JP2008311209A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008311209A
JP2008311209A JP2008028287A JP2008028287A JP2008311209A JP 2008311209 A JP2008311209 A JP 2008311209A JP 2008028287 A JP2008028287 A JP 2008028287A JP 2008028287 A JP2008028287 A JP 2008028287A JP 2008311209 A JP2008311209 A JP 2008311209A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008028287A
Other languages
Japanese (ja)
Inventor
Katsuichiro Sawa
勝一郎 澤
Mariko Torimae
真理子 鳥前
Yasuyuki Kusumoto
靖幸 樟本
Hiroyuki Fujimoto
洋行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008028287A priority Critical patent/JP2008311209A/en
Priority to US12/119,928 priority patent/US20080286654A1/en
Publication of JP2008311209A publication Critical patent/JP2008311209A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an anode in which an anode mixture layer containing an anode active substance and a binder is formed on an anode current collector and provide a nonaqueous electrolyte secondary battery which has a high capacity and excellent cycle characteristics. <P>SOLUTION: The nonaqueous electrolyte secondary battery is provided with a cathode 12, and anode 11 in which an anode mixture layer containing an anode active substance and a binder is formed on an anode current collector, and a nonaqueous electrolyte solution 14. The above anode active substance contains compound alloy powder containing tin, cobalt, carbon and graphite powder, and a porosity of the anode mixture layer formed on the anode current collector is within a range of 5-20 vol.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、正極と、負極と、非水電解液とを備えた非水電解質二次電池に係り、特に、負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極を改良し、高容量でサイクル特性に優れた非水電解質二次電池が得られるようにした点に特徴を有するものである。   The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and in particular, a negative electrode mixture layer including a negative electrode active material and a binder is formed on a negative electrode current collector. Further, the present invention is characterized in that a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics can be obtained by improving the negative electrode.

近年、携帯電子機器や電力貯蔵用等の電源として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて、充放電を行うようにした非水電解質二次電池が利用されている。   In recent years, non-aqueous electrolyte secondary batteries that use non-aqueous electrolyte and charge and discharge by moving lithium ions between the positive and negative electrodes have been used as power sources for portable electronic devices and power storage. Has been.

そして、このような非水電解質二次電池においては、その負極における負極活物質として黒鉛材料が広く利用されている。   In such a nonaqueous electrolyte secondary battery, a graphite material is widely used as a negative electrode active material in the negative electrode.

ここで、黒鉛材料の場合、放電電位が平坦であると共に、リチウムイオンがこの黒鉛結晶層間に挿入・脱離されて充放電されるため、針状の金属リチウムの発生が抑制され、充放電による体積変化も少ないという利点がある。   Here, in the case of a graphite material, the discharge potential is flat and the lithium ions are inserted and desorbed between the graphite crystal layers to be charged / discharged. There is an advantage that the volume change is small.

一方、近年においては、携帯電子機器等の多機能化・高性能化に対応させるために、さらに高容量の非水電解質二次電池が要望されているが、上記の黒鉛材料における容量が必ずしも十分であるとはいえず、上記のような要望に十分に対応することができないという問題があった。   On the other hand, in recent years, there has been a demand for a non-aqueous electrolyte secondary battery with a higher capacity in order to cope with the multifunctional and high performance of portable electronic devices and the like, but the capacity of the above graphite material is not always sufficient. However, there is a problem that it is not possible to sufficiently meet the above demand.

このため、近年においては、高容量の負極活物質として、Si,Zn,Pb,Sn,Ge,Al等のリチウムと合金を形成する材料を用いることが検討されている。   For this reason, in recent years, the use of a material that forms an alloy with lithium, such as Si, Zn, Pb, Sn, Ge, and Al, as a high-capacity negative electrode active material has been studied.

しかし、リチウムと合金を形成するこれらの材料は、リチウムの吸蔵・放出に伴う体積変化が大きく、充放電を繰り返して行うと、粒子構造が破壊されて微細化し、これにより負極内部の集電性が低下して、容量が著しく低下するという問題があった。   However, these materials that form an alloy with lithium have a large volume change due to insertion and extraction of lithium, and when repeated charging and discharging are performed, the particle structure is destroyed and refined, thereby collecting current inside the negative electrode. As a result, there was a problem that the capacity was significantly reduced.

このため、従来においては、特許文献1に示されるように、リチウムの吸蔵・放出に伴う体積変化が大きいSi,Pb,Sn,Ge,Al等のリチウムと合金を形成する材料と、Sc,Ti,Vなどの材料とを含有する合金粉末に、メカニカルアロイング処理を行った負極活物質を用いるようしたものや、特許文献2に示されるように、リチウムを吸蔵・放出するSi,Pb,Al等の第1の金属と、リチウムの吸蔵・放出時に上記の第1の金属の形状変化を安定化させる第2の金属とを含有する合金を負極活物質に用いるようにしたものが提案されている。   For this reason, conventionally, as disclosed in Patent Document 1, a material that forms an alloy with lithium, such as Si, Pb, Sn, Ge, and Al, which has a large volume change due to insertion and extraction of lithium, and Sc, Ti , V and other alloy powders using a mechanically alloyed negative electrode active material, and as disclosed in Patent Document 2, Si, Pb, Al that occlude / release lithium And the like, and an alloy containing a first metal such as the above and a second metal that stabilizes the shape change of the first metal at the time of occlusion / release of lithium is proposed as a negative electrode active material. Yes.

しかし、このような負極活物質を用いた場合においても、充放電に伴う合金の体積変化が大きくて、充放電を繰り返して行うと、容量が依然として大きく低下するという問題があった。   However, even when such a negative electrode active material is used, the volume change of the alloy accompanying charging / discharging is large, and when charging / discharging is repeated, the capacity still decreases greatly.

また、従来においては、充放電時の体積変化に対して十分な空間を確保する目的で、特許文献3に示されるように、リチウムを吸蔵・放出する金属又は合金を負極活物質に用いた負極の空隙率を50〜90体積%にしたものや、特許文献4に示されるように、スズ含有合金粉末を含む負極合剤層を有する負極において、負極合剤層の空隙率を25〜65体積%にしたものが提案されている。   In addition, in the past, for the purpose of ensuring a sufficient space for the volume change during charge and discharge, as shown in Patent Document 3, a negative electrode using a metal or alloy that occludes / releases lithium as a negative electrode active material In the negative electrode having a negative electrode mixture layer containing a tin-containing alloy powder as shown in Patent Document 4 or 50% to 90% by volume, the negative electrode mixture layer has a porosity of 25 to 65 volumes. % Have been proposed.

一方、高容量の電極を得るためには、高容量材料であるリチウムと合金化する負極活物質を用いるだけではなく、この負極活物質に用いた材料の利用率を高め、電池における可逆容量を高めることが必要になる。   On the other hand, in order to obtain a high-capacity electrode, not only a negative electrode active material alloyed with lithium, which is a high-capacity material, is used, but also the utilization rate of the material used for this negative electrode active material is increased, and the reversible capacity in the battery is increased. It is necessary to raise.

そこで、リチウムと合金化するスズと共にコバルトや炭素で複合合金を形成することにより、スズの利用率を高めることができると共に、複合合金中における炭素がリチウムを吸蔵・放出して充放電するため、電池の可逆容量を高めることができる。特に、上記の炭素に導電性の高い黒鉛を用いると、負極合剤層内における内部抵抗が低減されて、複合合金の利用率が向上されると共に、この黒鉛として、単位重量あたりの可逆容量が330mAh/g以上の黒鉛を用いると、負極の容量を高めると共に負極の初期充放電効率を向上させることができ、電池の容量が高められる。   Therefore, by forming a composite alloy with cobalt and carbon together with tin alloyed with lithium, the utilization rate of tin can be increased, and carbon in the composite alloy occludes and releases lithium to charge and discharge, The reversible capacity of the battery can be increased. In particular, when highly conductive graphite is used for the carbon, the internal resistance in the negative electrode mixture layer is reduced, the utilization of the composite alloy is improved, and the graphite has a reversible capacity per unit weight. When graphite of 330 mAh / g or more is used, the capacity of the negative electrode can be increased, the initial charge / discharge efficiency of the negative electrode can be improved, and the capacity of the battery can be increased.

しかし、このような黒鉛を含有する複合合金を負極活物質に用いた場合において、負極における空隙率を上記の特許文献3,4に示されるように大きくすると、負極における単位体積当りの容量が低下して、高容量の非水電解質二次電池が得られなくなると共に、負極活物質の膨張、収縮により負極活物質相互の接触点が減少して、負極における導電性ネットワークが切断され、負極の内部抵抗が増大して、非水電解質二次電池のサイクル特性が低下するという問題があった。
特許第3624417号公報 特開2006−100244号公報 特開2002−367602号公報 特許第3726958号公報
However, when such a composite alloy containing graphite is used for the negative electrode active material, if the porosity in the negative electrode is increased as shown in Patent Documents 3 and 4 above, the capacity per unit volume in the negative electrode decreases. As a result, a high-capacity non-aqueous electrolyte secondary battery cannot be obtained, and the contact points between the negative electrode active materials are reduced due to expansion and contraction of the negative electrode active material. There is a problem that the resistance increases and the cycle characteristics of the nonaqueous electrolyte secondary battery deteriorate.
Japanese Patent No. 3624417 JP 2006-1000024 A JP 2002-367602 A Japanese Patent No. 3726958

本発明は、非水電解質二次電池における上記のような様々な問題を解決することを課題とするものであり、負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極を改良し、高容量でサイクル特性に優れた非水電解質二次電池が得られるようにすることを課題とする。   An object of the present invention is to solve various problems as described above in a non-aqueous electrolyte secondary battery, and a negative electrode mixture layer including a negative electrode active material and a binder is formed on a negative electrode current collector. It is an object of the present invention to improve the negative electrode so that a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics can be obtained.

本発明においては、上記のような課題を解決するため、正極と、負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極と、非水電解液とを備えた非水電解質二次電池において、上記の負極活物質が、スズとコバルトと炭素を含有する複合合金粉末と黒鉛粉末とを含むと共に、上記の負極集電体上に形成された負極合剤層の空隙率が5〜20体積%の範囲になるようにした。   In order to solve the above-mentioned problems, the present invention comprises a positive electrode, a negative electrode in which a negative electrode mixture layer containing a negative electrode active material and a binder is formed on a negative electrode current collector, and a non-aqueous electrolyte. In the non-aqueous electrolyte secondary battery, the negative electrode active material includes a composite alloy powder containing tin, cobalt, and carbon and a graphite powder, and the negative electrode mixture layer formed on the negative electrode current collector The porosity was adjusted to be in the range of 5 to 20% by volume.

ここで、空隙率とは、負極合剤層の見かけ上の体積に対する空隙の体積の比率である。そして、この空隙率は、水銀圧入法などにより直接測定する他、負極合剤の真密度と重量を測定して負極合剤層の体積を算出し、これを見かけ上の体積から引くことにより空隙の体積を求め、見かけ上の体積に対するこの空隙の体積の比率を空隙率として求めることもできる。なお、この空隙率には負極集電体の体積は含まれない。   Here, the porosity is the ratio of the volume of the void to the apparent volume of the negative electrode mixture layer. This porosity is measured directly by mercury porosimetry or the like, and the volume of the negative electrode mixture layer is calculated by measuring the true density and weight of the negative electrode mixture and subtracting this from the apparent volume. And the ratio of the void volume to the apparent volume can be obtained as the void ratio. The porosity does not include the volume of the negative electrode current collector.

本発明における非水電解質二次電池においては、上記のようにスズとコバルトと炭素を含有する複合合金粉末と黒鉛粉末とを含む負極活物質を用いるようにしたため、複合合金粉末に含まれるスズがリチウムと合金化して高い容量が得られると共に、この複合合金粉末に含まれるコバルトと炭素により上記のスズの利用率が向上される。また、この負極活物質に黒鉛粉末を含有させたため、この黒鉛粉末により負極の導電性が向上される。   In the non-aqueous electrolyte secondary battery according to the present invention, since the negative electrode active material including the composite alloy powder containing tin, cobalt, and carbon and the graphite powder is used as described above, the tin contained in the composite alloy powder is reduced. A high capacity is obtained by alloying with lithium, and the utilization rate of the tin is improved by cobalt and carbon contained in the composite alloy powder. Moreover, since the graphite powder is contained in the negative electrode active material, the conductivity of the negative electrode is improved by the graphite powder.

また、本発明における非水電解質二次電池においては、上記の負極活物質とバインダーとを含む負極合剤層を負極集電体上に形成するにあたり、この負極合剤層の空隙率が5〜20体積%の範囲になるようにしたため、充放電により負極活物質が膨張、収縮しても、負極活物質相互の接触点が減少するのが抑制されて、負極における導電性ネットワークが適切に維持されるようになり、充放電により負極の内部抵抗が増大するのが防止される。   In the nonaqueous electrolyte secondary battery according to the present invention, when the negative electrode mixture layer containing the negative electrode active material and the binder is formed on the negative electrode current collector, the negative electrode mixture layer has a porosity of 5 to 5. Since the volume is in the range of 20% by volume, even if the negative electrode active material expands and contracts due to charge / discharge, the contact points between the negative electrode active materials are suppressed from decreasing, and the conductive network in the negative electrode is appropriately maintained. As a result, the internal resistance of the negative electrode is prevented from increasing due to charge / discharge.

ここで、負極活物質に用いる黒鉛粉末は、充放電時に異方的に膨張すると共に、塗布後に圧縮した際に、負極中で配向するため、特に充放電時に垂直方向に膨張しやすい。これが一因となって負極活物質は、充電時に個々の負極活物質粒子が空隙を埋めるように膨張するのではなく、導電性ネットワークを形成する負極合剤層全体が負極集電体に対して垂直方向にも膨張する。このため、負極合剤層の空隙率を前記の特許文献に示すように大きくすると、放電時における負極活物質粒子の体積収縮によって導電性ネットワークが破壊されて、充放電効率が低下するが、本発明のように負極合剤層の空隙率を20体積%以下にすることにより、良好な充放電サイクル特性が得られる。   Here, the graphite powder used for the negative electrode active material expands anisotropically during charge and discharge, and is oriented in the negative electrode when compressed after application, and therefore tends to expand particularly in the vertical direction during charge and discharge. For this reason, the negative electrode active material does not expand so that the individual negative electrode active material particles fill the voids during charging, but the entire negative electrode mixture layer forming the conductive network is in contact with the negative electrode current collector. It also expands vertically. For this reason, when the porosity of the negative electrode mixture layer is increased as shown in the above-mentioned patent document, the conductive network is destroyed by the volume shrinkage of the negative electrode active material particles during discharge, and the charge / discharge efficiency is reduced. By setting the porosity of the negative electrode mixture layer to 20% by volume or less as in the invention, good charge / discharge cycle characteristics can be obtained.

また、負極合剤層の空隙率を20体積%以下にすることにより、負極の厚みを薄くすることができ、電池容器内に負極活物質の膨張による電極体の体積変化によって生じる応力を緩和するための空間を設けた場合にも、高容量の非水電解質二次電池が得られるようになる。なお、従来のものにおいては、同一容量の非水電解質二次電池を作製した場合、電池容器内における空間を大きくすることができないため、上記の電極体の体積変化によって生じる応力が大きくなり、非水電解質二次電池の充放電サイクル特性が低下するおそれがあった。   In addition, by making the porosity of the negative electrode mixture layer 20% by volume or less, the thickness of the negative electrode can be reduced, and the stress caused by the volume change of the electrode body due to the expansion of the negative electrode active material in the battery container is relieved. Even when a space is provided, a high-capacity nonaqueous electrolyte secondary battery can be obtained. In the conventional battery, when a non-aqueous electrolyte secondary battery having the same capacity is manufactured, the space in the battery container cannot be increased, so that the stress generated by the volume change of the electrode body is increased. The charge / discharge cycle characteristics of the water electrolyte secondary battery may be deteriorated.

この結果、本発明における非水電解質二次電池においては、高い容量が得られると共に、充放電による負極の劣化も抑制されて、優れたサイクル特性が得られるようになる。   As a result, in the nonaqueous electrolyte secondary battery according to the present invention, high capacity is obtained, and deterioration of the negative electrode due to charge / discharge is suppressed, and excellent cycle characteristics can be obtained.

次に、本発明の実施形態に係る非水電解質二次電池の実施形態について具体的に説明する。なお、本発明における非水電解質二次電池は、下記の実施形態に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, an embodiment of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention will be specifically described. In addition, the nonaqueous electrolyte secondary battery in this invention is not limited to what was shown to the following embodiment, In the range which does not change the summary, it can implement suitably.

この発明の非水電解質二次電池においては、上記のように負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極において、スズとコバルトと炭素を含有する複合合金粉末と黒鉛粉末とを含む負極活物質を用いると共に、負極集電体上に形成された負極合剤層の空隙率が5〜20体積%の範囲になるようにする。   In the non-aqueous electrolyte secondary battery of the present invention, the composite containing tin, cobalt, and carbon in the negative electrode in which the negative electrode mixture layer including the negative electrode active material and the binder is formed on the negative electrode current collector as described above. A negative electrode active material containing an alloy powder and graphite powder is used, and the porosity of the negative electrode mixture layer formed on the negative electrode current collector is in the range of 5 to 20% by volume.

ここで、上記の負極活物質に用いる黒鉛粉末としては、負極の導電性を高めてその内部抵抗を低減させ、上記の複合合金粉末の利用率を高めると共に初期充放電効率を高め、さらに負極における容量を高めるため、X線回折法により測定した格子面間隔d002が0.337nm以下、c軸方向の結晶子の大きさLcが30nm以上であり、50%粒径(メジアン径)D50が5〜35μmの範囲にある黒鉛粉末を用いることが好ましい。   Here, as the graphite powder used for the negative electrode active material, the conductivity of the negative electrode is increased to reduce its internal resistance, the utilization rate of the composite alloy powder is increased and the initial charge / discharge efficiency is increased. In order to increase the capacitance, the lattice spacing d002 measured by the X-ray diffraction method is 0.337 nm or less, the crystallite size Lc in the c-axis direction is 30 nm or more, and the 50% particle size (median diameter) D50 is 5 to 5. It is preferable to use graphite powder in the range of 35 μm.

また、上記の負極活物質に用いるスズとコバルトと炭素を含有する複合合金粉末において、その粒子径が小さくなりすぎると、粒子相互の接触面を大きくすることができず、放電時に粒子相互の接触点が減少して、負極の導電性が低下する一方、その粒子径が大きくなりすぎると、負極合剤層の厚みに対する粒子径の割合が大きくなり、負極合剤層にこの複合合金粉末を均一に配置させることが困難になって、反応の不均一が生じやすくなるため、50%粒径(メジアン径)D50が5〜35μmの範囲になった複合合金粉末を用いることが好ましく、より好ましくは、上記のD50が10〜30μmの範囲の複合合金粉末を用いるようにする。   Moreover, in the composite alloy powder containing tin, cobalt and carbon used for the negative electrode active material, if the particle diameter becomes too small, the contact surface between the particles cannot be increased, and the particles contact each other during discharge. The number of points decreases and the conductivity of the negative electrode decreases. On the other hand, if the particle size becomes too large, the ratio of the particle size to the thickness of the negative electrode mixture layer increases, and the composite alloy powder is uniformly distributed in the negative electrode mixture layer. Therefore, it is preferable to use a composite alloy powder having a 50% particle diameter (median diameter) D50 in the range of 5 to 35 μm, and more preferably. The composite alloy powder having the D50 in the range of 10 to 30 μm is used.

また、上記の複合合金粉末としては、炭素原子の割合が40〜80原子%の範囲にあるものを用いることが好ましい。これは、炭素原子が40原子%以上含まれると、スズとコバルトと炭素とが複合化されやすくなり、充放電を繰り返してもこの複合合金粒子の構造が変化するのが抑制されると共に、この複合合金内における導電性も向上して、スズの利用率が向上するようになる一方、炭素原子の割合が80原子%を超えると、この複合合金中におけるスズの割合が減少して、高容量の電池が得られなくなるためである。   Moreover, as said composite alloy powder, it is preferable to use what has the ratio of a carbon atom in the range of 40-80 atomic%. When carbon atoms are contained in an amount of 40 atomic% or more, tin, cobalt, and carbon are easily compounded, and the structure of the composite alloy particles is prevented from changing even after repeated charge and discharge. The conductivity in the composite alloy is also improved, and the utilization rate of tin is improved. On the other hand, when the proportion of carbon atoms exceeds 80 atomic%, the proportion of tin in the composite alloy is reduced, resulting in a high capacity. This is because the battery cannot be obtained.

また、上記の複合合金粉末におけるサイクル特性を向上させるため、スズとコバルトとの合計量に対するスズの割合が45〜55原子%の範囲にあるものを用いることが好ましい。   Moreover, in order to improve the cycling characteristics in said composite alloy powder, it is preferable to use the one in which the ratio of tin to the total amount of tin and cobalt is in the range of 45 to 55 atomic%.

さらに、上記の複合合金内において均一な充放電反応が行われると共に、充放電を繰り返した場合に、この複合合金粒子の構造が変化するのが抑制されて、さらに優れたサイクル特性が得られるようにするためには、結晶粒を十分に小さくして望ましい合金状態にするため、上記の複合合金粉末として、Cu−Kα線を用いたX線回折において、主ピークのピーク位置2θが40°〜45°の範囲にあり、その半値幅が0.7°以上であり、複合合金内にSnCo相を有するものを用いることが好ましい。   In addition, a uniform charge / discharge reaction is performed in the above composite alloy, and when the charge / discharge is repeated, the structure of the composite alloy particles is suppressed from changing, so that even better cycle characteristics can be obtained. In order to obtain a desirable alloy state by sufficiently reducing the crystal grains, the X-ray diffraction using Cu—Kα rays as the above composite alloy powder has a peak position 2θ of the main peak of 40 ° to It is preferable to use one having a SnCo phase in a composite alloy having a range of 45 ° and a half-value width of 0.7 ° or more.

また、この複合合金粉末においては、上記のスズとコバルトと炭素の他に、他の元素を含有させることも可能であり、この複合合金の容量を低下させないようにして、その複合化を高めると共に、結晶粒サイズをより小さくして、サイクル特性を向上させるためには、チタン、インジウム、鉄、クロム、モリブデン、ジルコニウム及び酸素の中から選択される1種以上の元素を2〜20原子%の範囲で含有させることが好ましい。   In addition to the tin, cobalt, and carbon, the composite alloy powder can contain other elements, and the composite alloy can be increased in its composite capacity so as not to reduce the capacity of the composite alloy. In order to further reduce the crystal grain size and improve the cycle characteristics, 2 to 20 atomic% of one or more elements selected from titanium, indium, iron, chromium, molybdenum, zirconium and oxygen are used. It is preferable to make it contain in the range.

また、この複合合金粉末におけるスズとコバルトと炭素とを均一に複合化させると共に、結晶粒の小さな複合合金粒子を作製するために、ボールミルやアトライター等を用いてメカニカルミリング処理を行うことが好ましい。   Further, in order to uniformly combine tin, cobalt, and carbon in the composite alloy powder, and to produce composite alloy particles having small crystal grains, it is preferable to perform a mechanical milling process using a ball mill, an attritor, or the like. .

そして、上記の黒鉛粉末と複合合金粉末とを含む負極活物質を得るにあたり、負極活物質中における黒鉛粉末の割合が少ないと、負極における導電性を向上させることが困難になると共に、充放電時における負極活物質の膨張、収縮を十分に抑制することが困難になる一方、負極活物質中における黒鉛粉末の割合が多くなりすぎると、上記の複合合金粉末の割合が減少して、高容量の電池が得られなくなる。このため、上記の負極活物質としては、上記の黒鉛粉末と複合合金粉末との合計量に対する黒鉛粉末の割合が20〜60質量%の範囲のものを用いることが好ましく、より好ましくは、黒鉛粉末の割合が30〜50質量%の範囲のものを用いるようにする。   In obtaining a negative electrode active material containing the above graphite powder and composite alloy powder, if the proportion of the graphite powder in the negative electrode active material is small, it becomes difficult to improve the conductivity in the negative electrode, and at the time of charge / discharge On the other hand, it is difficult to sufficiently suppress the expansion and contraction of the negative electrode active material in the negative electrode active material. The battery cannot be obtained. For this reason, as said negative electrode active material, it is preferable to use the thing whose ratio of the graphite powder with respect to the total amount of said graphite powder and composite alloy powder is the range of 20-60 mass%, More preferably, graphite powder The ratio is 30 to 50% by mass.

また、上記の負極活物質とバインダーとを含む負極合剤層を負極集電体上に形成するにあたり、負極合剤層中におけるバインダーの量が少ないと、負極活物質相互の密着性や、負極活物質と負極集電体との密着性が低下して、負極活物質が負極集電体から分離されやすくなる一方、負極合剤層中におけるバインダーの量が多くなりすぎると、負極における導電性が低下すると共に、負極合剤層における空隙率を20体積%以下にすることが困難になる。このため、負極合剤層中におけるバインダーの量を0.4〜2質量%の範囲にすることが好ましい。   Further, when forming the negative electrode mixture layer containing the negative electrode active material and the binder on the negative electrode current collector, if the amount of the binder in the negative electrode mixture layer is small, the adhesion between the negative electrode active materials and the negative electrode The adhesion between the active material and the negative electrode current collector is reduced, and the negative electrode active material is easily separated from the negative electrode current collector. On the other hand, if the amount of the binder in the negative electrode mixture layer is too large, the conductivity in the negative electrode is reduced. And the porosity of the negative electrode mixture layer becomes difficult to be 20% by volume or less. For this reason, it is preferable to make the quantity of the binder in a negative mix layer into the range of 0.4-2 mass%.

また、負極合剤層中におけるバインダーとしては、エマルジョンタイプのバインダーを用いることが好ましい。エマルジョンタイプのバインダーを使用すると、負極活物質相互の密着性や、負極活物質と負極集電体との密着性を低下させることなく、負極活物質の表面を覆うバインダーの面積を減少させることができる。この結果、負極活物質が非水電解液と接触する面積や、負極活物質相互の接触面積を増加させることができ、効率のよい充放電が行えるようになって、初期特性やサイクル特性が向上される。   Moreover, as a binder in a negative mix layer, it is preferable to use an emulsion type binder. When using an emulsion type binder, the area of the binder covering the surface of the negative electrode active material can be reduced without reducing the adhesion between the negative electrode active materials and the adhesion between the negative electrode active material and the negative electrode current collector. it can. As a result, the area where the negative electrode active material is in contact with the non-aqueous electrolyte and the contact area between the negative electrode active materials can be increased, and efficient charge and discharge can be performed, improving initial characteristics and cycle characteristics. Is done.

また、エマルジョンタイプのバインダーを用いた場合、溶液タイプのバインダーと比較して少しの量でも負極活物質相互の密着性や、負極活物質と負極集電体との密着性を向上させることができると共に、このバインダーの量が少なくなるほど、上記のような効果が得られるため、負極合剤層中におけるバインダーにエマルジョンタイプのバインダーを用いる場合には、負極合剤層中におけるバインダーの量を0.4〜1質量%の範囲にすることが好ましい。   Further, when an emulsion type binder is used, the adhesion between the negative electrode active materials and the adhesion between the negative electrode active material and the negative electrode current collector can be improved even in a small amount as compared with the solution type binder. At the same time, as the amount of the binder decreases, the above-described effect is obtained. Therefore, when an emulsion type binder is used as the binder in the negative electrode mixture layer, the amount of the binder in the negative electrode mixture layer is set to 0. It is preferable to make it into the range of 4-1 mass%.

ここで、上記のエマルジョンタイプのバインダーとしては、例えば、フッ素ゴム、エチレン−プロピレン−ジエンターポリマー(EPDM)、スチレン−ブタジエンゴム(SBR)、ポリエチレン、ポリブタジエン、ポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)等の高分子化合物を用いることができる。   Here, examples of the emulsion type binder include fluoro rubber, ethylene-propylene-diene terpolymer (EPDM), styrene-butadiene rubber (SBR), polyethylene, polybutadiene, polytetrafluoroethylene (PTFE), and polyvinyl alcohol. A high molecular compound such as (PVA) can be used.

なお、エマルジョンタイプのバインダーは一般に粘性が低いため、このエマルジョンタイプのバインダーを負極活物質と混合させて負極合剤スラリーを作製する場合に、負極合剤スラリーを安定化させるため、増粘剤を添加させることが好ましく、この増粘剤として、好ましくはカルボキシメチルセルロースナトリウム塩を用いることができる。   In addition, since emulsion type binders generally have low viscosity, when this emulsion type binder is mixed with a negative electrode active material to produce a negative electrode mixture slurry, a thickener is used to stabilize the negative electrode mixture slurry. Preferably, carboxymethyl cellulose sodium salt can be used as the thickener.

また、この発明の非水電解質二次電池において、その正極に用いる正極活物質としては、一般に使用されている公知の正極活物質を用いることができる。例えば、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMn24,LiMnO2等のリチウム・マンガン複合酸化物、LiNi1-xCox2(0<x<1)等のリチウム・ニッケル・コバルト複合酸化物、LiMn1-xCox2(0<x<1)等のリチウム・マンガン・コバルト複合酸化物、LiNixCoyMnz2(x+y+z=1)等のリチウム・ニッケル・コバルト・マンガン複合酸化物、LiNixCoyAlz2(x+y+z=1)等のリチウム・ニッケル・コバルト・アルミニウム複合酸化物等のリチウム含有遷移金属酸化物や、MnO2等のマンガン酸化物、V25等のバナジウム酸化物等の金属酸化物や、その他の酸化物や硫化物を用いることができる。 In the nonaqueous electrolyte secondary battery of the present invention, a commonly used positive electrode active material can be used as the positive electrode active material used for the positive electrode. For example, lithium cobalt complex oxides such as LiCoO 2, lithium-nickel composite oxides such as LiNiO 2, LiMn 2 O 4, LiMnO lithium-manganese composite oxides such as 2, LiNi 1-x Co x O 2 (0 <X <1) and other lithium / nickel / cobalt composite oxides, LiMn 1-x Co x O 2 (0 <x <1) and other lithium / manganese / cobalt composite oxides, LiN x Co y Mn z O 2 (x + y + z = 1 ) lithium-nickel-cobalt-manganese composite oxides such as, LiNi x Co y Al z O 2 (x + y + z = 1) containing lithium transition metal oxide of the lithium-nickel-cobalt-aluminum composite oxides such as can be used goods and manganese oxides such as MnO 2, metal oxides vanadium oxides such as V 2 O 5 and, other oxides and sulfides

また、この発明の非水電解質二次電池における非水電解液としても、非水電解質二次電池において一般に使用されている非水系溶媒に溶質を溶解させたものを用いることかできる。   Further, as the nonaqueous electrolyte solution in the nonaqueous electrolyte secondary battery of the present invention, a solution obtained by dissolving a solute in a nonaqueous solvent generally used in a nonaqueous electrolyte secondary battery can be used.

そして、上記の非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートと、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとの混合溶媒や、環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタン等のエーテル系溶媒との混合溶媒を使用することができる。   Examples of the non-aqueous solvent include a mixed solvent of a cyclic carbonate such as ethylene carbonate, propylene carbonate, and butylene carbonate and a chain carbonate such as dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate, and cyclic carbonate and 1 , 2-dimethoxyethane, 1,2-diethoxyethane, and other mixed solvents with ether solvents can be used.

また、上記の溶質としては、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。 Examples of the solute include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and, of these A mixture or the like can be used.

次に、この発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例に係る非水電解質二次電池においては、サイクル特性及び初期充放電効率が向上することを、比較例を挙げて明らかにする。   Next, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the nonaqueous electrolyte secondary battery according to this example, cycle characteristics and initial charge / discharge efficiency are improved. This will be clarified with a comparative example.

(実施例1)
実施例1においては、負極を作製するにあたり、先ず、スズとコバルトとチタンとインジウムとを45:45:9:1の原子比で混合させたものを溶融し、これをガスアトマイズ法により冷却速度103℃/secで急冷して、これらの元素を含む合金を作製した。
Example 1
In Example 1, in preparing the negative electrode, first, a mixture of tin, cobalt, titanium, and indium at an atomic ratio of 45: 45: 9: 1 was melted, and this was cooled at a cooling rate of 10 by a gas atomization method. An alloy containing these elements was prepared by rapid cooling at 3 ° C./sec.

そして、上記の合金を78重量部、炭素材料のアセチレンブラックを22重量部の割合にし、これらをアルゴン雰囲気中において遊星ボールミルを用いたメカニカルアロイング処理を15時間行って複合合金粉末を得た後、この複合合金粉末を大気中に取り出し、目開き150μmのふるいに通して粗粒子を取り除き、負極活物質に用いる複合合金粉末を得た。   And after making said alloy into the ratio of 78 weight part and carbon material acetylene black 22 weight part, and performing these mechanical alloying processes using a planetary ball mill in argon atmosphere for 15 hours, composite alloy powder was obtained. The composite alloy powder was taken out into the atmosphere and passed through a sieve having an opening of 150 μm to remove coarse particles, thereby obtaining a composite alloy powder used for the negative electrode active material.

ここで、この複合合金粉末について、Cu−Kα管をX線源とするX線回折装置(リガク社製:RINT2000/PC)を用いてX線回折を行い、その結果を図1に示した。   Here, this composite alloy powder was subjected to X-ray diffraction using an X-ray diffractometer (Rigaku Corporation: RINT2000 / PC) using a Cu-Kα tube as an X-ray source, and the results are shown in FIG.

この結果、図1に示すように、SnCo(002)面に対応した主ピークが2θ=42.4°の位置に現れ、またその半値幅を上記のX線回折装置のアプリケーションを用いて測定した結果、半値幅は0.84°であった。また、図1に示すように、SnCo(101)面に対応したピークが2θ=28.8°の位置に、SnCo(110)面に対応したピークが2θ=34.0°の位置に、SnCo(201)面に対応したピークが2θ=44.9°の位置に現れた。   As a result, as shown in FIG. 1, a main peak corresponding to the SnCo (002) plane appears at a position of 2θ = 42.4 °, and its half-value width was measured using the application of the X-ray diffractometer. As a result, the half width was 0.84 °. Further, as shown in FIG. 1, the peak corresponding to the SnCo (101) plane is at the position of 2θ = 28.8 °, and the peak corresponding to the SnCo (110) plane is at the position of 2θ = 34.0 °. A peak corresponding to the (201) plane appeared at a position of 2θ = 44.9 °.

また、上記の複合合金粉末について、走査型電子顕微鏡に付属している蛍光X線分析装置を用いて元素分析を行った結果、この複合合金粉末中に、スズが12.5原子%、コバルトが11.6原子%、炭素が64.2原子%、チタンが2.2原子%、インジウムが0.2原子%、鉄が4.6原子%、クロムが1.2原子%、酸素が3.5原子%含有されていた。   Further, as a result of elemental analysis of the above composite alloy powder using a fluorescent X-ray analyzer attached to a scanning electron microscope, 12.5 atomic% of tin and cobalt were present in the composite alloy powder. 11.6 atomic%, carbon 64.2 atomic%, titanium 2.2 atomic%, indium 0.2 atomic%, iron 4.6 atomic%, chromium 1.2 atomic%, oxygen 3. It was contained at 5 atomic%.

また、上記の複合合金粉末について、レーザー回折式粒度分布測定装置で粒子径を測定した結果、この複合合金粉末の50%粒径(メジアン径)D50が6μmであり、また小径側から測定した10%粒径D10が1μm、90%粒径D90が16μmになっていた。   Further, as a result of measuring the particle diameter of the above composite alloy powder with a laser diffraction particle size distribution measuring apparatus, the 50% particle diameter (median diameter) D50 of this composite alloy powder was 6 μm, and 10 was measured from the small diameter side. The% particle size D10 was 1 μm, and the 90% particle size D90 was 16 μm.

また、上記の複合合金粉末の真密度を乾式密度測定装置により測定したところ、複合合金粉末の真密度は4.98g/cm3であった。 Further, when the true density of the composite alloy powder was measured with a dry density measuring apparatus, the true density of the composite alloy powder was 4.98 g / cm 3 .

一方、負極活物質に用いる黒鉛粉末としては、X線回折法により測定した格子面間隔d002が0.336nm、c軸方向の結晶子の大きさLcが40nm、50%粒径(メジアン径)D50が20μmになった鱗片状の人造黒鉛粉末を用いた。   On the other hand, as the graphite powder used for the negative electrode active material, the lattice spacing d002 measured by the X-ray diffraction method is 0.336 nm, the crystallite size Lc in the c-axis direction is 40 nm, and the 50% particle size (median diameter) D50. The scale-like artificial graphite powder having a diameter of 20 μm was used.

また、この人造黒鉛粉末の真密度を乾式密度測定装置により測定したところ、人造黒鉛粉末の真密度は2.26g/cm3であった。 Further, when the true density of the artificial graphite powder was measured by a dry density measuring device, the true density of the artificial graphite powder was 2.26 g / cm 3 .

そして、負極を作製するにあたっては、上記の複合合金粉末と人造黒鉛粉末とを6:4の重量比で混合した負極活物質98.4重量部と、バインダーである真密度が1.78g/cm3のポリフッ化ビニリデン(PVdF)1.6重量部と、溶媒であるN−メチル2−ピロリドンとを混練して、負極合剤スラリーを調製した。次いで、この負極合剤スラリーを厚みが10μmの電解銅箔からなる集電体の上に塗布し、これを120℃で加熱乾燥させた後、これをローラープレスにより圧延して、集電体の上に負極合剤層を形成し、これを2cm×2cmの大きさに切断して負極を作製した。 And in producing a negative electrode, 98.4 weight part of negative electrode active materials which mixed said composite alloy powder and artificial graphite powder by the weight ratio of 6: 4, and the true density which is a binder are 1.78 g / cm. 1.6 parts by weight of polyvinylidene fluoride (PVdF) 3 and N-methyl 2-pyrrolidone as a solvent were kneaded to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied onto a current collector made of an electrolytic copper foil having a thickness of 10 μm, and after heating and drying at 120 ° C., this was rolled by a roller press, A negative electrode mixture layer was formed thereon, and this was cut into a size of 2 cm × 2 cm to produce a negative electrode.

そして、この負極における負極合剤層の充填密度を求め、上記の複合合金粉末と人造黒鉛粉末とバインダーとの真密度から算出される負極合剤の真密度(3.32g/cm3)から、下記の式により負極合剤層の空隙率を求めた結果、負極合剤層の空隙率は14体積%であった。 Then, the filling density of the negative electrode mixture layer in this negative electrode is obtained, and from the true density (3.32 g / cm 3 ) of the negative electrode mixture calculated from the true density of the above composite alloy powder, artificial graphite powder and binder, As a result of obtaining the porosity of the negative electrode mixture layer by the following formula, the porosity of the negative electrode mixture layer was 14% by volume.

空隙率(体積%)=(1−充填密度÷負極合剤の真密度)×100   Porosity (volume%) = (1−filling density ÷ true density of negative electrode mixture) × 100

(実施例2)
実施例2においては、上記の実施例1における負極の作製において、ローラープレスによる圧延条件だけを変更させ、負極合剤層の空隙率が19体積%になった負極を作製した。
(Example 2)
In Example 2, in the production of the negative electrode in Example 1 described above, only the rolling conditions by the roller press were changed, and a negative electrode in which the porosity of the negative electrode mixture layer was 19% by volume was produced.

(比較例1)
比較例1においては、上記の実施例1における負極の作製において、ローラープレスによる圧延条件だけを変更させ、負極合剤層の空隙率が29体積%になった負極を作製した。
(Comparative Example 1)
In Comparative Example 1, in the production of the negative electrode in Example 1 described above, only the rolling conditions by the roller press were changed, and a negative electrode in which the porosity of the negative electrode mixture layer was 29% by volume was produced.

そして、上記のようにして作製した実施例1,2及び比較例1の各負極を用いて、図2に示す三電極式試験セル10を作製した。   And the three-electrode type test cell 10 shown in FIG. 2 was produced using each negative electrode of Examples 1 and 2 and Comparative Example 1 produced as described above.

ここで、上記の三電極式試験セル10においては、上記の各負極を作用極11に用い、正極となる対極12及び参照極13にそれぞれ金属リチウムを使用し、また非水電解液14としては、エチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合させた混合溶媒に、6フッ化リン酸リチウムLiPF6を1mol/lの割合で溶解したものを用い、この非水電解液14中に上記の作用極11と対極12と参照極13とを浸漬させた。 Here, in the above-described three-electrode test cell 10, each of the above negative electrodes is used as the working electrode 11, metallic lithium is used for each of the counter electrode 12 and the reference electrode 13 that are positive electrodes, and the non-aqueous electrolyte solution 14 is In this non-aqueous electrolyte solution 14, a solution obtained by dissolving lithium hexafluorophosphate LiPF 6 at a ratio of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7 is used. The working electrode 11, the counter electrode 12, and the reference electrode 13 were immersed in the above.

そして、実施例1,2及び比較例1の各負極を作用極11に用いた各三電極式試験セル10を、0.1mA/cm2の定電流で参照極13に対する作用極11の電位が0Vになるまで充電した後、0.1mA/cm2の定電流で参照極13に対する作用極11の電位が2Vになるまで放電して、1サイクル目の充放電を行い、次いで、0.5mA/cm2の定電流で参照極13に対する作用極11の電位が0Vになるまで充電した後、0.5mA/cm2の定電流で参照極13に対する作用極11の電位が2Vになるまで放電して、2サイクル目の充放電を行った。 Each of the three-electrode test cells 10 using the negative electrodes of Examples 1 and 2 and Comparative Example 1 as the working electrode 11 has a potential of the working electrode 11 with respect to the reference electrode 13 at a constant current of 0.1 mA / cm 2. After charging to 0 V, discharging was performed at a constant current of 0.1 mA / cm 2 until the potential of the working electrode 11 with respect to the reference electrode 13 became 2 V, and charge and discharge in the first cycle was performed, then 0.5 mA / after the potential of the working electrode 11 with respect to the reference electrode 13 at a constant current of cm 2 was charged until to 0V, and the discharge until the potential of the working electrode 11 with respect to the reference electrode 13 at a constant current of 0.5 mA / cm 2 is 2V Then, charge / discharge of the second cycle was performed.

そして、3サイクル目以降は、0.5mA/cm2の定電流で参照極13に対する作用極11の電位が0Vになるまで充電した後、0.5mA/cm2の定電流で参照極13に対する作用極11の電位が1Vになるまで放電し、3サイクル目の放電容量Q3と7サイクル目の放電容量Q7とを測定し、3サイクル目の放電容量Q3に対する7サイクル目の放電容量Q7の比率を求めた。 Then, the third cycle and later, after the potential of the working electrode 11 with respect to the reference electrode 13 at a constant current of 0.5 mA / cm 2 was charged until to 0V, and with respect to the reference electrode 13 at a constant current of 0.5 mA / cm 2 Discharge until the potential of the working electrode 11 reaches 1 V, measure the discharge capacity Q3 of the third cycle and the discharge capacity Q7 of the seventh cycle, and the ratio of the discharge capacity Q7 of the seventh cycle to the discharge capacity Q3 of the third cycle Asked.

そして、サイクル特性指数として、実施例1の負極を用いた場合における上記の比率を100とし、実施例1,2及び比較例1の各負極を用いた場合におけるサイクル特性指数を下記の表1に示した。   As the cycle characteristic index, the above ratio when the negative electrode of Example 1 was used was set to 100, and the cycle characteristic index when each negative electrode of Examples 1, 2 and Comparative Example 1 was used is shown in Table 1 below. Indicated.

Figure 2008311209
Figure 2008311209

この結果から明らかなように、負極合剤層の空隙率が20体積%以下になった実施例1,2の負極を用いた場合には、負極合剤層の空隙率が20体積%を越える比較例1の負極を用いた場合に比べて、サイクル特性が大きく向上していた。   As is clear from this result, when the negative electrodes of Examples 1 and 2 in which the porosity of the negative electrode mixture layer was 20% by volume or less were used, the porosity of the negative electrode mixture layer exceeded 20% by volume. Compared with the case where the negative electrode of Comparative Example 1 was used, the cycle characteristics were greatly improved.

(実施例3)
実施例3においては、実施例1と同様にして作製した複合合金粉末を、目開き20μmのふるいにかけ、ふるいに残った複合合金粉末を用い、それ以外は、上記の実施例1の場合と同様にして、実施例3の負極を作製した。
(Example 3)
In Example 3, the composite alloy powder produced in the same manner as in Example 1 was passed through a sieve having an opening of 20 μm, and the composite alloy powder remaining on the sieve was used. Otherwise, the same as in Example 1 above Thus, the negative electrode of Example 3 was produced.

ここで、上記の複合合金粉末について、実施例1の場合と同様にして粒子径を測定した結果、この複合合金粉末の50%粒径(メジアン径)D50が16μmであり、また小径側から測定した10%粒径D10が5μm、90%粒径D90が20μmになっていた。   Here, the particle diameter of the above composite alloy powder was measured in the same manner as in Example 1. As a result, the 50% particle diameter (median diameter) D50 of this composite alloy powder was 16 μm and measured from the small diameter side. The 10% particle diameter D10 was 5 μm, and the 90% particle diameter D90 was 20 μm.

また、この実施例3の負極における負極合剤層の空隙率を求めた結果、空隙率は15体積%であった。   Moreover, as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 3, the porosity was 15 volume%.

(実施例4)
実施例4においては、実施例1と同様にして作製した複合合金粉末を水に分散させて、目開き10μmのふるいにかけ、ふるいに残った複合合金粉末を100℃で真空加熱して乾燥させた複合合金粉末を用い、それ以外は、上記の実施例1の場合と同様にして、実施例4の負極を作製した。
Example 4
In Example 4, the composite alloy powder produced in the same manner as in Example 1 was dispersed in water, passed through a sieve having an opening of 10 μm, and the composite alloy powder remaining on the sieve was dried by heating at 100 ° C. under vacuum. A negative electrode of Example 4 was produced in the same manner as in Example 1 except that the composite alloy powder was used.

ここで、上記の複合合金粉末について、実施例1の場合と同様にして粒子径を測定した結果、この複合合金粉末の50%粒径(メジアン径)D50が13μmであり、また小径側から測定した10%粒径D10が4μm、90%粒径D90が17μmになっていた。   Here, the particle diameter of the above composite alloy powder was measured in the same manner as in Example 1. As a result, the 50% particle diameter (median diameter) D50 of this composite alloy powder was 13 μm and measured from the small diameter side. The 10% particle diameter D10 was 4 μm and the 90% particle diameter D90 was 17 μm.

また、この実施例4の負極における負極合剤層の空隙率を求めた結果、空隙率は16体積%であった。   Moreover, as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 4, the porosity was 16 volume%.

(実施例5)
実施例5においては、実施例1と同様にして作製した複合合金粉末を、目開き20μmのふるいにかけ、ふるいを通過した複合合金粉末を用い、それ以外は、上記の実施例1の場合と同様にして、実施例5の負極を作製した。
(Example 5)
In Example 5, the composite alloy powder produced in the same manner as in Example 1 was passed through a sieve having an opening of 20 μm, and the composite alloy powder that passed through the sieve was used. Other than that, the same as in Example 1 above Thus, the negative electrode of Example 5 was produced.

ここで、上記の複合合金粉末について、実施例1の場合と同様にして粒子径を測定した結果、この複合合金粉末の50%粒径(メジアン径)D50が5μmであり、また小径側から測定した10%粒径D10が1μm、90%粒径D90が12μmになっていた。   Here, the particle diameter of the above composite alloy powder was measured in the same manner as in Example 1. As a result, the 50% particle diameter (median diameter) D50 of this composite alloy powder was 5 μm, and measured from the small diameter side. The 10% particle diameter D10 was 1 μm, and the 90% particle diameter D90 was 12 μm.

また、この実施例5の負極における負極合剤層の空隙率を求めた結果、空隙率は16体積%であった。   Moreover, as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 5, the porosity was 16 volume%.

そして、上記のようにして作製した実施例3〜5の各負極を用い、前記の場合と同様にして、図2に示す三電極式試験セル10を作製した。   And using each negative electrode of Examples 3-5 produced as mentioned above, it carried out similarly to the said case, and produced the three-electrode-type test cell 10 shown in FIG.

そして、上記の各三電極式試験セル10を、上記の実施例1の場合と同様にして充放電させ、3サイクル目の放電容量Q3に対する7サイクル目の放電容量Q7の比率を求め、実施例1の負極を用いた場合における上記の比率を100とし、実施例3〜5の各負極を用いた場合におけるサイクル特性指数を算出し、その結果を下記の表2に示した。   Each of the three-electrode test cells 10 was charged and discharged in the same manner as in Example 1 above, and the ratio of the discharge capacity Q7 in the seventh cycle to the discharge capacity Q3 in the third cycle was determined. The above ratio in the case of using the negative electrode 1 was set to 100, and the cycle characteristic index in the case of using the negative electrodes of Examples 3 to 5 was calculated. The results are shown in Table 2 below.

Figure 2008311209
Figure 2008311209

この結果、50%粒径(メジアン径)D50が10μm以上になった複合合金粉末を使用した実施例3,4の負極を用いた場合には、50%粒径(メジアン径)D50が10μm未満になった複合合金粉末を使用した実施例1,5の負極を用いた場合に比べて、サイクル特性が向上していた。   As a result, when the negative electrodes of Examples 3 and 4 using the composite alloy powder having a 50% particle diameter (median diameter) D50 of 10 μm or more were used, the 50% particle diameter (median diameter) D50 was less than 10 μm. The cycle characteristics were improved as compared with the case of using the negative electrodes of Examples 1 and 5 using the composite alloy powder obtained.

(実施例6)
実施例6においては、黒鉛粉末として、X線回折法により測定した格子面間隔d002が0.336nm、c軸方向の結晶子の大きさLcが40nm、50%粒径(メジアン径)D50が25μmになった鱗片状の人造黒鉛粉末を用いると共に、この人造黒鉛粉末と、実施例1と同じ50%粒径(メジアン径)D50が6μmになった複合合金粉末とを5:5の重量比になるように混合した負極活物質を用い、それ以外は、上記の実施例1の場合と同様にして、実施例6の負極を作製した。
(Example 6)
In Example 6, as graphite powder, the lattice spacing d002 measured by the X-ray diffraction method was 0.336 nm, the crystallite size Lc in the c-axis direction was 40 nm, and the 50% particle size (median diameter) D50 was 25 μm. A scale-like artificial graphite powder was used, and this artificial graphite powder was mixed with a composite alloy powder having a 50% particle size (median diameter) D50 of 6 μm as in Example 1 in a weight ratio of 5: 5. A negative electrode of Example 6 was produced in the same manner as in Example 1 except that the negative electrode active material mixed as described above was used.

そして、この実施例6の負極における負極合剤層の空隙率を求めた結果、空隙率は11体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 6, the porosity was 11 volume%.

(実施例7)
実施例7においては、上記の実施例6において用いた人造黒鉛粉末と、実施例1と同じ50%粒径(メジアン径)D50が6μmになった複合合金粉末とを3:7の重量比になるように混合した負極活物質を用い、それ以外は、上記の実施例1の場合と同様にして、実施例7の負極を作製した。
(Example 7)
In Example 7, the artificial graphite powder used in Example 6 above and the composite alloy powder having the same 50% particle size (median diameter) D50 of 6 μm as in Example 1 in a weight ratio of 3: 7. A negative electrode of Example 7 was produced in the same manner as in Example 1 except that the negative electrode active material mixed as described above was used.

そして、この実施例7の負極における負極合剤層の空隙率を求めた結果、空隙率は17体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 7, the porosity was 17 volume%.

(実施例8)
実施例8においては、上記の実施例6において用いた人造黒鉛粉末と、実施例1と同じ50%粒径(メジアン径)D50が6μmになった複合合金粉末とを2:8の重量比になるように混合した負極活物質を用い、それ以外は、上記の実施例1の場合と同様にして、実施例8の負極を作製した。
(Example 8)
In Example 8, the artificial graphite powder used in Example 6 above and the composite alloy powder having the same 50% particle size (median diameter) D50 of 6 μm as in Example 1 in a weight ratio of 2: 8. A negative electrode of Example 8 was produced in the same manner as in Example 1 except that the negative electrode active material mixed as described above was used.

そして、この実施例8の負極における負極合剤層の空隙率を求めた結果、空隙率は19体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 8, the porosity was 19 volume%.

(実施例9)
実施例9においては、上記の実施例6において用いた人造黒鉛粉末と、実施例1と同じ50%粒径(メジアン径)D50が6μmになった複合合金粉末とを1:9の重量比になるように混合した負極活物質を用い、それ以外は、上記の実施例1の場合と同様にして、実施例9の負極を作製した。
Example 9
In Example 9, the artificial graphite powder used in Example 6 above and the composite alloy powder having the same 50% particle size (median diameter) D50 of 6 μm as in Example 1 in a weight ratio of 1: 9. A negative electrode of Example 9 was prepared in the same manner as in Example 1 except that the negative electrode active material mixed as described above was used.

そして、この実施例9の負極における負極合剤層の空隙率を求めた結果、空隙率は19体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 9, the porosity was 19 volume%.

(比較例2)
比較例2においては、人造黒鉛粉末を用いずに、実施例1と同じ50%粒径(メジアン径)D50が6μmになった複合合金粉末だけを負極活物質として用い、それ以外は、上記の実施例1の場合と同様にして、比較例2の負極を作製した。
(Comparative Example 2)
In Comparative Example 2, the composite graphite powder having the same 50% particle size (median diameter) D50 of 6 μm as in Example 1 was used as the negative electrode active material without using the artificial graphite powder, and the others were as described above. In the same manner as in Example 1, a negative electrode of Comparative Example 2 was produced.

そして、この比較例2の負極における負極合剤層の空隙率を求めた結果、空隙率は28体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this comparative example 2, the porosity was 28 volume%.

そして、上記のようにして作製した実施例6〜9及び比較例2の各負極を用い、前記の場合と同様にして、図2に示す三電極式試験セル10を作製した。   And using each negative electrode of Examples 6-9 produced as mentioned above and the comparative example 2, it carried out similarly to the said case, and produced the 3 electrode type test cell 10 shown in FIG.

そして、上記の各三電極式試験セル10を、上記の実施例1の場合と同様にして充放電させ、1サイクル目における初期放電容量を求めると共に、3サイクル目の放電容量Q3に対する7サイクル目の放電容量Q7の比率を求め、実施例8の負極を用いた場合における上記の比率を100として、実施例6〜9及び比較例2の各負極を用いた場合におけるサイクル特性指数を算出し、これらの結果を下記の表3に示した。   Each of the three-electrode test cells 10 is charged / discharged in the same manner as in Example 1 to determine the initial discharge capacity in the first cycle, and the seventh cycle relative to the discharge capacity Q3 in the third cycle. The ratio of the discharge capacity Q7 was calculated, and the cycle characteristic index when each of the negative electrodes of Examples 6 to 9 and Comparative Example 2 was used was calculated with the above ratio when the negative electrode of Example 8 was used as 100, These results are shown in Table 3 below.

Figure 2008311209
Figure 2008311209

この結果、黒鉛粉末と前記の複合合金粉末とを混合させた負極活物質を用いた実施例6〜9の負極を使用した場合、黒鉛粉末を混合させずに前記の複合合金粉末だけを負極活物質に用いた比較例1の負極を使用した場合に比べて、サイクル特性が大きく向上していた。   As a result, when the negative electrodes of Examples 6 to 9 using the negative electrode active material in which the graphite powder and the composite alloy powder were mixed, only the composite alloy powder was mixed with the negative electrode active material without mixing the graphite powder. Compared with the case where the negative electrode of Comparative Example 1 used for the substance was used, the cycle characteristics were greatly improved.

また、負極活物質中における黒鉛粉末の量が20質量%以上になった実施例6〜8の負極を使用した場合、負極活物質中における黒鉛粉末の量が20質量%未満になった実施例9の負極を使用した場合に比べて、サイクル特性がさらに向上していた。   Further, when the negative electrodes of Examples 6 to 8 in which the amount of graphite powder in the negative electrode active material was 20% by mass or more were used, the example in which the amount of graphite powder in the negative electrode active material was less than 20% by mass. Compared with the case where the negative electrode of 9 was used, the cycle characteristics were further improved.

また、初期放電容量を比較した場合、負極活物質中における黒鉛粉末の量が50質量%になった実施例6の負極を用いた場合に、初期放電容量が若干低下したが、複合合金粉末だけを負極活物質に用いた比較例1の負極を用いた場合との差は少なく、負極活物質中における黒鉛粉末の量を30質量%以下にした実施例7〜9の負極を用いた場合には、比較例1の負極を用いた場合よりも初期放電容量が高くなっていた。これは、黒鉛粉末を添加させることにより複合合金粉末の利用率が向上したためであると考えられる。   In addition, when comparing the initial discharge capacity, when the negative electrode of Example 6 in which the amount of graphite powder in the negative electrode active material was 50% by mass, the initial discharge capacity was slightly reduced, but only the composite alloy powder When using the negative electrodes of Examples 7 to 9 in which the amount of graphite powder in the negative electrode active material was 30% by mass or less, there was little difference from the case of using the negative electrode of Comparative Example 1 using The initial discharge capacity was higher than when the negative electrode of Comparative Example 1 was used. This is considered to be because the utilization rate of the composite alloy powder was improved by adding the graphite powder.

(実施例10)
実施例10においては、上記の実施例1と同じ負極活物質を用い、この負極活物質を98.4重量部、エマルジョンタイプのバインダーで真密度が0.91g/cm3のスチレン−ブタジエンゴム(SBR)を固形分換算で0.8重量部、増粘剤である真密度が1.35g/cm3のカルボキシメチルセルロースナトリウム塩(CMC)を0.8重量部の割合にし、これらを溶媒である水とを混練して負極合剤スラリーを調製した。次いで、この負極合剤スラリーを厚みが10μmの電解銅箔からなる集電体の上に塗布し、これを120℃で加熱乾燥させた後、これをローラープレスにより圧延して、集電体の上に負極合剤層を形成し、これを2cm×2cmの大きさに切断して実施例10の負極を作製した。
(Example 10)
In Example 10, the same negative electrode active material as in Example 1 above was used, and 98.4 parts by weight of this negative electrode active material, a styrene-butadiene rubber having an emulsion type binder and a true density of 0.91 g / cm 3 ( SBR) is 0.8 parts by weight in terms of solid content, and the true density as a thickener is 1.35 g / cm 3 carboxymethylcellulose sodium salt (CMC) at a ratio of 0.8 parts by weight, and these are solvents. A negative electrode mixture slurry was prepared by kneading water. Next, this negative electrode mixture slurry was applied onto a current collector made of an electrolytic copper foil having a thickness of 10 μm, and after heating and drying at 120 ° C., this was rolled by a roller press, A negative electrode mixture layer was formed thereon, and this was cut into a size of 2 cm × 2 cm to produce a negative electrode of Example 10.

そして、この実施例10の負極における負極合剤層の空隙率を求めた結果、空隙率は16体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 10, the porosity was 16 volume%.

(実施例11)
実施例11においては、上記の実施例10における負極活物質を98.8重量部、エマルジョンタイプのバインダーであるスチレン−ブタジエンゴム(SBR)を固形分換算で0.8重量部と、増粘剤であるカルボキシメチルセルロースナトリウム塩(CMC)を0.4重量部の割合にし、それ以外は、上記の実施例10の場合と同様にして、実施例11の負極を作製した。
(Example 11)
In Example 11, 98.8 parts by weight of the negative electrode active material in Example 10 above, 0.8 parts by weight of styrene-butadiene rubber (SBR), which is an emulsion type binder, in terms of solid content, and a thickener The negative electrode of Example 11 was produced in the same manner as in Example 10 except that the carboxymethylcellulose sodium salt (CMC) was 0.4 parts by weight.

そして、この実施例11の負極における負極合剤層の空隙率を求めた結果、空隙率は15体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 11, the porosity was 15 volume%.

(実施例12)
実施例12においては、上記の実施例10における負極活物質を99.2重量部、エマルジョンタイプのバインダーであるスチレン−ブタジエンゴム(SBR)を固形分換算で0.4重量部と、増粘剤であるカルボキシメチルセルロースナトリウム塩(CMC)を0.4重量部の割合にし、それ以外は、上記の実施例10の場合と同様にして、実施例12の負極を作製した。
(Example 12)
In Example 12, 99.2 parts by weight of the negative electrode active material in Example 10 above, 0.4 parts by weight of styrene-butadiene rubber (SBR), which is an emulsion type binder, in terms of solid content, and a thickener The negative electrode of Example 12 was produced in the same manner as in Example 10 except that the carboxymethylcellulose sodium salt (CMC) was 0.4 parts by weight.

そして、この実施例12の負極における負極合剤層の空隙率を求めた結果、空隙率は15体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 12, the porosity was 15 volume%.

(実施例13)
実施例13においては、上記の実施例10における負極活物質を97.5重量部、エマルジョンタイプのバインダーであるスチレン−ブタジエンゴム(SBR)を固形分換算で1.5重量部と、増粘剤であるカルボキシメチルセルロースナトリウム塩(CMC)を1.0重量部の割合にし、それ以外は、上記の実施例10の場合と同様にして、実施例13の負極を作製した。
(Example 13)
In Example 13, 97.5 parts by weight of the negative electrode active material in Example 10 above, 1.5 parts by weight of styrene-butadiene rubber (SBR), which is an emulsion type binder, in terms of solid content, and a thickener The negative electrode of Example 13 was produced in the same manner as in Example 10 except that the amount of carboxymethylcellulose sodium salt (CMC) was 1.0 parts by weight.

そして、この実施例13の負極における負極合剤層の空隙率を求めた結果、空隙率は20体積%であった。   And as a result of calculating | requiring the porosity of the negative mix layer in the negative electrode of this Example 13, the porosity was 20 volume%.

そして、上記のようにして作製した実施例10〜13の各負極を用い、前記の場合と同様にして、図2に示す三電極式試験セル10を作製した。   And using each negative electrode of Examples 10-13 produced as mentioned above, it carried out similarly to the said case, and produced the 3 electrode type test cell 10 shown in FIG.

そして、上記の実施例10〜13及び実施例1の負極を用いた各三電極式試験セル10を、上記の実施例1の場合と同様にして充放電させ、各三電極式試験セル10において1サイクル目の充電容量に対する1サイクル目の放電容量の比率(初期充放電効率)を求めると共に、3サイクル目の放電容量Q3に対する7サイクル目の放電容量Q7の比率を求め、前記の実施例1の負極を用いた場合における上記の比率を100として、実施例10〜13の各負極を用いた場合におけるサイクル特性指数を算出し、これらの結果を下記の表4に示した。   And each 3 electrode type test cell 10 using the negative electrode of said Examples 10-13 and Example 1 was charged / discharged similarly to the case of said Example 1, and in each 3 electrode type test cell 10, The ratio of the discharge capacity of the first cycle to the charge capacity of the first cycle (initial charge / discharge efficiency) is determined, and the ratio of the discharge capacity Q7 of the seventh cycle to the discharge capacity Q3 of the third cycle is determined. The cycle characteristic index when each negative electrode of Examples 10 to 13 was used was calculated with the above ratio when the negative electrode was used as 100, and the results are shown in Table 4 below.

Figure 2008311209
Figure 2008311209

この結果、負極合剤層中にバインダーに、エマルジョンタイプのバインダーであるスチレン−ブタジエンゴム(SBR)を用いると共に、増粘剤であるカルボキシメチルセルロースナトリウム塩を含有させた実施例10〜13の負極を使用した場合には、バインダーにポリフッ化ビニリデン(PVdF)を用いた実施例1の負極を使用した場合に比べて、初期充放電効率が向上していた。   As a result, while using the emulsion type binder styrene-butadiene rubber (SBR) as a binder in the negative electrode mixture layer, the negative electrodes of Examples 10 to 13 containing carboxymethyl cellulose sodium salt as a thickener were added. When used, the initial charge / discharge efficiency was improved as compared with the case where the negative electrode of Example 1 using polyvinylidene fluoride (PVdF) as the binder was used.

特に、負極合剤層中におけるエマルジョンタイプのバインダーであるスチレン−ブタジエンゴム(SBR)の量を1質量%以下に実施例10〜12の負極を使用した場合には、初期充放電効率がさらに向上すると共に、サイクル特性も向上していた。   In particular, when the negative electrode of Examples 10 to 12 is used with the amount of styrene-butadiene rubber (SBR), which is an emulsion-type binder, in the negative electrode mixture layer being 1% by mass or less, the initial charge / discharge efficiency is further improved. In addition, the cycle characteristics were improved.

本発明の実施例1において製造した複合合金粉末のX線回折測定結果を示した図である。It is the figure which showed the X-ray-diffraction measurement result of the composite alloy powder manufactured in Example 1 of this invention. 本発明の実施例1〜13及び比較例1,2の各負極を作用極に用いた三電極式試験セルの概略説明図である。It is a schematic explanatory drawing of the 3 electrode type test cell which used each negative electrode of Examples 1-13 of this invention and Comparative Examples 1 and 2 for a working electrode.

符号の説明Explanation of symbols

10 三電極式試験セル
11 作用極(負極)
12 対極(正極)
13 参照極
14 非水電解液
10 Three-electrode test cell 11 Working electrode (negative electrode)
12 Counter electrode (positive electrode)
13 Reference electrode 14 Non-aqueous electrolyte

Claims (13)

正極と、負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極と、非水電解液とを備えた非水電解質二次電池において、上記の負極活物質が、スズとコバルトと炭素を含有する複合合金粉末と黒鉛粉末とを含むと共に、上記の負極集電体上に形成された負極合剤層の空隙率が5〜20体積%の範囲であることを特徴とする非水電解質二次電池。   In a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode in which a negative electrode mixture layer including a negative electrode active material and a binder is formed on a negative electrode current collector, and a nonaqueous electrolyte solution, the negative electrode active material includes: In addition, the composite alloy powder containing tin, cobalt and carbon and the graphite powder, and the porosity of the negative electrode mixture layer formed on the negative electrode current collector is in the range of 5 to 20% by volume. Non-aqueous electrolyte secondary battery characterized. 請求項1に記載の非水電解質二次電池において、前記の負極活物質に用いる黒鉛粉末は、X線回折法により測定した格子面間隔d002が0.337nm以下、c軸方向の結晶子の大きさLcが30nm以上であり、50%粒径(メジアン径)D50が5〜35μmの範囲であることを特徴とする非水電解質二次電池。   2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder used for the negative electrode active material has a lattice spacing d002 of 0.337 nm or less measured by an X-ray diffraction method and a crystallite size in the c-axis direction. A non-aqueous electrolyte secondary battery having a thickness Lc of 30 nm or more and a 50% particle diameter (median diameter) D50 in the range of 5 to 35 μm. 請求項1又は請求項2に記載の非水電解質二次電池において、前記の負極活物質に用いる複合合金粉末の50%粒径(メジアン径)D50が5〜35μmの範囲であることを特徴とする非水電解質二次電池。   3. The nonaqueous electrolyte secondary battery according to claim 1, wherein a 50% particle size (median diameter) D50 of the composite alloy powder used for the negative electrode active material is in the range of 5 to 35 μm. Non-aqueous electrolyte secondary battery. 請求項1〜請求項3の何れか1項に記載の非水電解質二次電池において、前記の負極活物質に用いる黒鉛粉末と複合合金粉末との合計量に対する黒鉛粉末の割合が20〜60質量%の範囲であることを特徴とする非水電解質二次電池。   4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the ratio of the graphite powder to the total amount of the graphite powder and the composite alloy powder used for the negative electrode active material is 20 to 60 mass. % Nonaqueous electrolyte secondary battery. 請求項4に記載の非水電解質二次電池において、前記の負極活物質に用いる黒鉛粉末と複合合金粉末との合計量に対する黒鉛粉末の割合が30〜50質量%の範囲であることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 4, wherein the ratio of the graphite powder to the total amount of the graphite powder and the composite alloy powder used for the negative electrode active material is in the range of 30 to 50 mass%. Non-aqueous electrolyte secondary battery. 請求項1〜請求項5の何れか1項に記載の非水電解質二次電池において、前記の負極活物質に用いる複合合金粉末は、炭素原子の割合が40〜80原子%の範囲であることを特徴とする非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the composite alloy powder used for the negative electrode active material has a carbon atom ratio in a range of 40 to 80 atomic%. A non-aqueous electrolyte secondary battery. 請求項1〜6の何れか1項に記載の非水電解質二次電池において、前記の負極活物質に用いる複合合金粉末は、スズとコバルトとの合計量に対するスズの割合が45〜55原子%の範囲であることを特徴とする請求項1〜5に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the composite alloy powder used for the negative electrode active material has a ratio of tin to 45 to 55 atomic% with respect to a total amount of tin and cobalt. The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is in a range of 請求項1〜7の何れか1項に記載の非水電解質二次電池において、前記の負極活物質に用いる複合合金粉末は、Cu−Kα線を用いたX線回折において、主ピークのピーク位置2θが40°〜45°の範囲にあり、その半値幅が0.7°以上であることを特徴とする非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the composite alloy powder used for the negative electrode active material has a peak position of a main peak in X-ray diffraction using Cu-Kα rays. A non-aqueous electrolyte secondary battery characterized in that 2θ is in the range of 40 ° to 45 ° and the half-value width thereof is 0.7 ° or more. 請求項1〜8の何れか1項に記載の非水電解質二次電池において、前記の負極活物質に用いる複合合金粉末が、SnCo相を有していることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 8, wherein the composite alloy powder used for the negative electrode active material has a SnCo phase. battery. 請求項1〜9の何れか1項に記載の非水電解質二次電池において、前記の負極合剤層中におけるバインダーの量が0.4〜2質量%の範囲であることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 9, wherein the amount of the binder in the negative electrode mixture layer is in the range of 0.4 to 2% by mass. Water electrolyte secondary battery. 請求項1〜10の何れか1項に記載の非水電解質二次電池において、前記の負極合剤層中におけるバインダーがエマルジョンタイプのバインダーであることを特徴とする非水電解質二次電池。   11. The non-aqueous electrolyte secondary battery according to claim 1, wherein the binder in the negative electrode mixture layer is an emulsion-type binder. 11. 請求項1〜11の何れか1項に記載の非水電解質二次電池において、前記の負極合剤層中におけるバインダーがスチレン−ブタジエンゴムであることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 11, wherein the binder in the negative electrode mixture layer is styrene-butadiene rubber. 請求項11又は請求項12に記載の非水電解質二次電池において、前記の負極合剤層中に増粘剤のカルボキシメチルセルロースが含有されていることを特徴とする非水電解質二次電池。   13. The non-aqueous electrolyte secondary battery according to claim 11, wherein a thickener carboxymethyl cellulose is contained in the negative electrode mixture layer. 14.
JP2008028287A 2007-05-17 2008-02-08 Nonaqueous electrolyte secondary battery Pending JP2008311209A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008028287A JP2008311209A (en) 2007-05-17 2008-02-08 Nonaqueous electrolyte secondary battery
US12/119,928 US20080286654A1 (en) 2007-05-17 2008-05-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007131157 2007-05-17
JP2008028287A JP2008311209A (en) 2007-05-17 2008-02-08 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008311209A true JP2008311209A (en) 2008-12-25

Family

ID=40238610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028287A Pending JP2008311209A (en) 2007-05-17 2008-02-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008311209A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2011154901A (en) * 2010-01-27 2011-08-11 Sony Corp Lithium ion secondary battery and negative electrode for the same
WO2012017677A1 (en) * 2010-08-05 2012-02-09 昭和電工株式会社 Anode active material for lithium secondary battery
WO2012029401A1 (en) * 2010-09-03 2012-03-08 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
JP2013045714A (en) * 2011-08-25 2013-03-04 Toyota Motor Corp Method for manufacturing nonaqueous secondary battery
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
JP2014186907A (en) * 2013-03-25 2014-10-02 Mitsubishi Materials Corp Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using negative electrode active material and method of producing negative electrode active material for lithium ion secondary battery
JP2015176867A (en) * 2014-03-12 2015-10-05 ベレノス・クリーン・パワー・ホールディング・アーゲー Silicon/carbon composite anodes for lithium-ion batteries with sustained high capacity per unit area
JP2015219989A (en) * 2014-05-14 2015-12-07 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017069039A (en) * 2015-09-30 2017-04-06 株式会社Gsユアサ Negative electrode for power storage device, and power storage device
JPWO2019239947A1 (en) * 2018-06-15 2021-06-24 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN114450819A (en) * 2019-09-27 2022-05-06 株式会社Adeka Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US11469418B2 (en) * 2018-10-17 2022-10-11 Contemporary Amperex Technology Co., Limited Negative electrode sheet and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2002175807A (en) * 2000-12-08 2002-06-21 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary battery
JP2003187863A (en) * 2001-12-19 2003-07-04 Hitachi Maxell Ltd Secondary battery using organic electrolyte
JP2006156232A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Manufacturing method of electrode of nonaqueous electrolyte secondary battery
JP2006261072A (en) * 2005-03-18 2006-09-28 Sony Corp Anode activator and battery
JP2007066685A (en) * 2005-08-31 2007-03-15 Sony Corp Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2002175807A (en) * 2000-12-08 2002-06-21 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary battery
JP2003187863A (en) * 2001-12-19 2003-07-04 Hitachi Maxell Ltd Secondary battery using organic electrolyte
JP2006156232A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Manufacturing method of electrode of nonaqueous electrolyte secondary battery
JP2006261072A (en) * 2005-03-18 2006-09-28 Sony Corp Anode activator and battery
JP2007066685A (en) * 2005-08-31 2007-03-15 Sony Corp Secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2011154901A (en) * 2010-01-27 2011-08-11 Sony Corp Lithium ion secondary battery and negative electrode for the same
US9196899B2 (en) 2010-08-05 2015-11-24 Showa Denko K.K. Anode active material for use in lithium secondary battery
WO2012017677A1 (en) * 2010-08-05 2012-02-09 昭和電工株式会社 Anode active material for lithium secondary battery
WO2012029401A1 (en) * 2010-09-03 2012-03-08 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
JP2013045714A (en) * 2011-08-25 2013-03-04 Toyota Motor Corp Method for manufacturing nonaqueous secondary battery
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
JP2014186907A (en) * 2013-03-25 2014-10-02 Mitsubishi Materials Corp Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using negative electrode active material and method of producing negative electrode active material for lithium ion secondary battery
JP2015176867A (en) * 2014-03-12 2015-10-05 ベレノス・クリーン・パワー・ホールディング・アーゲー Silicon/carbon composite anodes for lithium-ion batteries with sustained high capacity per unit area
JP2015219989A (en) * 2014-05-14 2015-12-07 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017069039A (en) * 2015-09-30 2017-04-06 株式会社Gsユアサ Negative electrode for power storage device, and power storage device
JPWO2019239947A1 (en) * 2018-06-15 2021-06-24 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP7336736B2 (en) 2018-06-15 2023-09-01 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
US11990622B2 (en) 2018-06-15 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
US11469418B2 (en) * 2018-10-17 2022-10-11 Contemporary Amperex Technology Co., Limited Negative electrode sheet and battery
CN114450819A (en) * 2019-09-27 2022-05-06 株式会社Adeka Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JP5132941B2 (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP5489723B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6177345B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP2008311209A (en) Nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2022510983A (en) Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it
JP6654793B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
WO2014049964A1 (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary batteries
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2011187435A (en) Nonaqueous electrolyte secondary battery
TW201330350A (en) Lithium battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP2011070789A (en) Nonaqueous electrolyte secondary battery
JP2007200862A (en) Nonaqueous electrolyte secondary battery
US20080286654A1 (en) Non-aqueous electrolyte secondary battery
JP7262998B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material
JP2014146473A (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary battery
JP7233011B2 (en) Positive electrode active material and secondary battery
JP7208313B2 (en) Positive electrode active material and lithium secondary battery containing the same
JP2014132529A (en) Nonaqueous electrolytic secondary battery
JP2022122997A (en) Positive electrode active material and lithium secondary battery including the same
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP7262999B2 (en) Manufacturing method of positive electrode active material, manufacturing method of non-aqueous electrolyte secondary battery, positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101065377B1 (en) Negative active material for lithium ion battery and lithium ion battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521