqueous electrolyte battery
JP2011192541A (en) * 2010-03-15 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2355228A1 (en) 2010-02-03 2011-08-10 Hitachi Ltd. Overcharge inhibitor, and nonaqueous electrolyte solution and secondary battery using the same
US8735004B2 (en) 2010-02-03 2014-05-27 Hitachi, Ltd. Overcharge inhibitor, and nonaqueous electrolyte solution and secondary battery using the same
US8765310B2 (en) 2010-04-27 2014-07-01 Hitachi, Ltd. Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JPH10275632A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP3275998B2 (en) Organic electrolyte secondary battery
CN113644317B (en) Lithium ion battery
JP3354057B2 (en) Organic electrolyte secondary battery
WO1992020112A1 (en) Nonaqueous electrolyte secondary battery
JPH04328278A (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JPH11195429A (en) Nonaqueous electrolytic solution secondary battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
KR20110131164A (en) Lithium-ion battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP3988901B2 (en) Organic electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
US20040018432A1 (en) Battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JP3247103B1 (en) Organic electrolyte secondary battery
JP3449710B2 (en) Organic electrolytes Organic electrolytes for secondary batteries
JPH0997626A (en) Nonaqueous electrolytic battery
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JP3449706B2 (en) Organic electrolyte secondary battery and charging method thereof
JP2003187863A (en) Secondary battery using organic electrolyte
JP2001256966A (en) Nonaqueous secondary battery and method for charging the battery
US20200058955A1 (en) Anode for lithium ion secondary batteery and lithium ion secondary battery
JPWO2002067355A1 (en) Lithium polymer battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term