JP3191614B2 - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery

Info

Publication number
JP3191614B2
JP3191614B2 JP13012195A JP13012195A JP3191614B2 JP 3191614 B2 JP3191614 B2 JP 3191614B2 JP 13012195 A JP13012195 A JP 13012195A JP 13012195 A JP13012195 A JP 13012195A JP 3191614 B2 JP3191614 B2 JP 3191614B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
lithium
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13012195A
Other languages
Japanese (ja)
Other versions
JPH08329946A (en
Inventor
洋子 中川
義幸 尾崎
秀 越名
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15026457&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3191614(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13012195A priority Critical patent/JP3191614B2/en
Publication of JPH08329946A publication Critical patent/JPH08329946A/en
Application granted granted Critical
Publication of JP3191614B2 publication Critical patent/JP3191614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、特にその負極の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a negative electrode thereof.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。これにつれて駆動用
電源を担う小形、軽量で、かつ高エネルギー密度を有す
る二次電池への要望も高まっている。このような観点か
ら、非水電解液二次電池、特にリチウム二次電池は、と
りわけ高電圧、高エネルギー密度を有する電池としてそ
の期待は大きく、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless technology is rapidly advancing. Accordingly, there has been an increasing demand for a small, lightweight, and high energy density secondary battery that serves as a driving power supply. From such a viewpoint, a nonaqueous electrolyte secondary battery, particularly a lithium secondary battery, is expected to be a battery having a high voltage and a high energy density, and its development is urgently required.

【0003】従来、リチウム二次電池の正極活物質に
は、二酸化マンガン、五酸化バナジウム、二硫化チタン
などが用いられ、これらの正極と、リチウム金属負極お
よび有機電解液とで電池を構成する試みがなされてき
た。しかしながら、一般に負極にリチウム金属を用いた
二次電池では充電時に負極表面に析出する樹枝状の金属
リチウム(デンドライト)による内部短絡や、析出した
活性なリチウムと電解液の副反応による充放電特性の劣
化、さらには異常発熱、著しい場合には発火に至るとい
った安全面の問題が実用化の大きな障害となっていた。
更には、高率充放電特性や過放電特性においても課題が
多く満足な解決策が見い出されていなかった。
Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide, and the like have been used as a positive electrode active material of a lithium secondary battery. Attempts to construct a battery with these positive electrodes, a lithium metal negative electrode, and an organic electrolyte have been made. Has been done. However, in general, a secondary battery using lithium metal for the negative electrode has an internal short circuit due to dendritic metal lithium (dendrites) that precipitates on the surface of the negative electrode during charging, and has a poor charge-discharge characteristic due to a side reaction between the precipitated active lithium and the electrolyte. Deterioration, furthermore, abnormal heat generation, and safety problems such as ignition in severe cases have been major obstacles to practical use.
Furthermore, there are many problems in high-rate charge / discharge characteristics and overdischarge characteristics, and no satisfactory solution has been found.

【0004】これらの負極材料に代わり、充放電により
リチウムを吸蔵放出することのできる炭素材料が安全性
や高率充放電特性、充放電サイクル特性など実用電池と
して必要な諸特性を備えた負極材料として注目を集めて
いる。
Instead of these negative electrode materials, carbon materials capable of inserting and extracting lithium by charging and discharging are provided with various characteristics necessary for a practical battery, such as safety, high-rate charge / discharge characteristics, and charge / discharge cycle characteristics. As attention has been drawn.

【0005】高エネルギー密度の電池を得るために、炭
素材料を負極に用いることに伴い正極活物質としては、
より高電圧を有し、かつLiを含む化合物であるLiC
oO 2、LiNiO2、LiFeO2、LiMn24、更
にはこれらのCo、Ni、FeおよびMnの一部を他の
元素で置換した複合酸化物を用いることが提案されてい
る。
In order to obtain a battery with a high energy density,
With the use of elemental materials for the negative electrode, as a positive electrode active material,
LiC which is a compound having a higher voltage and containing Li
oO Two, LiNiOTwo, LiFeOTwo, LiMnTwoOFour, Update
Some of these Co, Ni, Fe and Mn are
It has been proposed to use complex oxides substituted with elements.
You.

【0006】[0006]

【発明が解決しようとする課題】負極に炭素材料を用い
た場合、充電時にリチウムが吸蔵され、放電時に放出さ
れることによって充放電反応が進行する。しかしなが
ら、充電電流密度が高く、充電温度が低くなるほどリチ
ウムが吸蔵される速度が追従できなくなり、負極電極上
に金属状リチウムが析出する。この金属状リチウムが電
気化学的に不活性なために放電反応が行われ難く、電池
の充放電効率が低下する傾向が著しくなる。また、この
金属状リチウムが樹枝状に析出した場合はセパレータを
貫通して正極と接触して短絡し、充放電が不可能となる
などの悪影響を与える。
When a carbon material is used for the negative electrode, lithium is occluded during charging and released during discharging, whereby the charge / discharge reaction proceeds. However, the higher the charging current density and the lower the charging temperature, the less the speed at which lithium can be occluded, and the more the metallic lithium precipitates on the negative electrode. Since the metallic lithium is electrochemically inactive, a discharge reaction is difficult to be performed, and the tendency of the charge / discharge efficiency of the battery to decrease is remarkable. When the metallic lithium precipitates in a dendritic manner, it penetrates through the separator and contacts the positive electrode to cause a short circuit, which has an adverse effect such as making charging and discharging impossible.

【0007】この課題の解決策として、正・負極板を薄
形・大面積(長尺)化して単位面積当たりに流れる電流
密度を下げ金属状リチウムを析出させない方法が取られ
ている。しかしながら、炭素粉末単独では上記のような
薄形負極板は作製できないために、炭素粉末に結着剤や
増粘剤などを加えてペースト状とし、これを銅、ニッケ
ルなどの箔状の集電体上に塗着し、乾燥してシート状負
極板を作製する。このような極板をもちいた電池は、常
温ではほぼ100%に近い充放電効率を示し、かつ、良
好なサイクル特性を示す。
As a solution to this problem, a method has been adopted in which the positive and negative electrode plates are made thinner and larger (longer) to reduce the current density flowing per unit area so that metallic lithium is not deposited. However, since carbon powder alone cannot produce such a thin negative electrode plate as described above, a binder is added to the carbon powder to form a paste, which is then formed into a foil-like current collector such as copper or nickel. It is applied on a body and dried to produce a sheet-shaped negative electrode plate. A battery using such an electrode plate exhibits a charge / discharge efficiency close to 100% at room temperature and exhibits good cycle characteristics.

【0008】しかしながら、5℃以下、特に0℃以下の
低温における充電においては負極炭素中へのリチウムの
吸蔵速度と吸蔵量(受入れ性)が常温時に比べて著しく
低下するために、特に大電流での充電時に負極電極上に
金属リチウムが析出することがわかった。一度析出した
金属リチウムはその後に充放電反応を繰り返しても容易
には消滅しないために、常温に戻して充放電を行った場
合に充放電容量が回復せず、容量劣化を引き起こす。ま
た、析出したリチウムが内部短絡などの悪影響を及ぼす
ことは前述の通りである。
However, when charged at a low temperature of 5 ° C. or less, particularly 0 ° C. or less, the rate of occlusion of lithium in the negative electrode carbon and the amount of occlusion (acceptability) are significantly lower than those at room temperature. It was found that metallic lithium was deposited on the negative electrode during charging. Since once deposited metallic lithium does not disappear easily even if the charge / discharge reaction is repeated thereafter, the charge / discharge capacity does not recover when the temperature is returned to normal temperature and the charge / discharge is performed, resulting in capacity deterioration. As described above, the deposited lithium has an adverse effect such as an internal short circuit.

【0009】このような充電時の金属リチウムの析出現
象の主要因は負極炭素材料の表面を覆う結着剤、増粘剤
が負極の円滑な充電反応を阻害することにあると考えら
れる。このような考え方にたって、本発明者らは負極炭
素材料上への結着剤、増粘剤の被覆状態に着目し、種々
の検討を行ったが、結着剤量を減らした場合は十分な極
板強度が得られず、増粘剤量を減らした場合には十分な
ペースト粘度が得られないために本電池に必要な薄形極
板は得られなかった。
[0009] It is considered that the main cause of such a precipitation phenomenon of metallic lithium during charging is that the binder and the thickener covering the surface of the negative electrode carbon material hinder the smooth charging reaction of the negative electrode. Based on this idea, the present inventors focused on the state of coating of the binder and the thickener on the negative electrode carbon material, and performed various studies.However, when the amount of the binder was reduced, it was sufficient. When the electrode strength was not obtained and the amount of the thickener was reduced, a sufficient paste viscosity was not obtained, so that a thin electrode plate required for the present battery could not be obtained.

【0010】本発明は負極炭素材料の表面を覆う結着
剤、増粘剤による上記の悪影響がなく、しかも十分な極
板強度を備えた負極を得ることにより、低温充電時にお
いても負極電極上に金属リチウムの析出を起こさず、常
温に戻した場合の容量回復率が高く、充放電サイクル特
性などの諸特性にも優れた高容量、高エネルギー密度の
非水電解液二次電池を得ることを目的としたものであ
る。
The present invention provides a negative electrode having a sufficient electrode strength without the above-mentioned adverse effects caused by a binder and a thickener covering the surface of the negative electrode carbon material, so that the negative electrode can be maintained on the negative electrode even during low-temperature charging. High-capacity, high-energy-density non-aqueous electrolyte secondary battery with a high capacity recovery rate when returned to normal temperature without causing precipitation of metallic lithium on the surface and excellent in various characteristics such as charge-discharge cycle characteristics It is intended for.

【0011】[0011]

【課題を解決するための手段】本発明はリチウム含有複
合酸化物からなる正極と、非水電解液と、リチウムの吸
蔵放出が可能な炭素材料と結着剤もしくは増粘剤を含む
負極とを備えた非水電解液二次電池の上記の課題を解決
するために、負極を150℃〜350℃の非酸化性雰囲
気中で熱処理した後、これを用いて電池構成をすること
を特徴とする。さらに好ましくは非酸化性雰囲気の酸素
分圧を267Pa以下とする。また、非酸化性雰囲気を
Ar、N2、He、1333Pa以下の減圧空気のいづ
れか、或いはこれらの気体の2種以上の混合ガスとする
ものである。さらに好ましくは負極として黒鉛質の炭素
材料を主体とし、増粘剤または結着剤としてセルロース
系材料を用いるものである。
The present invention provides a positive electrode comprising a lithium-containing composite oxide, a non-aqueous electrolyte, and a negative electrode comprising a carbon material capable of inserting and extracting lithium and a binder or a thickener. In order to solve the above-mentioned problems of the provided nonaqueous electrolyte secondary battery, the negative electrode is heat-treated in a non-oxidizing atmosphere at 150 ° C. to 350 ° C., and then a battery is configured using the heat treatment. . More preferably, the oxygen partial pressure of the non-oxidizing atmosphere is 267 Pa or less. Further, the non-oxidizing atmosphere is any of Ar, N 2 , He, and reduced-pressure air of 1333 Pa or less, or a mixed gas of two or more of these gases. More preferably, the negative electrode is mainly composed of a graphitic carbon material, and a cellulosic material is used as a thickener or a binder.

【0012】[0012]

【作用】本発明は負極炭素材、結着剤、増粘剤を適度に
含むペーストを金属集電体上に塗布し、乾燥して得た極
板を非酸化性雰囲気において熱処理を施すことにより、
炭素材料を覆っている結着剤もしくは増粘剤を熱分解し
て部分的に消滅させ、負極の充電反応を円滑に行わせて
充電時の負極へのリチウムの吸蔵速度を高めることがで
きる。さらに適度に残存した結着剤もしくは増粘剤の作
用により極板としての必要な結着力を維持した負極を得
ることを可能にするものである。この負極を用いること
により、低温充電時においても電極表面上への金属リチ
ウムの析出は見られず、再び常温に戻して充放電した場
合の放電容量が低温充電を行う以前の放電容量の100
%近くにまで回復する非水電解液二次電池を得ることが
できる。
According to the present invention, a paste containing an appropriate amount of a negative electrode carbon material, a binder, and a thickener is applied to a metal current collector, and the resulting electrode plate is subjected to a heat treatment in a non-oxidizing atmosphere. ,
The binder or the thickener covering the carbon material is thermally decomposed and partially disappeared, and the charge reaction of the negative electrode is smoothly performed, so that the rate of occlusion of lithium into the negative electrode during charging can be increased. Further, it is possible to obtain a negative electrode maintaining a necessary binding force as an electrode plate by the action of a binder or a thickener which has remained moderately. By using this negative electrode, no deposition of metallic lithium was observed on the electrode surface even at the time of low-temperature charging, and the discharge capacity when the battery was returned to normal temperature and charged / discharged was 100% of the discharge capacity before low-temperature charging.
% Can be obtained.

【0013】[0013]

【実施例】【Example】

(実施例1)以下、実施例により本発明を詳しく述べ
る。
(Example 1) Hereinafter, the present invention will be described in detail with reference to examples.

【0014】図1に本実施例で用いた円筒形電池の縦断
面図を示す。図1において、1は正極、2は正極板から
引き出した正極リード、3は負極、4は負極から引き出
した負極リードで、正極1および負極3がセパレータ5
を介して複数回渦巻状に巻回されてステンレス鋼製の電
池ケース8の中に収納されている。6および7はそれぞ
れ下部および上部絶縁板、9は封口ガスケット、10は
安全弁を設けた封口板を示す。また、正極リード2が封
口板10と接続され、正極端子11を兼ねている。
FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In FIG. 1, 1 is a positive electrode, 2 is a positive electrode lead drawn from a positive electrode plate, 3 is a negative electrode, 4 is a negative electrode lead drawn from a negative electrode, and the positive electrode 1 and the negative electrode 3 are separators 5.
, And are housed in a stainless steel battery case 8 by being spirally wound a plurality of times. Reference numerals 6 and 7 denote lower and upper insulating plates, 9 denotes a sealing gasket, and 10 denotes a sealing plate provided with a safety valve. Further, the positive electrode lead 2 is connected to the sealing plate 10 and also serves as the positive electrode terminal 11.

【0015】以下に正、負極等について詳しく説明す
る。正極の製法はLi2CO3とCo34とを混合し、9
00℃で10時間焼成して合成したLiCoO2の粉末
の100重量部に、アセチレンブラックを3重量部、フ
ッ素樹脂系結着剤を7重量部混合し、カルボキシメチル
セルロース(CMC)水溶液に懸濁させてペースト状に
した。このペーストを厚さ0.03mmのアルミニウム
箔の両面に塗着し、乾燥後圧延して厚さ0.18mm、
幅37mm、長さ240mmに切断し、正極リード2を
取り付け正極1とした。
The positive and negative electrodes will be described in detail below. The manufacturing method of the positive electrode is to mix Li 2 CO 3 and Co 3 O 4
100 parts by weight of LiCoO 2 powder synthesized by baking at 00 ° C. for 10 hours, 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder were mixed, and suspended in an aqueous solution of carboxymethyl cellulose (CMC). Into a paste. This paste is applied to both sides of an aluminum foil having a thickness of 0.03 mm, dried, and then rolled to a thickness of 0.18 mm.
It was cut into a width of 37 mm and a length of 240 mm, and a positive electrode lead 2 was attached to obtain a positive electrode 1.

【0016】負極3には平均粒径5.7μmのメソカー
ボンマイクロビーズ(MCMB)を2800℃で焼成し
た黒鉛系炭素材料の100重量部にスチレンブタジエン
ゴム(SBR)を5重量部混合し、CMC水溶液に懸濁
させてペースト状にした。このペーストを厚さ0.02
mmの銅箔の両面に塗着し、乾燥後圧延して厚さ0.2
0mm、幅39mm、長さ260mmに切断し、負極リ
ード4を取り付け負極3とした。
For the negative electrode 3, 5 parts by weight of styrene-butadiene rubber (SBR) was mixed with 100 parts by weight of a graphite-based carbon material obtained by firing mesocarbon microbeads (MCMB) having an average particle size of 5.7 μm at 2800 ° C. It was suspended in an aqueous solution to form a paste. This paste has a thickness of 0.02
mm copper foil on both sides, dried and rolled to a thickness of 0.2
The resultant was cut into 0 mm, 39 mm in width, and 260 mm in length.

【0017】この負極3を後述のような各条件で熱処理
した後、正極1および負極3を、厚さ0.025mm、
幅45mm、長さ730mmのポリエチレン製セパレー
タ5を介して渦巻き状に巻回し極板群とし、これを直径
14.0mm、高さ50mmの電池ケース8に収納し
た。これにエチレンカーボネイト(EC)、ジエチルカ
ーボネイト(DEC)、プロピオン酸メチル(MP)を
容積比で3:4:3の比率で混合した溶媒に溶質として
6フッ化燐酸リチウム(LiPF6)を1mol/lの
濃度で溶解した電解液を注液した後、封口して電池を構
成した。
After heat-treating the negative electrode 3 under the following conditions, the positive electrode 1 and the negative electrode 3 are separated by a thickness of 0.025 mm.
The electrode plate group was spirally wound through a polyethylene separator 5 having a width of 45 mm and a length of 730 mm, and stored in a battery case 8 having a diameter of 14.0 mm and a height of 50 mm. Lithium hexafluorophosphate (LiPF 6 ) was added as a solute to a solvent in which ethylene carbonate (EC), diethyl carbonate (DEC), and methyl propionate (MP) were mixed at a volume ratio of 3: 4: 3. After the electrolyte dissolved at a concentration of 1 was injected, the battery was sealed and closed.

【0018】負極の熱処理温度に関して、10Paの減
圧空気中で25℃(室温)から500℃までの各処理温
度で6時間熱処理して電池特性との関連を検討した。こ
の結果を図2に示す。
Regarding the heat treatment temperature of the negative electrode, the heat treatment was performed for 6 hours at a treatment temperature of 25 ° C. (room temperature) to 500 ° C. in a reduced pressure air of 10 Pa for 6 hours, and the relationship with the battery characteristics was examined. The result is shown in FIG.

【0019】負極の熱処理雰囲気の空気の圧力に関し
て、熱処理温度を250℃とし、雰囲気の空気圧力を1
33Paから13330Paまでの各減圧条件下で、6
時間熱処理して電池特性との関連を検討した。この結果
を図3に示す。
Regarding the air pressure in the heat treatment atmosphere for the negative electrode, the heat treatment temperature was set to 250 ° C., and the air pressure in the atmosphere was set to 1
Under each reduced pressure condition from 33 Pa to 13330 Pa, 6
After heat treatment for a long time, the relationship with battery characteristics was examined. The result is shown in FIG.

【0020】(実施例2)負極の熱処理雰囲気ガスに関
して、熱処理工程を、1気圧の窒素(N2)、アルゴン
(Ar)、ヘリウム(He)の各雰囲気下で250℃、
6時間加熱処理して熱処理雰囲気ガスと電池特性の関連
を検討した。
(Example 2) Regarding the heat treatment atmosphere gas for the negative electrode, the heat treatment step was performed at 250 ° C. under the atmosphere of nitrogen (N 2 ), argon (Ar) and helium (He) at 1 atm.
Heat treatment was performed for 6 hours to examine the relationship between the heat treatment atmosphere gas and battery characteristics.

【0021】これら実施例1および2の各電池を以下の
条件下で充放電サイクル試験を行った。充電は4.1V
の定電流定電圧充電とし、制限電流を350mAとして
2時間の充電を行った。放電は500mAの定電流放電
とし、放電終止電圧を3.0Vとした。このような条件
下で20℃で20サイクルの充放電を行ったのち、放電
状態において環境温度を0℃に設定し6時間放置後に2
0サイクルの充放電を行った。そして、放電状態で再び
環境温度を20℃に戻し6時間放置後、充放電を50サ
イクル行い、サイクル試験を終了した。
Each of the batteries of Examples 1 and 2 was subjected to a charge / discharge cycle test under the following conditions. Charging is 4.1V
, And charging was performed for 2 hours with a limiting current of 350 mA. The discharge was a constant current discharge of 500 mA, and the discharge end voltage was 3.0 V. After performing 20 cycles of charge / discharge at 20 ° C. under such conditions, the ambient temperature was set to 0 ° C. in the discharge state, and after leaving for 6 hours, 2
0 cycles of charging and discharging were performed. Then, in the discharged state, the environmental temperature was returned to 20 ° C. again, and after 6 hours, charging and discharging were performed 50 cycles, and the cycle test was completed.

【0022】各電池の評価は20℃での初期の10サイ
クル目の放電容量を初期容量とし、0℃での3サイクル
目の放電容量を0℃容量とした。そして再び20℃に戻
してからの3サイクル目の放電容量を回復容量、50サ
イクル目の容量を最終容量とした。そして、(0℃容
量)/(初期容量)×100の値を0℃維持率とし、
(回復容量)/(初期容量)×100の値を回復率とし
た。
In the evaluation of each battery, the discharge capacity at the initial 10th cycle at 20 ° C. was defined as the initial capacity, and the discharge capacity at the third cycle at 0 ° C. was defined as the 0 ° C capacity. Then, the discharge capacity at the third cycle after returning to 20 ° C. was set as the recovery capacity, and the capacity at the 50th cycle was set as the final capacity. Then, the value of (0 ° C. capacity) / (initial capacity) × 100 is defined as the 0 ° C. maintenance rate,
The value of (recovery capacity) / (initial capacity) × 100 was defined as the recovery rate.

【0023】また、サイクル試験終了後の各電池を分解
し負極板表面の観察を行った。実施例1において熱処理
温度を変化させて構成した各電池の試験結果は図2に示
すように、熱処理温度が150〜350℃の範囲では初
期容量が500mAh以上と大きく、0℃維持率も良好
であり、100%近くの回復率を示した。またこの温度
範囲で熱処理した電池は、その後の充放電サイクルでも
ほとんど劣化が見られなかった。サイクル試験後に分解
した電池の負極板には目立った変化は見られず、金属リ
チウムの析出は全く観察されなかった。
After the completion of the cycle test, each battery was disassembled and the surface of the negative electrode plate was observed. As shown in FIG. 2, the test result of each battery configured by changing the heat treatment temperature in Example 1 has a large initial capacity of 500 mAh or more when the heat treatment temperature is in the range of 150 to 350 ° C., and has a good 0 ° C. maintenance rate. Yes, and showed a recovery rate of nearly 100%. The battery heat-treated in this temperature range showed almost no deterioration even in the subsequent charge / discharge cycle. No noticeable change was observed in the negative electrode plate of the battery decomposed after the cycle test, and no deposition of lithium metal was observed.

【0024】ところが、10Paの減圧下でも、100
℃以下の温度で負極の熱処理を行った電池では、処理温
度が低いため余分な結着剤、増粘剤が負極表面を覆って
いるため、電池初期容量が若干低く、0℃維持率が低く
回復率も不十分な結果となった。試験後に分解した電池
の負極板表面にはほぼ全面に金属リチウムの析出が認め
られた。これは、負極のリチウムの受入れ性が低下した
結果、低温での充電時に負極表面に金属リチウムが析出
したことを示している。なお、20℃での充放電サイク
ルのみで、その間に低温での充放電を行わない場合は1
00サイクルを経過しても負極板表面への金属リチウム
の析出は見られないことをすでに確認している。
However, even under a reduced pressure of 10 Pa, 100
In the battery where the heat treatment of the negative electrode was performed at a temperature of not more than ℃, the initial temperature of the battery was slightly lower and the 0 ° C. retention rate was lower because the excess temperature of the processing temperature was low, so that the extra binder and thickener covered the negative electrode surface. The recovery rate was also poor. Almost all of the surface of the negative electrode plate of the battery decomposed after the test was found to have deposited metallic lithium. This indicates that metallic lithium was deposited on the surface of the negative electrode during charging at a low temperature as a result of a decrease in lithium acceptability of the negative electrode. If only charge / discharge cycles at 20 ° C. and no charge / discharge at low temperature during that cycle, 1
It has already been confirmed that no metal lithium is deposited on the surface of the negative electrode plate even after the lapse of 00 cycles.

【0025】また、10Paの減圧下で400℃以上の
温度で負極板の熱処理を行った電池では、温度が高いた
め結着剤の熱分解が起こり、合剤の結着力が不十分とな
るため集電体から合剤がはがれ落ちる現象が顕著に見ら
れた。その結果、初期容量が低く、20℃での充放電サ
イクル中にも徐々に劣化し、0℃維持率、回復率とも非
常に低くなった。また、分解観察の結果、負極合剤上に
はリチウムの析出は見られないものの合剤がはがれ落
ち、集電体がむき出しとなった負極板の表面にリチウム
の析出が見られた。
Further, in a battery in which the heat treatment of the negative electrode plate is performed at a temperature of 400 ° C. or more under a reduced pressure of 10 Pa, since the temperature is high, the binder is thermally decomposed, and the binding power of the mixture becomes insufficient. A phenomenon in which the mixture was peeled off from the current collector was remarkably observed. As a result, the initial capacity was low, gradually deteriorated even during the charge / discharge cycle at 20 ° C., and both the 0 ° C. maintenance rate and the recovery rate were extremely low. As a result of decomposition observation, although no lithium was found to be deposited on the negative electrode mixture, the mixture was peeled off, and lithium was found to be deposited on the surface of the negative electrode plate where the current collector was exposed.

【0026】実施例1において熱処理の雰囲気条件のひ
とつである空気の減圧度を変化させて作製した電池の試
験結果を図3に示す。図中、熱処理雰囲気の空気圧力が
1330Pa以下では初期容量が500mAh以上と大
きく、0℃維持率も良好であり、100%近くの回復率
を達成した。その後の充放電サイクルにおける劣化もほ
とんど見られなかった。サイクル試験後分解した電池の
負極には目立った変化は見られず、金属リチウムの析出
は全く観察されなかった。
FIG. 3 shows the test results of the battery prepared in Example 1 by changing the degree of decompression of air, which is one of the atmospheric conditions of the heat treatment. In the figure, when the air pressure of the heat treatment atmosphere was 1330 Pa or less, the initial capacity was as large as 500 mAh or more, the 0 ° C. maintenance rate was good, and a recovery rate of nearly 100% was achieved. Almost no deterioration was observed in the subsequent charge / discharge cycle. No noticeable change was observed in the negative electrode of the battery decomposed after the cycle test, and no deposition of metallic lithium was observed.

【0027】ところが、熱処理時の雰囲気圧力が300
0Pa以上では結着剤が酸化分解され、減圧空気中で4
00℃以上の高温での熱処理の場合と同様に、合剤の結
着力が不十分であるため集電体から合剤がはがれ落ちる
現象が顕著に見られた。その結果、初期容量が低く、2
0℃でのサイクル中にも徐々に劣化し、0℃維持率、回
復率とも非常に低くなった。また、分解観察の結果、負
極合剤上にはリチウムの析出は見られないものの合剤が
はがれ落ち、集電体がむき出しとなった負極板表面にリ
チウムの析出が見られた。
However, when the atmospheric pressure during the heat treatment is 300
Above 0 Pa, the binder is oxidatively decomposed and
As in the case of heat treatment at a high temperature of 00 ° C. or higher, a phenomenon in which the mixture peeled off from the current collector due to insufficient binding force of the mixture was remarkably observed. As a result, the initial capacity is low and 2
It deteriorated gradually even during the cycle at 0 ° C., and both the 0 ° C. maintenance rate and the recovery rate became very low. As a result of disassembly observation, no lithium was found to be deposited on the negative electrode mixture, but the mixture was peeled off, and lithium was found to be deposited on the surface of the negative electrode plate where the current collector was exposed.

【0028】実施例2の電池では何れの雰囲気下で負極
板を熱処理した場合も実施例1の10Paの減圧空気雰
囲気下で150〜350℃で熱処理した電池と同様に初
期容量が500mAh以上と大きく、0℃維持率も良好
であり、ほぼ100%の回復率を達成した。その後のサ
イクル劣化もほとんど見られなかった。サイクル試験後
の分解した電池の負極板には目立った変化は見られず、
金属リチウムの析出は全く観察されなかった。
In any of the batteries of Example 2, the initial capacity was as large as 500 mAh or more as in the battery of Example 1 which was heat-treated at 150 to 350 ° C. in a reduced-pressure air atmosphere of 10 Pa under any atmosphere. , 0 ° C maintenance rate was also good, and a recovery rate of almost 100% was achieved. Subsequent cycle deterioration was hardly observed. No noticeable change was seen on the negative electrode plate of the disassembled battery after the cycle test,
No deposition of metallic lithium was observed.

【0029】これらの実施例の検討結果から、本発明に
よる負極の熱処理雰囲気は非酸化性の雰囲気であればよ
く、特に1333Pa以下の減圧空気中、およびAr,
He,N2ガス中での極めて顕著な実施効果が確認され
た。また、これらの結果を総合して、雰囲気中の酸素分
圧が支配因子であることが明白なことから、空気、A
r,He,N2の内、2種以上のガスを混合した雰囲気
で熱処理する場合でも、1333Pa以下の減圧空気中
の酸素分圧に相当する267Pa以下に酸素分圧を規制
すれば同様の効果が得られることが分かった。
From the examination results of these examples, the heat treatment atmosphere for the negative electrode according to the present invention may be a non-oxidizing atmosphere.
A very remarkable implementation effect in He, N 2 gas was confirmed. Further, by summing up these results, it is clear that the oxygen partial pressure in the atmosphere is the dominant factor.
Even when heat treatment is performed in an atmosphere in which two or more gases are mixed among r, He, and N 2 , the same effect can be obtained by regulating the oxygen partial pressure to 267 Pa or less corresponding to the oxygen partial pressure in reduced-pressure air of 1333 Pa or less. Was obtained.

【0030】さらには、非酸化性雰囲気ガスとして、不
活性ガスであるN2,Ar,Heやこれらの混合気体を
用いると負極板中の余分な結着剤、増粘剤が熱分解する
以外の反応が起こらないのでより好ましいが、非酸化性
ガスであるH2,CO2を用いても本発明の効果が得られ
る。また、焼成時間については本発明の範囲内で温度が
高い程短い時間でよく、通常は5分間から1週間程度で
ある。
Further, when an inert gas such as N 2 , Ar, He or a mixed gas thereof is used as the non-oxidizing atmosphere gas, the excess binder and the thickener in the negative electrode plate are thermally decomposed. Although more preferable because reaction does not occur, even with H 2, CO 2 is a non-oxidizing gas, the effect of the present invention is obtained. Also, the firing time may be shorter as the temperature is higher within the range of the present invention, and is usually about 5 minutes to 1 week.

【0031】なお、本実施例では正極活物質にLiCo
2を用いたが、これ以外にLiNiO2、LiFe
2、LiMn24、またこれらCo、Ni、Fe、M
nの一部を他の遷移金属に置換したものなどのリチウム
含有複合酸化物であればよい。
In this embodiment, LiCo is used as the positive electrode active material.
O 2 was used, but LiNiO 2 , LiFe
O 2 , LiMn 2 O 4 , and Co, Ni, Fe, M
Any lithium-containing composite oxide such as one in which n is partially substituted with another transition metal may be used.

【0032】また、本実施例では負極炭素材に2800
℃で焼成したMCMBを用いたが負極炭素材の種類によ
って限定されるものではなく、リチウムの吸蔵放出可能
なあらゆる炭素材料において同様の効果を示すが、MC
MB以外にも、とりわけ天然黒鉛、人造黒鉛等の各種の
黒鉛系の材料を用いた場合、高電圧・高容量を有し、サ
イクル特性に優れた非水電解液二次電池を得ることがで
きる。
In this embodiment, the carbon material for the negative electrode is 2,800.
Although MCMB calcined at ℃ was used, it is not limited by the type of carbon material of the negative electrode, and shows the same effect in any carbon material capable of inserting and extracting lithium.
When various graphite-based materials such as natural graphite and artificial graphite are used in addition to MB, a non-aqueous electrolyte secondary battery having high voltage, high capacity, and excellent cycle characteristics can be obtained. .

【0033】また、非水電解液の有機溶媒としては従来
から知られているプロピレンカーボネート、エチレンカ
ーボネート、1、2−ジメトキシエタン、1、2−ジエ
トキシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、1、3−ジオキソラン、4−メチル−1、3−ジオ
キソラン、ジエチルエーテル、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル、ジエチル
カーボネート、ジメチルカーボネート、エチルメチルカ
ーボネート、蟻酸メチル、蟻酸エチル、蟻酸プロピル、
酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸
メチル、プロピオン酸エチル等を単独であるいは二種類
以上を混合して使用しても良い。
As the organic solvent of the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3 -Dioxolane, 4-methyl-1, 3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl formate, ethyl formate, propyl formate,
Methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and the like may be used alone or in combination of two or more.

【0034】溶質としても従来から知られているLiC
lO4,LiAsF6,LiBF4,LiPF6,LiB
(C654,LiCl,LiBr,CH3SO3Li,
CF3SO3Liなどを用いてもよい。 負極の増粘剤と
してはCMCのほかに各種のセルロース系の材料を使用
でき、例えばメチルセルロース、エチルセルロース、ベ
ンジルセルロース、トリチルセルロース、シアンエチル
セルロース、カルボキシエチルセルロース、アミノエキ
ルセルロース、オキシエチルセルロースなどは、非酸化
性雰囲気でおおむね350℃以下で熱分解するので、本
発明での効果が大きい。しかしながら、増粘剤はセルロ
ースに限定されるものではなくポリビニルアルコール、
ポリエチレンオキシド、ポリアクリル酸類等水溶性のポ
リマーが同様に使用できる。また、これらの増粘剤の溶
剤として、常温で粘度の高いエチレングリコール、プロ
ピレングリコール等のグリコール類や、シクロヘキサノ
ール、ピロカーボネート等の溶媒を使用してもよい。
LiC which has been conventionally known as a solute
10 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiB
(C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li,
CF 3 SO 3 Li or the like may be used. As the thickener for the negative electrode, various cellulosic materials can be used in addition to CMC.For example, methyl cellulose, ethyl cellulose, benzyl cellulose, trityl cellulose, cyanethyl cellulose, carboxyethyl cellulose, aminoethyl cellulose, oxyethyl cellulose, etc. Thermal decomposition at about 350 ° C. or less in a neutral atmosphere has a large effect in the present invention. However, the thickener is not limited to cellulose, polyvinyl alcohol,
Water-soluble polymers such as polyethylene oxide and polyacrylic acids can also be used. Further, as a solvent for these thickeners, glycols such as ethylene glycol and propylene glycol having a high viscosity at room temperature, and solvents such as cyclohexanol and pyrocarbonate may be used.

【0035】負極の結着剤としてはSBRのほかに非酸
化性雰囲気150℃以下で熱分解しない結着性材料を使
用するのが好ましく、アクリロニトリルブタジエンゴム
(NBR)、ブタジエンゴム(BR)、イソプレンゴム
(IR)等のゴム類や、ポリフッ化ビニリデン(PVD
F)、ポリ4フッ化エチレン(PTFE)、4フッ化エ
チレン6フッ化プロピレン共重合体などのフッ素系樹
脂、フェノール樹脂、アクリル樹脂等の樹脂類、ポリブ
チレンオキサイドなどのポリエーテル類、ポリエステル
類、ポリビニル類であっても同様の効果が得られる。
As the binder for the negative electrode, it is preferable to use a binding material which does not thermally decompose at a temperature of 150 ° C. or lower in addition to SBR, such as acrylonitrile butadiene rubber (NBR), butadiene rubber (BR), isoprene. Rubbers such as rubber (IR) and polyvinylidene fluoride (PVD)
F), fluororesins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene hexafluoropropylene copolymer, resins such as phenolic resin and acrylic resin, polyethers such as polybutylene oxide, and polyesters The same effect can be obtained with polyvinyls.

【0036】尚、ここでいう増粘剤は主として塗着性の
良いペースト状の負極合剤を得るために使用し、結着剤
は炭素粒子相互間および集電体との結着性を得るために
用いるが、上記に例示した増粘剤材料と結着剤材料のう
ち、増粘剤と結着剤の役割を兼ねて使用される場合があ
り、本発明の実施例で使用したCMCをはじめセルロー
ス系材料はその例である。従って本発明の説明において
増粘剤と結着剤を区別して記述はしたが、実質的には区
別出来ない場合があり、本発明にかかわる負極は炭素材
料と増粘剤と結着剤とからなるものはもとより、炭素材
料と増粘剤もしくは結着剤とを含む負極を包含するもの
である。
The thickener used here is mainly used to obtain a paste-like negative electrode mixture having good coatability, and the binder obtains a bond between carbon particles and with a current collector. However, among the above-listed thickener materials and binder materials, the CMC used in the examples of the present invention may be used in combination with the role of a thickener and a binder. First, a cellulosic material is an example. Therefore, in the description of the present invention, the thickener and the binder are distinguished from each other, but may not be substantially distinguished, and the negative electrode according to the present invention is formed from a carbon material, a thickener, and a binder. In addition, the present invention includes a negative electrode containing a carbon material and a thickener or a binder.

【0037】[0037]

【発明の効果】以上のように本発明の非水電解液二次電
池では、負極を150℃〜350℃の非酸化雰囲気で加
熱処理した後、電池構成することにより負極炭素材料の
表面を覆う余分な結着剤や増粘剤を気化せしめ、負極充
電時のリチウムのインターカレートを阻害しないため低
温充電時においても負極表面上に金属リチウムの析出が
なく、常温に戻した場合100%の回復率を有する電池
を得ることができる。
As described above, in the nonaqueous electrolyte secondary battery of the present invention, the negative electrode is heated in a non-oxidizing atmosphere at 150 ° C. to 350 ° C., and then the surface of the negative electrode carbon material is covered by forming the battery. The excess binder and thickener are vaporized and do not inhibit lithium intercalation at the time of charging the negative electrode. Therefore, no metal lithium is deposited on the surface of the negative electrode even at the time of low-temperature charging. A battery having a recovery rate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に用いる円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery used in the present embodiment.

【図2】熱処理温度と低温サイクル後回復率および電池
容量の関係を示す図
FIG. 2 is a graph showing a relationship between a heat treatment temperature, a recovery rate after a low-temperature cycle, and a battery capacity.

【図3】熱処理時圧力と低温サイクル後回復率および電
池容量の関係を示す図
FIG. 3 is a diagram showing the relationship between pressure during heat treatment, recovery rate after low-temperature cycle, and battery capacity.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード 3 負極 4 負極リード 5 セパレータ 6 絶縁板 7 絶縁板 8 電池ケース 9 封口ガスケット 10 封口板 11 正極端子 Reference Signs List 1 positive electrode 2 positive electrode lead 3 negative electrode 4 negative electrode lead 5 separator 6 insulating plate 7 insulating plate 8 battery case 9 sealing gasket 10 sealing plate 11 positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−269466(JP,A) 特開 平5−74462(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akikatsu Morita 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-269466 (JP, A) JP-A-5-205 74462 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/02-4/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム含有複合酸化物からなる正極と、
非水電解液と、リチウムの吸蔵放出可能な炭素材料と結
着剤もしくは増粘剤を含む負極とを備えた非水電解液二
次電池の製造法において、前記負極を150℃〜350
℃の非酸化性雰囲気中で熱処理した後、これを用いて電
池を構成することを特徴とする非水電解液二次電池の製
造法。
1. A positive electrode comprising a lithium-containing composite oxide,
In a method for producing a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte and a negative electrode containing a carbon material capable of inserting and extracting lithium and a binder or a thickener, the negative electrode may be used at 150 ° C. to 350 ° C.
A method for producing a non-aqueous electrolyte secondary battery, which comprises heat-treating in a non-oxidizing atmosphere at a temperature of ° C. and then using the heat treatment.
【請求項2】非酸化性雰囲気の酸素分圧が267Pa以
下であることを特徴とする請求項1記載の非水電解液二
次電池の製造法。
2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the partial pressure of oxygen in the non-oxidizing atmosphere is 267 Pa or less.
【請求項3】非酸化性雰囲気が1333Pa以下の減圧
空気、Ar、N2、Heのいずれか、或いは空気、A
r、N2、Heの内の2種以上の気体の混合ガスである
請求項2記載の非水電解液二次電池の製造法。
3. A non-oxidizing atmosphere having a reduced pressure of 1333 Pa or less, any of Ar, N 2 , He, or air, A
3. The method for producing a non-aqueous electrolyte secondary battery according to claim 2, wherein the mixed gas is a mixed gas of two or more of r, N 2 , and He.
【請求項4】負極は黒鉛質の炭素材料を主体とし、セル
ロース系の増粘剤もしくは結着剤を含むものである請求
項1記載の非水電解液二次電池の製造法。
4. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is mainly composed of a graphitic carbon material and contains a cellulosic thickener or a binder.
JP13012195A 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Fee Related JP3191614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13012195A JP3191614B2 (en) 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13012195A JP3191614B2 (en) 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08329946A JPH08329946A (en) 1996-12-13
JP3191614B2 true JP3191614B2 (en) 2001-07-23

Family

ID=15026457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13012195A Expired - Fee Related JP3191614B2 (en) 1995-05-29 1995-05-29 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3191614B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995791B2 (en) 1998-03-26 2007-10-24 Tdk株式会社 Method for producing electrode for non-aqueous electrolyte battery
JP2002117839A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for non- aqueous electrolytic solution secondary battery
JP4780935B2 (en) * 2004-06-01 2011-09-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof
JP4915101B2 (en) * 2006-02-06 2012-04-11 パナソニック株式会社 Flat type non-aqueous electrolyte secondary battery
JP2009193932A (en) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp Manufacturing method of electrode
JP5226128B2 (en) * 2009-06-30 2013-07-03 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2017021888A (en) * 2013-11-25 2017-01-26 日産自動車株式会社 Manufacturing method of negative electrode for nonaqueous electrolyte secondary battery
WO2023082248A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and fabricating method therefor, electrochemical device, and electronic device

Also Published As

Publication number Publication date
JPH08329946A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JP3172388B2 (en) Lithium secondary battery
CN112313819B (en) Method of manufacturing negative electrode for lithium secondary battery and method of manufacturing lithium secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7556881B2 (en) Lithium secondary battery
JP5046352B2 (en) Method for producing lithium ion secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2002237334A (en) Double collector type negative electrode structure for alkaline metal ion battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2001351612A (en) Non-aqueous electrolyte secondary battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP3191614B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
CN109075383B (en) Lithium ion secondary battery and battery pack
JP2003168427A (en) Nonaqueous electrolyte battery
JP4582684B2 (en) Non-aqueous secondary battery
JP4419402B2 (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JPH0922732A (en) Polymer electrolyte secondary battery
JP3082116B2 (en) Non-aqueous electrolyte secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JP2003086243A (en) Manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees