JPH08329946A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JPH08329946A
JPH08329946A JP7130121A JP13012195A JPH08329946A JP H08329946 A JPH08329946 A JP H08329946A JP 7130121 A JP7130121 A JP 7130121A JP 13012195 A JP13012195 A JP 13012195A JP H08329946 A JPH08329946 A JP H08329946A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
binder
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7130121A
Other languages
Japanese (ja)
Other versions
JP3191614B2 (en
Inventor
Yoko Nakagawa
洋子 中川
Yoshiyuki Ozaki
義幸 尾崎
Hide Koshina
秀 越名
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15026457&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08329946(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13012195A priority Critical patent/JP3191614B2/en
Publication of JPH08329946A publication Critical patent/JPH08329946A/en
Application granted granted Critical
Publication of JP3191614B2 publication Critical patent/JP3191614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To prevent deposition of metallic lithium on a negative electrode in low temperature charging by heat treating the negative electrode containing a carbon material capable of absorbing/releasing lithium and a binder or a thickening agent in the non-oxidizing atmosphere, then constituting a battery. CONSTITUTION: A negative electrode 3 containing a carbon material capable of absorbing/releasing lithium and a binder or a thickening agent is heat treated in the vacuum of 1333 pa, in the non-oxidizing atmosphere of a mixed gas of at least two gases selected from Ar, N2 , He, and air at 150-350 deg.C. The negative electrode 2 and a positive electrode 1 comprising lithium-containing composite oxide are spirally wound through a separator 5 to obtain an electrode group. The electrode group is housed in a battery case 8, a nonaqueous electrolyte is poured, then the battery case 8 is sealed with a sealing plate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、特にその負極の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, especially a negative electrode thereof.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。これにつれて駆動用
電源を担う小形、軽量で、かつ高エネルギー密度を有す
る二次電池への要望も高まっている。このような観点か
ら、非水電解液二次電池、特にリチウム二次電池は、と
りわけ高電圧、高エネルギー密度を有する電池としてそ
の期待は大きく、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is advancing rapidly. Along with this, there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a driving power source. From this point of view, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed.

【0003】従来、リチウム二次電池の正極活物質に
は、二酸化マンガン、五酸化バナジウム、二硫化チタン
などが用いられ、これらの正極と、リチウム金属負極お
よび有機電解液とで電池を構成する試みがなされてき
た。しかしながら、一般に負極にリチウム金属を用いた
二次電池では充電時に負極表面に析出する樹枝状の金属
リチウム(デンドライト)による内部短絡や、析出した
活性なリチウムと電解液の副反応による充放電特性の劣
化、さらには異常発熱、著しい場合には発火に至るとい
った安全面の問題が実用化の大きな障害となっていた。
更には、高率充放電特性や過放電特性においても課題が
多く満足な解決策が見い出されていなかった。
Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide, etc. have been used as a positive electrode active material of a lithium secondary battery, and an attempt has been made to construct a battery with these positive electrodes, a lithium metal negative electrode and an organic electrolyte. Has been done. However, generally, in a secondary battery using lithium metal for the negative electrode, internal short circuit due to dendritic metal lithium (dendrites) deposited on the negative electrode surface during charging and charge / discharge characteristics due to side reaction between the deposited active lithium and the electrolytic solution Deterioration, further abnormal heat generation, and in extreme cases, ignition has been a major obstacle to practical use.
Furthermore, there are many problems in high-rate charge / discharge characteristics and over-discharge characteristics, and no satisfactory solution has been found.

【0004】これらの負極材料に代わり、充放電により
リチウムを吸蔵放出することのできる炭素材料が安全性
や高率充放電特性、充放電サイクル特性など実用電池と
して必要な諸特性を備えた負極材料として注目を集めて
いる。
In place of these negative electrode materials, a carbon material capable of inserting and extracting lithium by charge and discharge has various characteristics necessary for a practical battery such as safety, high rate charge and discharge characteristics, and charge and discharge cycle characteristics. Is attracting attention as.

【0005】高エネルギー密度の電池を得るために、炭
素材料を負極に用いることに伴い正極活物質としては、
より高電圧を有し、かつLiを含む化合物であるLiC
oO 2、LiNiO2、LiFeO2、LiMn24、更
にはこれらのCo、Ni、FeおよびMnの一部を他の
元素で置換した複合酸化物を用いることが提案されてい
る。
To obtain high energy density batteries, charcoal
As a positive electrode active material with the use of a raw material for the negative electrode,
LiC, which is a compound having a higher voltage and containing Li
oO 2, LiNiO2, LiFeO2, LiMn2OFour,
Some of these Co, Ni, Fe and Mn
It has been proposed to use complex oxides substituted with elements.
It

【0006】[0006]

【発明が解決しようとする課題】負極に炭素材料を用い
た場合、充電時にリチウムが吸蔵され、放電時に放出さ
れることによって充放電反応が進行する。しかしなが
ら、充電電流密度が高く、充電温度が低くなるほどリチ
ウムが吸蔵される速度が追従できなくなり、負極電極上
に金属状リチウムが析出する。この金属状リチウムが電
気化学的に不活性なために放電反応が行われ難く、電池
の充放電効率が低下する傾向が著しくなる。また、この
金属状リチウムが樹枝状に析出した場合はセパレータを
貫通して正極と接触して短絡し、充放電が不可能となる
などの悪影響を与える。
When a carbon material is used for the negative electrode, lithium is occluded during charging and released during discharging, so that the charge / discharge reaction proceeds. However, as the charging current density is higher and the charging temperature is lower, the rate at which lithium is occluded cannot follow up, and metallic lithium is deposited on the negative electrode. Since this metallic lithium is electrochemically inactive, the discharge reaction is difficult to occur, and the charge / discharge efficiency of the battery tends to decrease significantly. Further, when the metallic lithium deposits in a dendritic form, it penetrates the separator and comes into contact with the positive electrode to cause a short circuit, which adversely affects charging and discharging.

【0007】この課題の解決策として、正・負極板を薄
形・大面積(長尺)化して単位面積当たりに流れる電流
密度を下げ金属状リチウムを析出させない方法が取られ
ている。しかしながら、炭素粉末単独では上記のような
薄形負極板は作製できないために、炭素粉末に結着剤や
増粘剤などを加えてペースト状とし、これを銅、ニッケ
ルなどの箔状の集電体上に塗着し、乾燥してシート状負
極板を作製する。このような極板をもちいた電池は、常
温ではほぼ100%に近い充放電効率を示し、かつ、良
好なサイクル特性を示す。
As a solution to this problem, a method has been adopted in which the positive and negative electrode plates are made thin and have a large area (length) to reduce the current density flowing per unit area and prevent metallic lithium from being deposited. However, since the thin negative electrode plate as described above cannot be manufactured with carbon powder alone, a binder or thickener is added to carbon powder to form a paste, which is then collected into a foil-shaped collector such as copper or nickel. It is applied onto the body and dried to prepare a sheet-shaped negative electrode plate. A battery using such an electrode plate exhibits a charge / discharge efficiency of almost 100% at room temperature and good cycle characteristics.

【0008】しかしながら、5℃以下、特に0℃以下の
低温における充電においては負極炭素中へのリチウムの
吸蔵速度と吸蔵量(受入れ性)が常温時に比べて著しく
低下するために、特に大電流での充電時に負極電極上に
金属リチウムが析出することがわかった。一度析出した
金属リチウムはその後に充放電反応を繰り返しても容易
には消滅しないために、常温に戻して充放電を行った場
合に充放電容量が回復せず、容量劣化を引き起こす。ま
た、析出したリチウムが内部短絡などの悪影響を及ぼす
ことは前述の通りである。
However, in charging at a low temperature of 5 ° C. or lower, particularly 0 ° C. or lower, the absorption rate and absorption amount (acceptability) of lithium in the negative electrode carbon are remarkably reduced as compared with those at room temperature, so that particularly at a large current. It was found that metallic lithium was deposited on the negative electrode during charging. Since the metal lithium once deposited does not easily disappear even if the charge / discharge reaction is repeated thereafter, the charge / discharge capacity is not recovered when the temperature is returned to room temperature and the charge / discharge is performed, which causes capacity deterioration. As described above, the deposited lithium has an adverse effect such as an internal short circuit.

【0009】このような充電時の金属リチウムの析出現
象の主要因は負極炭素材料の表面を覆う結着剤、増粘剤
が負極の円滑な充電反応を阻害することにあると考えら
れる。このような考え方にたって、本発明者らは負極炭
素材料上への結着剤、増粘剤の被覆状態に着目し、種々
の検討を行ったが、結着剤量を減らした場合は十分な極
板強度が得られず、増粘剤量を減らした場合には十分な
ペースト粘度が得られないために本電池に必要な薄形極
板は得られなかった。
It is considered that the main cause of such a deposition phenomenon of metallic lithium during charging is that the binder and the thickener covering the surface of the negative electrode carbon material hinder the smooth charging reaction of the negative electrode. Based on such an idea, the present inventors paid attention to the coating state of the binder and the thickener on the negative electrode carbon material, and conducted various studies, but when the amount of the binder was reduced, it was sufficient. It was not possible to obtain a thin electrode plate required for the present battery because sufficient electrode plate strength could not be obtained and sufficient paste viscosity could not be obtained when the amount of thickener was reduced.

【0010】本発明は負極炭素材料の表面を覆う結着
剤、増粘剤による上記の悪影響がなく、しかも十分な極
板強度を備えた負極を得ることにより、低温充電時にお
いても負極電極上に金属リチウムの析出を起こさず、常
温に戻した場合の容量回復率が高く、充放電サイクル特
性などの諸特性にも優れた高容量、高エネルギー密度の
非水電解液二次電池を得ることを目的としたものであ
る。
The present invention obtains a negative electrode which does not have the above-mentioned adverse effects of the binder and thickener covering the surface of the negative electrode carbon material and has a sufficient electrode plate strength, so that the negative electrode can remain on the negative electrode even during low temperature charging. To obtain a high capacity, high energy density non-aqueous electrolyte secondary battery with high capacity recovery rate when returned to room temperature without causing precipitation of metallic lithium and excellent in various characteristics such as charge and discharge cycle characteristics. It is intended for.

【0011】[0011]

【課題を解決するための手段】本発明はリチウム含有複
合酸化物からなる正極と、非水電解液と、リチウムの吸
蔵放出が可能な炭素材料と結着剤もしくは増粘剤を含む
負極とを備えた非水電解液二次電池の上記の課題を解決
するために、負極を150℃〜350℃の非酸化性雰囲
気中で熱処理した後、これを用いて電池構成をすること
を特徴とする。さらに好ましくは非酸化性雰囲気の酸素
分圧を267Pa以下とする。また、非酸化性雰囲気を
Ar、N2、He、1333Pa以下の減圧空気のいづ
れか、或いはこれらの気体の2種以上の混合ガスとする
ものである。さらに好ましくは負極として黒鉛質の炭素
材料を主体とし、増粘剤または結着剤としてセルロース
系材料を用いるものである。
The present invention comprises a positive electrode composed of a lithium-containing composite oxide, a non-aqueous electrolyte, and a negative electrode containing a carbon material capable of inserting and extracting lithium and a binder or a thickener. In order to solve the above-mentioned problems of the provided non-aqueous electrolyte secondary battery, the negative electrode is heat-treated in a non-oxidizing atmosphere at 150 ° C to 350 ° C, and then this is used to form a battery. . More preferably, the oxygen partial pressure of the non-oxidizing atmosphere is 267 Pa or less. The non-oxidizing atmosphere is any one of Ar, N 2 , He, and decompressed air of 1333 Pa or less, or a mixed gas of two or more kinds of these gases. More preferably, a graphite carbon material is mainly used as the negative electrode, and a cellulosic material is used as a thickener or a binder.

【0012】[0012]

【作用】本発明は負極炭素材、結着剤、増粘剤を適度に
含むペーストを金属集電体上に塗布し、乾燥して得た極
板を非酸化性雰囲気において熱処理を施すことにより、
炭素材料を覆っている結着剤もしくは増粘剤を熱分解し
て部分的に消滅させ、負極の充電反応を円滑に行わせて
充電時の負極へのリチウムの吸蔵速度を高めることがで
きる。さらに適度に残存した結着剤もしくは増粘剤の作
用により極板としての必要な結着力を維持した負極を得
ることを可能にするものである。この負極を用いること
により、低温充電時においても電極表面上への金属リチ
ウムの析出は見られず、再び常温に戻して充放電した場
合の放電容量が低温充電を行う以前の放電容量の100
%近くにまで回復する非水電解液二次電池を得ることが
できる。
The present invention comprises applying a paste containing a negative electrode carbon material, a binder, and a thickener to a metal current collector, and drying the electrode plate to be heat-treated in a non-oxidizing atmosphere. ,
The binder or thickener covering the carbon material is thermally decomposed to be partially eliminated, and the charging reaction of the negative electrode can be smoothly performed to increase the rate of lithium absorption into the negative electrode during charging. Further, it is possible to obtain a negative electrode which maintains a necessary binding force as an electrode plate by the action of the binder or the thickener which remains to an appropriate degree. By using this negative electrode, metal lithium deposition was not observed on the electrode surface even at low temperature charging, and the discharge capacity when the battery was returned to room temperature and charged and discharged was 100% of the discharge capacity before low temperature charging.
It is possible to obtain a non-aqueous electrolyte secondary battery that recovers up to nearly 100%.

【0013】[0013]

【実施例】【Example】

(実施例1)以下、実施例により本発明を詳しく述べ
る。
(Example 1) The present invention will be described in detail below with reference to examples.

【0014】図1に本実施例で用いた円筒形電池の縦断
面図を示す。図1において、1は正極、2は正極板から
引き出した正極リード、3は負極、4は負極から引き出
した負極リードで、正極1および負極3がセパレータ5
を介して複数回渦巻状に巻回されてステンレス鋼製の電
池ケース8の中に収納されている。6および7はそれぞ
れ下部および上部絶縁板、9は封口ガスケット、10は
安全弁を設けた封口板を示す。また、正極リード2が封
口板10と接続され、正極端子11を兼ねている。
FIG. 1 is a vertical sectional view of the cylindrical battery used in this embodiment. In FIG. 1, 1 is a positive electrode, 2 is a positive electrode lead drawn from a positive electrode plate, 3 is a negative electrode, 4 is a negative electrode lead drawn from a negative electrode, and the positive electrode 1 and the negative electrode 3 are separators 5.
It is wound in a spiral shape a plurality of times through and is housed in a battery case 8 made of stainless steel. 6 and 7 are lower and upper insulating plates, 9 is a sealing gasket, and 10 is a sealing plate provided with a safety valve. Further, the positive electrode lead 2 is connected to the sealing plate 10 and also serves as the positive electrode terminal 11.

【0015】以下に正、負極等について詳しく説明す
る。正極の製法はLi2CO3とCo34とを混合し、9
00℃で10時間焼成して合成したLiCoO2の粉末
の100重量部に、アセチレンブラックを3重量部、フ
ッ素樹脂系結着剤を7重量部混合し、カルボキシメチル
セルロース(CMC)水溶液に懸濁させてペースト状に
した。このペーストを厚さ0.03mmのアルミニウム
箔の両面に塗着し、乾燥後圧延して厚さ0.18mm、
幅37mm、長さ240mmに切断し、正極リード2を
取り付け正極1とした。
The positive and negative electrodes will be described in detail below. The positive electrode was prepared by mixing Li 2 CO 3 and Co 3 O 4 and
100 parts by weight of LiCoO 2 powder synthesized by firing at 00 ° C. for 10 hours, 3 parts by weight of acetylene black and 7 parts by weight of fluororesin binder were mixed and suspended in an aqueous solution of carboxymethyl cellulose (CMC). Made into a paste. This paste is applied to both sides of an aluminum foil having a thickness of 0.03 mm, dried and rolled to a thickness of 0.18 mm,
It was cut into a width of 37 mm and a length of 240 mm, and the positive electrode lead 2 was attached to the positive electrode 1.

【0016】負極3には平均粒径5.7μmのメソカー
ボンマイクロビーズ(MCMB)を2800℃で焼成し
た黒鉛系炭素材料の100重量部にスチレンブタジエン
ゴム(SBR)を5重量部混合し、CMC水溶液に懸濁
させてペースト状にした。このペーストを厚さ0.02
mmの銅箔の両面に塗着し、乾燥後圧延して厚さ0.2
0mm、幅39mm、長さ260mmに切断し、負極リ
ード4を取り付け負極3とした。
For the negative electrode 3, 100 parts by weight of a graphite-based carbon material obtained by firing mesocarbon microbeads (MCMB) having an average particle size of 5.7 μm at 2800 ° C. was mixed with 5 parts by weight of styrene-butadiene rubber (SBR) to prepare CMC. It was suspended in an aqueous solution to form a paste. This paste has a thickness of 0.02
0.2 mm thick copper foil is applied to both sides, dried and rolled to a thickness of 0.2
It was cut into 0 mm, width 39 mm, and length 260 mm, and the negative electrode lead 4 was attached to it to make the negative electrode 3.

【0017】この負極3を後述のような各条件で熱処理
した後、正極1および負極3を、厚さ0.025mm、
幅45mm、長さ730mmのポリエチレン製セパレー
タ5を介して渦巻き状に巻回し極板群とし、これを直径
14.0mm、高さ50mmの電池ケース8に収納し
た。これにエチレンカーボネイト(EC)、ジエチルカ
ーボネイト(DEC)、プロピオン酸メチル(MP)を
容積比で3:4:3の比率で混合した溶媒に溶質として
6フッ化燐酸リチウム(LiPF6)を1mol/lの
濃度で溶解した電解液を注液した後、封口して電池を構
成した。
After the negative electrode 3 is heat-treated under the conditions described below, the positive electrode 1 and the negative electrode 3 are formed into a thickness of 0.025 mm,
It was spirally wound through a polyethylene separator 5 having a width of 45 mm and a length of 730 mm to form an electrode plate group, which was housed in a battery case 8 having a diameter of 14.0 mm and a height of 50 mm. Ethylene carbonate (EC), diethyl carbonate (DEC), and methyl propionate (MP) were mixed at a volume ratio of 3: 4: 3 in a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute at 1 mol / mol. After injecting an electrolyte solution dissolved at a concentration of 1 and then sealing, a battery was constructed.

【0018】負極の熱処理温度に関して、10Paの減
圧空気中で25℃(室温)から500℃までの各処理温
度で6時間熱処理して電池特性との関連を検討した。こ
の結果を図2に示す。
Regarding the heat treatment temperature of the negative electrode, heat treatment was performed in a reduced pressure air of 10 Pa at each treatment temperature from 25 ° C. (room temperature) to 500 ° C. for 6 hours, and the relationship with the battery characteristics was examined. The result is shown in FIG.

【0019】負極の熱処理雰囲気の空気の圧力に関し
て、熱処理温度を250℃とし、雰囲気の空気圧力を1
33Paから13330Paまでの各減圧条件下で、6
時間熱処理して電池特性との関連を検討した。この結果
を図3に示す。
Regarding the air pressure in the heat treatment atmosphere of the negative electrode, the heat treatment temperature is 250 ° C. and the air pressure in the atmosphere is 1
6 under each reduced pressure condition from 33 Pa to 13330 Pa
The heat treatment was performed for a period of time to examine the relationship with the battery characteristics. The result is shown in FIG.

【0020】(実施例2)負極の熱処理雰囲気ガスに関
して、熱処理工程を、1気圧の窒素(N2)、アルゴン
(Ar)、ヘリウム(He)の各雰囲気下で250℃、
6時間加熱処理して熱処理雰囲気ガスと電池特性の関連
を検討した。
(Example 2) Regarding the heat treatment atmosphere gas of the negative electrode, the heat treatment process was carried out at 250 ° C. under 1 atmosphere of nitrogen (N 2 ), argon (Ar) and helium (He) atmospheres.
After heat treatment for 6 hours, the relationship between the heat treatment atmosphere gas and the battery characteristics was examined.

【0021】これら実施例1および2の各電池を以下の
条件下で充放電サイクル試験を行った。充電は4.1V
の定電流定電圧充電とし、制限電流を350mAとして
2時間の充電を行った。放電は500mAの定電流放電
とし、放電終止電圧を3.0Vとした。このような条件
下で20℃で20サイクルの充放電を行ったのち、放電
状態において環境温度を0℃に設定し6時間放置後に2
0サイクルの充放電を行った。そして、放電状態で再び
環境温度を20℃に戻し6時間放置後、充放電を50サ
イクル行い、サイクル試験を終了した。
The batteries of Examples 1 and 2 were subjected to a charge / discharge cycle test under the following conditions. 4.1V charging
Charging was carried out for 2 hours at a constant current and a constant voltage and a limiting current of 350 mA. The discharge was a constant current discharge of 500 mA, and the discharge end voltage was 3.0V. After 20 cycles of charging and discharging at 20 ° C. under such conditions, the environmental temperature was set to 0 ° C. in the discharged state, and after leaving for 6 hours, 2
Charge / discharge was performed for 0 cycles. Then, after the environmental temperature was returned to 20 ° C. in the discharged state for 6 hours, the battery was charged and discharged for 50 cycles, and the cycle test was completed.

【0022】各電池の評価は20℃での初期の10サイ
クル目の放電容量を初期容量とし、0℃での3サイクル
目の放電容量を0℃容量とした。そして再び20℃に戻
してからの3サイクル目の放電容量を回復容量、50サ
イクル目の容量を最終容量とした。そして、(0℃容
量)/(初期容量)×100の値を0℃維持率とし、
(回復容量)/(初期容量)×100の値を回復率とし
た。
In the evaluation of each battery, the discharge capacity at the initial 10th cycle at 20 ° C was taken as the initial capacity, and the discharge capacity at the 3rd cycle at 0 ° C was taken as the 0 ° C capacity. Then, the discharge capacity at the third cycle after returning to 20 ° C. was taken as the recovery capacity, and the capacity at the 50th cycle was taken as the final capacity. Then, the value of (0 ° C. capacity) / (initial capacity) × 100 is defined as the 0 ° C. maintenance rate,
The value of (recovery capacity) / (initial capacity) × 100 was taken as the recovery rate.

【0023】また、サイクル試験終了後の各電池を分解
し負極板表面の観察を行った。実施例1において熱処理
温度を変化させて構成した各電池の試験結果は図2に示
すように、熱処理温度が150〜350℃の範囲では初
期容量が500mAh以上と大きく、0℃維持率も良好
であり、100%近くの回復率を示した。またこの温度
範囲で熱処理した電池は、その後の充放電サイクルでも
ほとんど劣化が見られなかった。サイクル試験後に分解
した電池の負極板には目立った変化は見られず、金属リ
チウムの析出は全く観察されなかった。
After completion of the cycle test, each battery was disassembled and the surface of the negative electrode plate was observed. As shown in FIG. 2, the test result of each battery constructed by changing the heat treatment temperature in Example 1 shows that the initial capacity is as large as 500 mAh or more in the heat treatment temperature range of 150 to 350 ° C. and the 0 ° C. maintenance rate is good. Yes, the recovery rate was close to 100%. The battery heat-treated in this temperature range showed almost no deterioration in the subsequent charge / discharge cycles. No noticeable change was observed on the negative electrode plate of the battery disassembled after the cycle test, and deposition of metallic lithium was not observed at all.

【0024】ところが、10Paの減圧下でも、100
℃以下の温度で負極の熱処理を行った電池では、処理温
度が低いため余分な結着剤、増粘剤が負極表面を覆って
いるため、電池初期容量が若干低く、0℃維持率が低く
回復率も不十分な結果となった。試験後に分解した電池
の負極板表面にはほぼ全面に金属リチウムの析出が認め
られた。これは、負極のリチウムの受入れ性が低下した
結果、低温での充電時に負極表面に金属リチウムが析出
したことを示している。なお、20℃での充放電サイク
ルのみで、その間に低温での充放電を行わない場合は1
00サイクルを経過しても負極板表面への金属リチウム
の析出は見られないことをすでに確認している。
However, even under a reduced pressure of 10 Pa, 100
In the battery where the negative electrode was heat-treated at a temperature of ℃ or less, since the treatment temperature was low, extra binder and thickener covered the negative electrode surface, so the initial capacity of the battery was slightly low and the 0 ° C maintenance rate was low. The recovery rate was also inadequate. Precipitation of metallic lithium was observed on almost the entire surface of the negative electrode plate of the battery disassembled after the test. This indicates that metallic lithium was deposited on the surface of the negative electrode during charging at low temperature as a result of the reduction in lithium acceptability of the negative electrode. In addition, it is 1 when charging / discharging only at 20 degreeC and not charging / discharging at low temperature in the meantime.
It has already been confirmed that metal lithium is not deposited on the surface of the negative electrode plate even after the lapse of 00 cycles.

【0025】また、10Paの減圧下で400℃以上の
温度で負極板の熱処理を行った電池では、温度が高いた
め結着剤の熱分解が起こり、合剤の結着力が不十分とな
るため集電体から合剤がはがれ落ちる現象が顕著に見ら
れた。その結果、初期容量が低く、20℃での充放電サ
イクル中にも徐々に劣化し、0℃維持率、回復率とも非
常に低くなった。また、分解観察の結果、負極合剤上に
はリチウムの析出は見られないものの合剤がはがれ落
ち、集電体がむき出しとなった負極板の表面にリチウム
の析出が見られた。
In a battery in which the negative electrode plate is heat-treated at a temperature of 400 ° C. or higher under a reduced pressure of 10 Pa, the binder is thermally decomposed due to the high temperature, and the binding force of the mixture becomes insufficient. The phenomenon that the mixture was peeled off from the current collector was noticeable. As a result, the initial capacity was low, it gradually deteriorated even during the charge / discharge cycle at 20 ° C., and the 0 ° C. maintenance rate and the recovery rate were very low. Further, as a result of the observation of decomposition, lithium deposition was not seen on the negative electrode mixture, but the mixture was peeled off, and lithium deposition was seen on the surface of the negative electrode plate where the current collector was exposed.

【0026】実施例1において熱処理の雰囲気条件のひ
とつである空気の減圧度を変化させて作製した電池の試
験結果を図3に示す。図中、熱処理雰囲気の空気圧力が
1330Pa以下では初期容量が500mAh以上と大
きく、0℃維持率も良好であり、100%近くの回復率
を達成した。その後の充放電サイクルにおける劣化もほ
とんど見られなかった。サイクル試験後分解した電池の
負極には目立った変化は見られず、金属リチウムの析出
は全く観察されなかった。
FIG. 3 shows the test results of the battery prepared in Example 1 by changing the degree of pressure reduction of air, which is one of the atmospheric conditions for heat treatment. In the figure, when the air pressure of the heat treatment atmosphere is 1330 Pa or less, the initial capacity was as large as 500 mAh or more, the 0 ° C. maintenance rate was good, and a recovery rate of nearly 100% was achieved. Almost no deterioration was observed in the subsequent charge / discharge cycle. No noticeable change was observed in the negative electrode of the battery disassembled after the cycle test, and deposition of metallic lithium was not observed at all.

【0027】ところが、熱処理時の雰囲気圧力が300
0Pa以上では結着剤が酸化分解され、減圧空気中で4
00℃以上の高温での熱処理の場合と同様に、合剤の結
着力が不十分であるため集電体から合剤がはがれ落ちる
現象が顕著に見られた。その結果、初期容量が低く、2
0℃でのサイクル中にも徐々に劣化し、0℃維持率、回
復率とも非常に低くなった。また、分解観察の結果、負
極合剤上にはリチウムの析出は見られないものの合剤が
はがれ落ち、集電体がむき出しとなった負極板表面にリ
チウムの析出が見られた。
However, the atmospheric pressure during the heat treatment is 300.
At 0 Pa or higher, the binder is oxidatively decomposed and 4
Similar to the case of heat treatment at a high temperature of 00 ° C. or higher, the phenomenon that the mixture was peeled off from the current collector due to the insufficient binding force of the mixture was noticeable. As a result, the initial capacity is low and 2
It gradually deteriorated during the cycle at 0 ° C, and both the 0 ° C maintenance rate and the recovery rate became very low. In addition, as a result of observation by decomposition, lithium deposition was not seen on the negative electrode mixture, but the mixture was peeled off, and lithium deposition was seen on the surface of the negative electrode plate where the current collector was exposed.

【0028】実施例2の電池では何れの雰囲気下で負極
板を熱処理した場合も実施例1の10Paの減圧空気雰
囲気下で150〜350℃で熱処理した電池と同様に初
期容量が500mAh以上と大きく、0℃維持率も良好
であり、ほぼ100%の回復率を達成した。その後のサ
イクル劣化もほとんど見られなかった。サイクル試験後
の分解した電池の負極板には目立った変化は見られず、
金属リチウムの析出は全く観察されなかった。
In the battery of Example 2, in which atmosphere the negative electrode plate was heat-treated, the initial capacity was as large as 500 mAh or more as in the battery of Example 1 which was heat-treated at 150 to 350 ° C. in the reduced pressure air atmosphere of 10 Pa. The 0 ° C maintenance rate was also good, and a recovery rate of almost 100% was achieved. Almost no subsequent cycle deterioration was observed. No noticeable change was found on the negative electrode plate of the disassembled battery after the cycle test,
No precipitation of metallic lithium was observed.

【0029】これらの実施例の検討結果から、本発明に
よる負極の熱処理雰囲気は非酸化性の雰囲気であればよ
く、特に1333Pa以下の減圧空気中、およびAr,
He,N2ガス中での極めて顕著な実施効果が確認され
た。また、これらの結果を総合して、雰囲気中の酸素分
圧が支配因子であることが明白なことから、空気、A
r,He,N2の内、2種以上のガスを混合した雰囲気
で熱処理する場合でも、1333Pa以下の減圧空気中
の酸素分圧に相当する267Pa以下に酸素分圧を規制
すれば同様の効果が得られることが分かった。
From the results of the examination of these examples, the heat treatment atmosphere for the negative electrode according to the present invention should be a non-oxidizing atmosphere, particularly in a reduced pressure air of 1333 Pa or less, and Ar,
It was confirmed that the effect was extremely remarkable in He and N 2 gas. In addition, it is clear from these results that the oxygen partial pressure in the atmosphere is the controlling factor.
Even in the case of heat treatment in an atmosphere in which two or more kinds of gases among r, He, and N 2 are mixed, the same effect can be obtained if the oxygen partial pressure is regulated to 267 Pa or less corresponding to the oxygen partial pressure in depressurized air of 1333 Pa or less. It turns out that

【0030】さらには、非酸化性雰囲気ガスとして、不
活性ガスであるN2,Ar,Heやこれらの混合気体を
用いると負極板中の余分な結着剤、増粘剤が熱分解する
以外の反応が起こらないのでより好ましいが、非酸化性
ガスであるH2,CO2を用いても本発明の効果が得られ
る。また、焼成時間については本発明の範囲内で温度が
高い程短い時間でよく、通常は5分間から1週間程度で
ある。
Furthermore, when an inert gas such as N 2 , Ar, He, or a mixed gas thereof is used as the non-oxidizing atmosphere gas, the excess binder and thickener in the negative electrode plate are thermally decomposed. It is more preferable because the reaction of (2) does not occur, but the effects of the present invention can be obtained even when H 2 and CO 2 which are non-oxidizing gases are used. Further, the firing time may be shorter as the temperature is higher within the range of the present invention, and is usually about 5 minutes to 1 week.

【0031】なお、本実施例では正極活物質にLiCo
2を用いたが、これ以外にLiNiO2、LiFe
2、LiMn24、またこれらCo、Ni、Fe、M
nの一部を他の遷移金属に置換したものなどのリチウム
含有複合酸化物であればよい。
In this embodiment, LiCo is used as the positive electrode active material.
O 2 was used, but other than this, LiNiO 2 , LiFe
O 2 , LiMn 2 O 4 , and these Co, Ni, Fe, M
Any lithium-containing composite oxide such as one obtained by substituting a part of n with another transition metal may be used.

【0032】また、本実施例では負極炭素材に2800
℃で焼成したMCMBを用いたが負極炭素材の種類によ
って限定されるものではなく、リチウムの吸蔵放出可能
なあらゆる炭素材料において同様の効果を示すが、MC
MB以外にも、とりわけ天然黒鉛、人造黒鉛等の各種の
黒鉛系の材料を用いた場合、高電圧・高容量を有し、サ
イクル特性に優れた非水電解液二次電池を得ることがで
きる。
In this embodiment, the negative electrode carbon material is 2800.
Although MCMB calcined at ℃ was used, it is not limited by the kind of the negative electrode carbon material, and shows the same effect in any carbon material capable of inserting and extracting lithium.
In addition to MB, when using various graphite-based materials such as natural graphite and artificial graphite, a non-aqueous electrolyte secondary battery having high voltage and high capacity and excellent cycle characteristics can be obtained. .

【0033】また、非水電解液の有機溶媒としては従来
から知られているプロピレンカーボネート、エチレンカ
ーボネート、1、2−ジメトキシエタン、1、2−ジエ
トキシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、1、3−ジオキソラン、4−メチル−1、3−ジオ
キソラン、ジエチルエーテル、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル、ジエチル
カーボネート、ジメチルカーボネート、エチルメチルカ
ーボネート、蟻酸メチル、蟻酸エチル、蟻酸プロピル、
酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸
メチル、プロピオン酸エチル等を単独であるいは二種類
以上を混合して使用しても良い。
Further, as the organic solvent of the non-aqueous electrolytic solution, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1, 3, which are conventionally known. -Dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl formate, ethyl formate, propyl formate,
Methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, etc. may be used alone or in admixture of two or more.

【0034】溶質としても従来から知られているLiC
lO4,LiAsF6,LiBF4,LiPF6,LiB
(C654,LiCl,LiBr,CH3SO3Li,
CF3SO3Liなどを用いてもよい。 負極の増粘剤と
してはCMCのほかに各種のセルロース系の材料を使用
でき、例えばメチルセルロース、エチルセルロース、ベ
ンジルセルロース、トリチルセルロース、シアンエチル
セルロース、カルボキシエチルセルロース、アミノエキ
ルセルロース、オキシエチルセルロースなどは、非酸化
性雰囲気でおおむね350℃以下で熱分解するので、本
発明での効果が大きい。しかしながら、増粘剤はセルロ
ースに限定されるものではなくポリビニルアルコール、
ポリエチレンオキシド、ポリアクリル酸類等水溶性のポ
リマーが同様に使用できる。また、これらの増粘剤の溶
剤として、常温で粘度の高いエチレングリコール、プロ
ピレングリコール等のグリコール類や、シクロヘキサノ
ール、ピロカーボネート等の溶媒を使用してもよい。
LiC which is conventionally known as a solute
lO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiB
(C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li,
CF 3 SO 3 Li or the like may be used. As the thickener for the negative electrode, various cellulosic materials other than CMC can be used. For example, methyl cellulose, ethyl cellulose, benzyl cellulose, trityl cellulose, cyanethyl cellulose, carboxyethyl cellulose, aminoethyl cellulose, oxyethyl cellulose and the like are non-oxidized. The effect of the present invention is great because it is thermally decomposed in a volatile atmosphere at a temperature of 350 ° C. or lower. However, the thickener is not limited to cellulose, polyvinyl alcohol,
Water-soluble polymers such as polyethylene oxide and polyacrylic acids can be used as well. As the solvent for these thickeners, glycols such as ethylene glycol and propylene glycol, which have high viscosity at room temperature, and solvents such as cyclohexanol and pyrocarbonate may be used.

【0035】負極の結着剤としてはSBRのほかに非酸
化性雰囲気150℃以下で熱分解しない結着性材料を使
用するのが好ましく、アクリロニトリルブタジエンゴム
(NBR)、ブタジエンゴム(BR)、イソプレンゴム
(IR)等のゴム類や、ポリフッ化ビニリデン(PVD
F)、ポリ4フッ化エチレン(PTFE)、4フッ化エ
チレン6フッ化プロピレン共重合体などのフッ素系樹
脂、フェノール樹脂、アクリル樹脂等の樹脂類、ポリブ
チレンオキサイドなどのポリエーテル類、ポリエステル
類、ポリビニル類であっても同様の効果が得られる。
As the binder for the negative electrode, in addition to SBR, it is preferable to use a binder material that does not undergo thermal decomposition in a non-oxidizing atmosphere of 150 ° C. or lower. Acrylonitrile butadiene rubber (NBR), butadiene rubber (BR), isoprene Rubbers such as rubber (IR) and polyvinylidene fluoride (PVD)
F), fluorine-based resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, resins such as phenol resin and acrylic resin, polyethers such as polybutylene oxide, polyesters The same effect can be obtained even with polyvinyls.

【0036】尚、ここでいう増粘剤は主として塗着性の
良いペースト状の負極合剤を得るために使用し、結着剤
は炭素粒子相互間および集電体との結着性を得るために
用いるが、上記に例示した増粘剤材料と結着剤材料のう
ち、増粘剤と結着剤の役割を兼ねて使用される場合があ
り、本発明の実施例で使用したCMCをはじめセルロー
ス系材料はその例である。従って本発明の説明において
増粘剤と結着剤を区別して記述はしたが、実質的には区
別出来ない場合があり、本発明にかかわる負極は炭素材
料と増粘剤と結着剤とからなるものはもとより、炭素材
料と増粘剤もしくは結着剤とを含む負極を包含するもの
である。
The thickener used here is mainly used to obtain a paste-like negative electrode mixture having good coatability, and the binder obtains the bondability between the carbon particles and with the current collector. Of the thickener materials and binder materials exemplified above, it may be used also as the thickener and binder, and the CMC used in the examples of the present invention may be used. An example is a cellulosic material at the beginning. Therefore, in the description of the present invention, the thickener and the binder are described separately, but in some cases they cannot be substantially distinguished, and the negative electrode according to the present invention is composed of a carbon material, a thickener and a binder. It includes, of course, a negative electrode containing a carbon material and a thickener or a binder.

【0037】[0037]

【発明の効果】以上のように本発明の非水電解液二次電
池では、負極を150℃〜350℃の非酸化雰囲気で加
熱処理した後、電池構成することにより負極炭素材料の
表面を覆う余分な結着剤や増粘剤を気化せしめ、負極充
電時のリチウムのインターカレートを阻害しないため低
温充電時においても負極表面上に金属リチウムの析出が
なく、常温に戻した場合100%の回復率を有する電池
を得ることができる。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, the negative electrode is heated in a non-oxidizing atmosphere at 150 ° C. to 350 ° C., and then the battery is constructed to cover the surface of the negative electrode carbon material. Since excess binder and thickener are vaporized and do not interfere with lithium intercalation during negative electrode charging, there is no deposition of metallic lithium on the negative electrode surface even at low temperature charging, and 100% when returned to room temperature A battery having a recovery rate can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に用いる円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery used in this example.

【図2】熱処理温度と低温サイクル後回復率および電池
容量の関係を示す図
FIG. 2 is a diagram showing a relationship between a heat treatment temperature, a recovery rate after a low temperature cycle, and a battery capacity.

【図3】熱処理時圧力と低温サイクル後回復率および電
池容量の関係を示す図
FIG. 3 is a diagram showing a relationship between pressure during heat treatment, recovery rate after low temperature cycle, and battery capacity.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード 3 負極 4 負極リード 5 セパレータ 6 絶縁板 7 絶縁板 8 電池ケース 9 封口ガスケット 10 封口板 11 正極端子 1 Positive electrode 2 Positive electrode lead 3 Negative electrode 4 Negative electrode lead 5 Separator 6 Insulating plate 7 Insulating plate 8 Battery case 9 Sealing gasket 10 Sealing plate 11 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akikatsu Morita 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウム含有複合酸化物からなる正極と、
非水電解液と、リチウムの吸蔵放出可能な炭素材料と結
着剤もしくは増粘剤を含む負極とを備えた非水電解液二
次電池の製造法において、前記負極を150℃〜350
℃の非酸化性雰囲気中で熱処理した後、これを用いて電
池を構成することを特徴とする非水電解液二次電池の製
造法。
1. A positive electrode comprising a lithium-containing composite oxide,
In a method for producing a non-aqueous electrolyte secondary battery, comprising a non-aqueous electrolyte solution, a carbon material capable of inserting and extracting lithium, and a negative electrode containing a binder or a thickener, the negative electrode is heated to 150 ° C to 350 ° C.
A method for producing a non-aqueous electrolyte secondary battery, which comprises heat-treating in a non-oxidizing atmosphere at ℃, and using the same to construct a battery.
【請求項2】非酸化性雰囲気の酸素分圧が267Pa以
下であることを特徴とする請求項1記載の非水電解液二
次電池の製造法。
2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the oxygen partial pressure of the non-oxidizing atmosphere is 267 Pa or less.
【請求項3】非酸化性雰囲気が1333Pa以下の減圧
空気、Ar、N2、Heのいずれか、或いは空気、A
r、N2、Heの内の2種以上の気体の混合ガスである
請求項2記載の非水電解液二次電池の製造法。
3. A non-oxidizing atmosphere having a reduced pressure of 1333 Pa or less, any one of Ar, N 2 and He, or air, A.
The method for producing a non-aqueous electrolyte secondary battery according to claim 2, which is a mixed gas of two or more kinds of gases selected from r, N 2 , and He.
【請求項4】負極は黒鉛質の炭素材料を主体とし、セル
ロース系の増粘剤もしくは結着剤を含むものである請求
項1記載の非水電解液二次電池の製造法。
4. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is mainly composed of a graphite carbon material and contains a cellulosic thickener or a binder.
JP13012195A 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Fee Related JP3191614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13012195A JP3191614B2 (en) 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13012195A JP3191614B2 (en) 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08329946A true JPH08329946A (en) 1996-12-13
JP3191614B2 JP3191614B2 (en) 2001-07-23

Family

ID=15026457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13012195A Expired - Fee Related JP3191614B2 (en) 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3191614B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050919A1 (en) * 1998-03-26 1999-10-07 Tdk Corporation Method of manufacturing electrode for non-aqueous electrolytic cell
JP2002117839A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for non- aqueous electrolytic solution secondary battery
JP2005347019A (en) * 2004-06-01 2005-12-15 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacturing method of electrode plate
JP2007207697A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolyte solution secondary battery
JP2009193932A (en) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp Manufacturing method of electrode
WO2011001665A1 (en) * 2009-06-30 2011-01-06 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary cells, manufacturing method therefor, and nonaqueous electrolyte secondary cell
WO2015076099A1 (en) * 2013-11-25 2015-05-28 日産自動車株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary batteries
WO2023082248A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and fabricating method therefor, electrochemical device, and electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050919A1 (en) * 1998-03-26 1999-10-07 Tdk Corporation Method of manufacturing electrode for non-aqueous electrolytic cell
US6667000B1 (en) 1998-03-26 2003-12-23 Tdk Corporation Method of producing an electrode
JP2002117839A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for non- aqueous electrolytic solution secondary battery
JP2005347019A (en) * 2004-06-01 2005-12-15 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacturing method of electrode plate
JP2007207697A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolyte solution secondary battery
JP2009193932A (en) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp Manufacturing method of electrode
WO2011001665A1 (en) * 2009-06-30 2011-01-06 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary cells, manufacturing method therefor, and nonaqueous electrolyte secondary cell
JP5226128B2 (en) * 2009-06-30 2013-07-03 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2015076099A1 (en) * 2013-11-25 2015-05-28 日産自動車株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary batteries
WO2023082248A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and fabricating method therefor, electrochemical device, and electronic device

Also Published As

Publication number Publication date
JP3191614B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4126862B2 (en) Non-aqueous electrolyte battery and solid electrolyte battery
JPH08236114A (en) Lithium secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JPH07296853A (en) Method for charging
JPH07235291A (en) Secondary battery
JPH04249073A (en) Non-aqueous electrolyte secondary battery
JP2001351612A (en) Non-aqueous electrolyte secondary battery
JP3999890B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2000067871A (en) Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP4081694B2 (en) Method for producing host substance
JP3191614B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3573971B2 (en) Lithium secondary battery
JPH08335465A (en) Nonaqueous electrolytic battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP2005005208A (en) Nonaqueous electrolyte secondary battery and method of manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP3580511B2 (en) Organic electrolyte secondary battery
JP2003187863A (en) Secondary battery using organic electrolyte

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees