JP4780935B2 - Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof - Google Patents

Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof Download PDF

Info

Publication number
JP4780935B2
JP4780935B2 JP2004163174A JP2004163174A JP4780935B2 JP 4780935 B2 JP4780935 B2 JP 4780935B2 JP 2004163174 A JP2004163174 A JP 2004163174A JP 2004163174 A JP2004163174 A JP 2004163174A JP 4780935 B2 JP4780935 B2 JP 4780935B2
Authority
JP
Japan
Prior art keywords
electrode plate
heat treatment
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004163174A
Other languages
Japanese (ja)
Other versions
JP2005347019A (en
Inventor
耕三 渡邉
美有紀 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004163174A priority Critical patent/JP4780935B2/en
Publication of JP2005347019A publication Critical patent/JP2005347019A/en
Application granted granted Critical
Publication of JP4780935B2 publication Critical patent/JP4780935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池、特にその電極板の製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a method for manufacturing the electrode plate.

近年、携帯電話やノートパソコン等のポータブル、コードレス機器の普及により、これらの機器に電力を供給する電池の需要が高まっている。なかでも、小型、軽量で、エネルギー密度が高く、繰り返し充放電が可能な二次電池、特に非水電解質二次電池の需要が高まっている。   In recent years, with the spread of portable and cordless devices such as mobile phones and notebook computers, the demand for batteries for supplying power to these devices has increased. In particular, demand for secondary batteries, particularly nonaqueous electrolyte secondary batteries, that are small and light, have high energy density, and can be repeatedly charged and discharged is increasing.

非水電解質二次電池の電極板は、リチウムの吸蔵・放出が可能なリチウム含有複合酸化物や炭素材料などの活物質を、導電材、結着剤、および結着剤の分散媒を混練し、得られた合剤塗料を集電体上に塗着し、乾燥、圧延することにより製造される。特に、極板の製造過程において、分散媒に水を用いたとき、増粘剤を添加することによって増粘効果を発揮させ、塗料の混練分散をしやすくする方法がとられる。この増粘剤には、メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリエチレングリコール、ポリエチレンオキサイドなどの水溶性高分子材料が用いられる。   The electrode plate of the non-aqueous electrolyte secondary battery is made by kneading an active material such as a lithium-containing composite oxide or carbon material capable of occluding and releasing lithium, a conductive material, a binder, and a binder dispersion medium. The obtained mixture paint is coated on a current collector, dried and rolled. In particular, in the production process of the electrode plate, when water is used as the dispersion medium, a method of making the paint knead and disperse easily by exerting a thickening effect by adding a thickener is employed. As this thickener, water-soluble polymer materials such as methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol, polyethylene oxide and the like are used.

しかし、増粘剤を含有する合剤は、活物質の周りを増粘剤が一部覆っている状態である。このように増粘剤が活物質表面を被覆していることにより、合剤中の活物質の円滑な電気化学的反応を阻害し、電池特性に悪影響を与えるという問題があった。   However, the mixture containing the thickener is in a state in which the thickener partially covers the active material. Thus, there existed a problem that the thickener has coat | covered the active material surface, inhibits the smooth electrochemical reaction of the active material in a mixture, and has a bad influence on a battery characteristic.

この問題を解決するため、正極板の製造法では、高温での熱処理によって、活物質の周りを一部被覆している増粘剤の膜を高温酸化によって分解破壊する方法が開示されている(特許文献1参照)。また、負極の製造法においても、熱処理温度や、酸素分圧の操作により、増粘剤を分解する方法が開示されている(特許文献2、3参照)。これらの技術によって、増粘剤の被覆の形態を最適化している。
特開平7−105970号公報 特開2001−210318号公報 特開2001−250536号公報
In order to solve this problem, as a method for producing a positive electrode plate, a method is disclosed in which a film of a thickener partially covering the active material is decomposed and destroyed by high-temperature oxidation by heat treatment at high temperature ( Patent Document 1). Moreover, also in the manufacturing method of a negative electrode, the method of decomposing | disassembling a thickener by operation of heat processing temperature and oxygen partial pressure is disclosed (refer patent document 2, 3). These techniques optimize the form of thickener coating.
JP-A-7-105970 Japanese Patent Laid-Open No. 2001-210318 JP 2001-250536 A

しかしながら、電池特性の向上を目的として、特許文献1〜3に開示の技術を応用し、極板を高温で長時間熱処理し続けると、熱処理温度に耐熱、耐久性のある結着剤を用いる場合は影響は少ないが、結着剤物性の変質温度、熱分解温度以上で長時間熱処理を行うと、極板の合剤と集電体の密着力が低下し、出力特性や充放電サイクル特性の悪化が生じるおそれがある。そして、増粘剤のさらなる分解を行うことによって、特性の改善を試みようとするとき、熱処理工程に長時間を要し、より高温での熱処理を行わなければならない。このため、特性の悪化が予想される。また、上記開示の技術では、増粘剤を分解する程度によっては、熱処理時間を長時間行わなければならないため、生産性が低下する。   However, when the technology disclosed in Patent Documents 1 to 3 is applied for the purpose of improving battery characteristics and the electrode plate is continuously heat treated at a high temperature for a long time, a heat-resistant and durable binder is used at the heat treatment temperature. However, if heat treatment is performed for a long time at a temperature above the heat-decomposition temperature of the binder physical properties, the adhesion between the electrode plate mixture and the current collector decreases, and the output characteristics and charge / discharge cycle characteristics are reduced. Deterioration may occur. And when trying to improve the characteristics by further decomposing the thickener, the heat treatment process takes a long time and the heat treatment must be performed at a higher temperature. For this reason, deterioration of characteristics is expected. Moreover, in the technique of the said indication, since heat processing time must be performed for a long time depending on the grade which decomposes | disassembles a thickener, productivity falls.

そこで、本発明は、上記のような問題に鑑みて、極板の合剤と集電体の密着力を低下させずに増粘剤を効率的に除去し、出力特性および充放電サイクル特性の向上した電極板を製造する方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention efficiently removes the thickener without reducing the adhesion between the electrode plate mixture and the current collector, and the output characteristics and charge / discharge cycle characteristics are improved. It is an object to provide a method for producing an improved electrode plate.

本発明は、少なくとも電極活物質、結着剤、増粘剤、および水、必要に応じて加える導電材を含む合剤塗料を調製する工程、前記合剤塗料を集電体上に塗布し、乾燥して合剤層を形成する工程、および熱処理により極板中の水分を除去する工程を有する非水電解質二次電池用電極板の製造方法において、前記極板中の水分を除去する工程に先立って、水蒸気を導入した、水の沸点以上の高温雰囲気中において熱処理する工程を設けることを特徴とする。   The present invention is a step of preparing a mixture paint containing at least an electrode active material, a binder, a thickener, and water, and a conductive material to be added if necessary, applying the mixture paint on a current collector, In the method for producing an electrode plate for a non-aqueous electrolyte secondary battery having a step of drying to form a mixture layer and a step of removing moisture in the electrode plate by heat treatment, the step of removing moisture in the electrode plate In advance, a heat treatment step is provided in a high-temperature atmosphere with water vapor introduced or higher than the boiling point of water.

この水蒸気を導入した、高温雰囲気での熱処理により、加水分解反応を利用して増粘剤を分解変質し、後工程の水分を除去する工程において増粘剤を飛散させる温度をより低温に、しかも熱処理の時間をより短く変更することができる。このため、結着剤の熱劣化による、合剤と集電体との結着力の低下を抑制し、増粘剤の分解または除去により電池の特性を改善することができる。また、このような熱処理条件の低温化および時間短縮により、生産性を向上させる効果がある。
本発明による電極板の製造方法は、正極板および負極板のいずれか一方に適用しても電池の特性を向上させる効果がある。
The heat treatment in this high-temperature atmosphere with the introduction of water vapor decomposes and alters the thickener using a hydrolysis reaction, and lowers the temperature at which the thickener is scattered in the process of removing water in the subsequent process. The heat treatment time can be changed shorter. For this reason, it is possible to suppress a decrease in the binding force between the mixture and the current collector due to thermal deterioration of the binder, and to improve the battery characteristics by decomposing or removing the thickener. Moreover, there is an effect of improving productivity by lowering the heat treatment conditions and reducing the time.
The method for producing an electrode plate according to the present invention has an effect of improving battery characteristics even when applied to either a positive electrode plate or a negative electrode plate.

本発明によれば、水蒸気を導入した、水の沸点以上の高温雰囲気での熱処理によって、加水分解により増粘剤を分解、変質することができるため、増粘剤の除去のための熱処理工程の温度を低く、処理時間を短くできる。これにより、結着剤の熱劣化を抑制し、増粘剤の残存による特性の低下を防止することができる。さらには電池の生産性を向上することができる。   According to the present invention, since the thickener can be decomposed and denatured by hydrolysis by heat treatment in a high-temperature atmosphere with water vapor introduced or higher, the heat treatment step for removing the thickener The temperature can be lowered and the processing time can be shortened. Thereby, the heat deterioration of a binder can be suppressed and the characteristic fall by the residual of a thickener can be prevented. Furthermore, the productivity of the battery can be improved.

本発明の非水電解質二次電池用電極板の製造方法は、少なくとも電極活物質、結着剤、水溶性増粘剤、および水を混合して合剤塗料を調製する工程、前記合剤塗料を集電体上に塗布し、乾燥して水分を除去する工程、水蒸気を導入した、水の沸点以上の高温雰囲気中において熱処理する工程、および熱処理により極板中の水分を除去する工程を有する。   The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to the present invention comprises a step of preparing a mixture paint by mixing at least an electrode active material, a binder, a water-soluble thickener, and water, the mixture paint Is applied to the current collector and dried to remove moisture, steam is introduced, heat treatment is performed in a high temperature atmosphere above the boiling point of water, and moisture in the electrode plate is removed by heat treatment. .

ここで、水蒸気を導入した、水の沸点以上の高温雰囲気中において熱処理する工程においては、温度は105〜350℃が好ましく、120〜250℃がより好ましい。
前記の熱処理に続く極板の水分を除去する工程においては、増粘剤を飛散させる効果に優れているという点で温度は120〜250℃が好ましく、また時間においては、フープ状でも従来の1/5の2時間程度で十分である。
Here, in the process of heat-treating in a high temperature atmosphere having a boiling point of water or higher with water vapor introduced, the temperature is preferably 105 to 350 ° C, more preferably 120 to 250 ° C.
In the step of removing moisture from the electrode plate following the heat treatment, the temperature is preferably 120 to 250 ° C. in that it is excellent in the effect of scattering the thickening agent. / 5 of about 2 hours is sufficient.

正極活物質は、式Lixy1-y2(式中、MおよびNは、Co、Ni、Mn、Cr、Fe、Mg、Al、およびZnからなる群より選ばれる少なくとも1種の元素であり、両者は異なるものとする。0.98≦x≦1.10、0≦y≦1。)で表されるリチウム含有複合酸化物が好ましい。正極の集電体には、AlまたはAl合金が好ましい。正極に用いられる結着剤には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、およびテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体のいずれかを含む水性ディスパージョンが好ましい。 The positive electrode active material, wherein Li x M y N 1-y O 2 ( wherein, M and N, at least one Co, Ni, Mn, Cr, Fe, Mg, selected from the group consisting of Al, and Zn The lithium-containing composite oxide represented by 0.98 ≦ x ≦ 1.10 and 0 ≦ y ≦ 1) is preferable. The positive electrode current collector is preferably Al or an Al alloy. The binder used for the positive electrode is preferably an aqueous dispersion containing any of polytetrafluoroethylene, polyvinylidene fluoride, and tetrafluoroethylene-hexafluoropropylene copolymer.

負極活物質には、リチウムの吸蔵・放出が可能な炭素材、黒鉛材、合金、または金属酸化物が用いられる。負極の集電体には、Cu、Ni、またはCu−Ni合金が好ましい。結着剤は、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、メタクリル酸メチル−メタクリル酸ナトリウムゴム、メタクリル酸メチル−メタクリル酸リチウムゴム、メタクリル酸アンモニウム−メタクリル酸リチウムゴム、メタクリル酸メチル−メタクリル酸リチウム−メタクリル酸アンモニウムゴムのいずれか、または複数を組み合わせて用いることが好ましい。   As the negative electrode active material, a carbon material, graphite material, alloy, or metal oxide capable of inserting and extracting lithium is used. The current collector for the negative electrode is preferably Cu, Ni, or a Cu—Ni alloy. The binder is styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, methyl methacrylate-sodium methacrylate rubber, methyl methacrylate-lithium methacrylate rubber, ammonium methacrylate-lithium methacrylate rubber, methacrylic acid. It is preferable to use any one of methyl acid-lithium methacrylate-ammonium methacrylate rubber, or a combination thereof.

増粘剤には、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースリチウム塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリエチレングリコール、ポリエチレンオキサイドなどの水溶性高分子のいずれかまたは複数を組み合わせて用いることができる。この増粘剤の添加による増粘効果によって、合剤塗料の調製に際して活物質、導電材および結着剤の混練・分散をしやすくすることができる。   The thickener is one of water-soluble polymers such as methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium salt, carboxymethyl cellulose lithium salt, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol, and polyethylene oxide. Alternatively, a plurality of them can be used in combination. Due to the thickening effect of the addition of the thickener, the active material, the conductive material and the binder can be easily kneaded and dispersed when preparing the mixture paint.

非水電解質は、非水溶媒と溶質から構成される。溶質は、LiPF6、LiBF4などの各種リチウム化合物を用いることができる。溶媒としては、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの単独または2種以上を組み合わせて用いることが好ましい。 The nonaqueous electrolyte is composed of a nonaqueous solvent and a solute. As the solute, various lithium compounds such as LiPF 6 and LiBF 4 can be used. As the solvent, it is preferable to use ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate or the like alone or in combination of two or more.

セパレータは、非水電解質二次電池の使用温度範囲に耐えうるものであれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的であり、また好ましい。   The separator is not particularly limited as long as it can withstand the operating temperature range of the non-aqueous electrolyte secondary battery, but it is common to use a single or composite of microporous films of olefin resins such as polyethylene and polypropylene. And also preferred.

以下、本発明の実施例を説明する。
図1は、実施例で作製した円筒型リチウム二次電池の概略構成を示す縦断面図である。
正極板5と、負極板6と、両極板の間に配されたセパレータ7とを渦巻き状に捲回した極板群4が、ステンレス鋼製の電池ケース1内に収容されている。正極板は、正極活物質を含む合剤を正極集電体の両面に形成したものであり、負極板は、負極活物質を含む合剤を負極集電体の両面に形成したものである。極板群4には、電解液が保持されている。極板群4の上部および下部には、それぞれ上部絶縁板8および下部絶縁板9が配されている。負極板6は、負極リード6aを介して電池ケース1に接続されている。正極板5は、正極リード5aを介して、正極端子を備えた封口板2に接続されている。電池ケース1の開口部は、封口板2により絶縁パッキング3を介し封口されている。ここでは、円筒型リチウム二次電池を示したが、本発明の非水電解質二次電池は、円筒型に限定されるものではない。
Examples of the present invention will be described below.
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a cylindrical lithium secondary battery manufactured in an example.
An electrode plate group 4 in which a positive electrode plate 5, a negative electrode plate 6, and a separator 7 disposed between both electrode plates are wound in a spiral shape is housed in a battery case 1 made of stainless steel. The positive electrode plate is obtained by forming a mixture containing a positive electrode active material on both surfaces of the positive electrode current collector, and the negative electrode plate is obtained by forming a mixture containing a negative electrode active material on both surfaces of the negative electrode current collector. The electrode group 4 holds an electrolytic solution. An upper insulating plate 8 and a lower insulating plate 9 are disposed above and below the electrode plate group 4, respectively. The negative electrode plate 6 is connected to the battery case 1 via the negative electrode lead 6a. The positive electrode plate 5 is connected to the sealing plate 2 provided with the positive electrode terminal via the positive electrode lead 5a. The opening of the battery case 1 is sealed with a sealing plate 2 through an insulating packing 3. Here, a cylindrical lithium secondary battery is shown, but the nonaqueous electrolyte secondary battery of the present invention is not limited to a cylindrical type.

《比較例1》
〔正極板の製造方法〕
リチウム複合酸化物LiCoO2、導電剤のアセチレンブラック、結着剤のポリテトラフルオロエチレン樹脂の水性ディスパージョン、および増粘剤のカルボシキメチルセルロースナトリウム塩を固形分の重量比で100:3:3:0.5の割合で混合し、さらに水を加えて混練して合剤塗料を製造した。この合剤塗料を厚さ20μmのAl箔からなる正極集電体の両面に塗布し、空気中において110℃で乾燥して水を気化、乾燥した。その後、露点−60℃の空気中において250℃で10時間熱処理し、続いて圧延工程にて圧延して厚さ170μmの正極板を製造した。
<< Comparative Example 1 >>
[Method for producing positive electrode plate]
The lithium composite oxide LiCoO 2 , the conductive agent acetylene black, the binder polytetrafluoroethylene resin aqueous dispersion, and the thickener carboxymethylcellulose sodium salt in a weight ratio of 100: 3: 3: Mixing was performed at a ratio of 0.5, and water was further added and kneaded to produce a mixture paint. This mixture paint was applied to both surfaces of a positive electrode current collector made of an Al foil having a thickness of 20 μm, and dried in air at 110 ° C. to vaporize and dry the water. Thereafter, heat treatment was performed at 250 ° C. for 10 hours in air having a dew point of −60 ° C., followed by rolling in a rolling process to produce a positive electrode plate having a thickness of 170 μm.

〔負極板の製造方法〕
活物質の鱗片状黒鉛、結着剤のスチレン−ブタジエンゴムの水性ディスパージョン、および増粘剤のカルボシキメチルセルロースナトリウム塩を固形分の重量比で100:3:0.3の割合で混合し、さらに水を加えて混練して合剤塗料を製造した。この合剤塗料を厚さ20μmのCu箔からなる負極集電体の両面に塗布し、空気中において110℃で乾燥して水を気化、乾燥した。その後、露点−60℃の乾燥空気中において250℃で10時間熱処理し、続いて圧延工程にて圧延して厚さ170μmの負極板を製造した。
[Method for producing negative electrode plate]
The active material flaky graphite, the binder styrene-butadiene rubber aqueous dispersion, and the thickener carboxymethyl cellulose sodium salt were mixed at a weight ratio of 100: 3: 0.3 in a solid content ratio. Further, water was added and kneaded to produce a mixture paint. This mixture paint was applied to both surfaces of a negative electrode current collector made of Cu foil having a thickness of 20 μm, and dried in air at 110 ° C. to vaporize and dry water. Thereafter, heat treatment was performed at 250 ° C. for 10 hours in dry air having a dew point of −60 ° C., followed by rolling in a rolling process to produce a negative electrode plate having a thickness of 170 μm.

〔電池の製造方法〕
上記の正極板、負極板、および両極板の間に挿入したセパレータを渦巻き状に捲回して極板群を組み立てた。この極板群をステンレス鋼SUS製ケースに収納し、非水電解液を注液後、封口板により密封した。セパレータには、厚み20μmのポリエチレン製多孔質フィルムを用いた。セパレータの空隙率は、水銀ポロシメータ(ユアサアイオニクス社製)により測定したところ45%であった。
このように作製された円筒形リチウム二次電池は、高さ65mm、直径18mmで、設計容量が1800mAhである。非水電解液にはエチレンカーボネートとエチルメチルカーボネートとを体積比1:1の割合で混合した混合溶媒にLiPF6を1mol/l溶解したものを用いた。
[Battery Manufacturing Method]
The positive electrode plate, the negative electrode plate, and the separator inserted between the two electrode plates were spirally wound to assemble the electrode plate group. The electrode plate group was housed in a case made of stainless steel SUS, and after pouring a non-aqueous electrolyte, it was sealed with a sealing plate. As the separator, a polyethylene porous film having a thickness of 20 μm was used. The porosity of the separator was 45% as measured with a mercury porosimeter (manufactured by Yuasa Ionics).
The cylindrical lithium secondary battery thus manufactured has a height of 65 mm, a diameter of 18 mm, and a design capacity of 1800 mAh. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used.

《実施例1》
〔正極板の製造方法〕
比較例1と同じ合剤塗料を厚さ20μmのAl箔からなる正極集電体に塗布し、空気中において110℃で乾燥して水を気化、乾燥した。その後、60℃の飽和水蒸気を0.5L/分で連続的に導入している250℃の恒温槽内(内容積110L)で10分間熱処理を行った。その後、露点−60℃の空気中において250℃で2時間熱処理し、その後圧延して170μmの正極板を製造した。
上記の正極板を用いた他は比較例1と同様にして電池を作製した。
Example 1
[Method for producing positive electrode plate]
The same mixture paint as in Comparative Example 1 was applied to a positive electrode current collector made of an Al foil having a thickness of 20 μm, dried in air at 110 ° C. to vaporize and dry water. Thereafter, heat treatment was performed for 10 minutes in a 250 ° C. constant temperature bath (internal volume 110 L) into which saturated steam at 60 ° C. was continuously introduced at 0.5 L / min. Thereafter, heat treatment was performed at 250 ° C. for 2 hours in air having a dew point of −60 ° C., and then rolled to produce a 170 μm positive electrode plate.
A battery was fabricated in the same manner as in Comparative Example 1 except that the above positive electrode plate was used.

《実施例2》
〔負極板の製造方法〕
比較例1と同じ合剤塗料を厚さ20μmのCu箔からなる負極集電体に塗布し、空気中において110℃で乾燥して水を気化、乾燥した。その後、60℃の飽和水蒸気を0.5L/分で連続的に導入している250℃の恒温槽内(内容積110L)で10分間熱処理を行った。その後、露点−60℃の空気中において250℃で2時間熱処理し、その後圧延して170μmの負極板を製造した。
上記の負極板を用いた他は比較例1と同様にして電池を製造した。
Example 2
[Method for producing negative electrode plate]
The same mixture paint as in Comparative Example 1 was applied to a negative electrode current collector made of Cu foil having a thickness of 20 μm, dried in air at 110 ° C. to vaporize and dry water. Thereafter, heat treatment was performed for 10 minutes in a 250 ° C. constant temperature bath (internal volume 110 L) into which saturated steam at 60 ° C. was continuously introduced at 0.5 L / min. Thereafter, heat treatment was performed at 250 ° C. for 2 hours in air having a dew point of −60 ° C., and then rolled to produce a 170 μm negative electrode plate.
A battery was manufactured in the same manner as in Comparative Example 1 except that the above negative electrode plate was used.

《実施例3》
実施例1の正極板と実施例2の負極板を用いて、上と同様にして電池を製造した。
Example 3
Using the positive electrode plate of Example 1 and the negative electrode plate of Example 2, a battery was produced in the same manner as above.

《比較例2》
比較例1の正極板の製造方法および負極板の製造方法において、合剤塗料を塗布し、乾燥した後の、露点−60℃の空気中における熱処理条件を250℃で8時間に変更した他は同様にして正極板および負極板を製造した。この他は、比較例1と同様にして電池を製造した。
<< Comparative Example 2 >>
In the manufacturing method of the positive electrode plate and the manufacturing method of the negative electrode plate of Comparative Example 1, except that the heat treatment conditions in the air at a dew point of −60 ° C. after applying the mixture paint and drying were changed to 250 ° C. for 8 hours. Similarly, a positive electrode plate and a negative electrode plate were produced. A battery was manufactured in the same manner as in Comparative Example 1 except for the above.

《比較例3》
比較例1の正極板の製造方法および負極板の製造方法において、合剤塗料を塗布し、乾燥した後の、露点−60℃の空気中における熱処理条件を250℃で4時間に変更した他は同様にして正極板および負極板を製造した。この他は、比較例1と同様にして電池を製造した。
<< Comparative Example 3 >>
In the manufacturing method of the positive electrode plate and the manufacturing method of the negative electrode plate of Comparative Example 1, the heat treatment conditions in the air having a dew point of −60 ° C. after applying the mixture paint and drying were changed to 250 ° C. for 4 hours. Similarly, a positive electrode plate and a negative electrode plate were produced. A battery was manufactured in the same manner as in Comparative Example 1 except for the above.

《比較例4》
比較例1の正極板の製造方法において、合剤塗料を塗布し、乾燥した後の、露点−60℃の空気中における熱処理条件を250℃で2時間に変更した他は同様にして正極板を製造した。この正極板を用いた他は、比較例1と同様にして電池を製造した。
<< Comparative Example 4 >>
In the manufacturing method of the positive electrode plate of Comparative Example 1, the positive electrode plate was prepared in the same manner except that the heat treatment conditions in the air having a dew point of −60 ° C. were changed to 2 hours at 250 ° C. after the mixture paint was applied and dried. Manufactured. A battery was manufactured in the same manner as in Comparative Example 1 except that this positive electrode plate was used.

《比較例5》
比較例1の負極板の製造方法において、合剤塗料を塗布し、乾燥した後の、露点−60℃の空気中における熱処理条件を250℃で2時間に変更した他は同様にして負極板を製造した。この負極板を用いた他は、比較例1と同様にして電池を製造した。
<< Comparative Example 5 >>
In the method for producing the negative electrode plate of Comparative Example 1, the negative electrode plate was prepared in the same manner except that the heat treatment conditions in the air having a dew point of −60 ° C. were changed to 2 hours at 250 ° C. after the mixture paint was applied and dried. Manufactured. A battery was manufactured in the same manner as in Comparative Example 1 except that this negative electrode plate was used.

《実施例4》
実施例1の正極板の製造方法において、水蒸気を導入した雰囲気下での熱処理後の、露点−60℃の空気中における熱処理条件を150℃で10時間に変更した他は同様にして正極板を製造した。この正極板を用いた他は、実施例1と同様にして電池を製造した。
Example 4
In the manufacturing method of the positive electrode plate of Example 1, the positive electrode plate was prepared in the same manner except that the heat treatment conditions in the air having a dew point of −60 ° C. were changed to 10 hours at 150 ° C. after the heat treatment in an atmosphere into which water vapor was introduced. Manufactured. A battery was manufactured in the same manner as in Example 1 except that this positive electrode plate was used.

《実施例5》
実施例の負極板の製造方法において、水蒸気を導入した雰囲気下での熱処理後の、露点−60℃の空気中における熱処理条件を150℃で10時間に変更した他は同様にして負極板を製造した。この負極板を用いた他は、実施例と同様にして電池を製造した。
Example 5
In the method for producing the negative electrode plate of Example 2, the negative electrode plate was prepared in the same manner except that the heat treatment conditions in the air with a dew point of −60 ° C. were changed to 10 hours at 150 ° C. after the heat treatment in the atmosphere into which water vapor was introduced. Manufactured. A battery was manufactured in the same manner as in Example 2 except that this negative electrode plate was used.

《実施例6》
実施例5の負極板の製造方法によって製造した負極板を用いた他は、実施例4と同様にして電池を製造した。
Example 6
A battery was manufactured in the same manner as in Example 4 except that the negative electrode plate manufactured by the negative electrode plate manufacturing method of Example 5 was used.

《比較例6》
比較例1の正極板の製造方法において、合剤塗料を塗布し、乾燥した後の、露点−60℃の空気中における熱処理条件を150℃で10時間に変更した他は同様にして正極板を製造した。この正極板を用いた他は、比較例1と同様にして電池を製造した。
<< Comparative Example 6 >>
In the manufacturing method of the positive electrode plate of Comparative Example 1, the positive electrode plate was prepared in the same manner except that the heat treatment conditions in the air having a dew point of −60 ° C. were changed to 10 hours at 150 ° C. after applying the mixture paint and drying. Manufactured. A battery was manufactured in the same manner as in Comparative Example 1 except that this positive electrode plate was used.

《比較例7》
比較例1の負極板の製造方法において、合剤塗料を塗布し、乾燥した後の、露点−60℃の空気中における熱処理条件を150℃で10時間に変更した他は同様にして負極板を製造した。この負極板を用いた他は、比較例1と同様にして電池を製造した。
<< Comparative Example 7 >>
In the manufacturing method of the negative electrode plate of Comparative Example 1, the negative electrode plate was similarly applied except that the heat treatment conditions in the air having a dew point of −60 ° C. were changed to 10 hours at 150 ° C. after the mixture paint was applied and dried. Manufactured. A battery was manufactured in the same manner as in Comparative Example 1 except that this negative electrode plate was used.

《比較例8》
比較例1の合剤塗料を厚さ20μmのAl箔からなる正極集電体に塗布し、空気中において110℃で乾燥して完全に水を気化、乾燥した。その後、60℃の飽和水蒸気を0.5L/分で導入した空気雰囲気の95℃の恒温槽内(内容積110L)で10分間熱処理を行った。その後、露点−60℃の空気中において250℃で2時間熱処理し、その後圧延して170μmの正極板を製造した。
この正極板を用いた他は比較例1と同様にして電池を製造した。
<< Comparative Example 8 >>
The mixture paint of Comparative Example 1 was applied to a positive electrode current collector made of an Al foil having a thickness of 20 μm and dried in air at 110 ° C. to completely vaporize and dry the water. Thereafter, heat treatment was performed for 10 minutes in a 95 ° C. thermostat (internal volume 110 L) in an air atmosphere into which saturated steam at 60 ° C. was introduced at 0.5 L / min. Thereafter, heat treatment was performed at 250 ° C. for 2 hours in air having a dew point of −60 ° C., and then rolled to produce a 170 μm positive electrode plate.
A battery was manufactured in the same manner as in Comparative Example 1 except that this positive electrode plate was used.

《比較例9》
比較例1の合剤塗料を厚さ20μmのCu箔からなる負極集電体に塗布し、空気中において110℃で乾燥して完全に水を気化、乾燥した。その後、60℃の飽和水蒸気を0.5L/分で導入した空気雰囲気の95℃の恒温槽内(内容積110L)で10分間熱処理を行い、その後、露点−60℃の空気中において250℃で2時間熱処理をし、その後圧延して170μmの負極板を製造した。
この負極板を用いた他は比較例1と同様にして電池を製造した。
<< Comparative Example 9 >>
The mixture paint of Comparative Example 1 was applied to a negative electrode current collector made of Cu foil having a thickness of 20 μm, and dried in air at 110 ° C. to completely vaporize and dry the water. Then, heat treatment is performed for 10 minutes in a 95 ° C. constant temperature bath (internal volume 110 L) of air atmosphere introduced with saturated water vapor at 60 ° C. at 0.5 L / min, and then at 250 ° C. in air with a dew point of −60 ° C. Heat treatment was performed for 2 hours, and then rolled to produce a 170 μm negative electrode plate.
A battery was manufactured in the same manner as in Comparative Example 1 except that this negative electrode plate was used.

以上の実施例および比較例の電池について、以下のようにして評価した。
〔電池評価の方法〕
(i)低温放電試験
25℃に環境において、4.2Vで定電圧充電(ただし、最大電流は1A)し、0℃において、3Aの定電流で終止電圧3.0Vまで放電したときの容量を測定した。
(ii)サイクル寿命試験
25℃の環境において、1Aで4.2Vまで定電流充電した後、4.2Vで30分間定電圧充電(ただし、最大電流は1A)した後、1Aの定電流で終止電圧3.0Vまで放電するサイクルを300回繰り返して、寿命試験を行った。その後、1サイクル目の放電容量C1と300サイクル目の放電容量C300を比較し、下記の式(1)により容量維持率を算出した。
容量維持率(%)=C300/C1×100 (1)
The batteries of the above examples and comparative examples were evaluated as follows.
[Battery evaluation method]
(i) Low-temperature discharge test In an environment at 25 ° C, the battery was charged at a constant voltage of 4.2V (however, the maximum current was 1A). It was measured.
(ii) Cycle life test In a 25 ° C environment, the battery was charged at a constant current to 4.2V at 1A, then charged at a constant voltage of 4.2V for 30 minutes (the maximum current was 1A), and then terminated at a constant current of 1A. A life test was performed by repeating the cycle of discharging to a voltage of 3.0 V 300 times. Then, by comparing the first cycle discharge capacity C 1 and 300th cycle discharge capacity C 300, it was calculated and the capacity retention ratio by the following formula (1).
Capacity maintenance rate (%) = C 300 / C 1 × 100 (1)

これらの評価結果を表1に示す。   These evaluation results are shown in Table 1.

Figure 0004780935
Figure 0004780935

正極の製造工程において水蒸気を導入した雰囲気下での250℃の熱処理を10分行った実施例1の電池と比較例1の電池を比較すると、0℃における放電容量はほぼ同じである。従って、水蒸気雰囲気下において250℃で熱処理を10分間行うことにより、乾燥空気中での熱処理条件を250℃で10時間から、250℃で1時間に短縮できることがわかる。また、300サイクル後の容量維持率は、実施例1は比較例1の55%に対して85%に向上している。   When the battery of Example 1 and the battery of Comparative Example 1 which were subjected to heat treatment at 250 ° C. for 10 minutes in an atmosphere into which water vapor was introduced in the positive electrode manufacturing process were compared, the discharge capacity at 0 ° C. was almost the same. Therefore, it can be seen that the heat treatment conditions in dry air can be reduced from 10 hours at 250 ° C. to 1 hour at 250 ° C. by performing heat treatment at 250 ° C. for 10 minutes in a steam atmosphere. Further, the capacity maintenance rate after 300 cycles is improved to 85% in Example 1 compared to 55% in Comparative Example 1.

比較例1〜3の結果より、0℃の放電容量を確保するためには、乾燥空気中での熱処理を250℃で10時間行わなければならない。実施例3によると、水蒸気雰囲気下において250℃で10分間の熱処理を正負極板に行うことにより、水蒸気雰囲気下での熱処理を行わない比較例1より、乾燥空気中の熱処理時間を10時間から2時間へ短縮しても、0℃の放電特性を確保できることがわかる。250℃での熱処理用恒温槽内に水蒸気を導入したことにより、増粘剤は加水分解されて分子量が低減し、気化温度が低下する。このため、熱処理時間を1/5に短縮しても増粘剤は分解飛散され、0℃の放電特性を維持できたものと考えられる。また、本発明の電極板の製造方法により、生産性が向上する効果も検証できた。   From the results of Comparative Examples 1 to 3, in order to secure a discharge capacity of 0 ° C., heat treatment in dry air must be performed at 250 ° C. for 10 hours. According to Example 3, the heat treatment time in dry air is from 10 hours, compared with Comparative Example 1 in which heat treatment in a water vapor atmosphere is not performed by performing heat treatment at 250 ° C. for 10 minutes in a water vapor atmosphere on the positive and negative electrode plates. It can be seen that the discharge characteristic of 0 ° C. can be secured even if the time is shortened to 2 hours. By introducing water vapor into the thermostat for heat treatment at 250 ° C., the thickener is hydrolyzed to reduce the molecular weight and lower the vaporization temperature. For this reason, even if the heat treatment time is shortened to 1/5, it is considered that the thickener was decomposed and scattered, and the discharge characteristics at 0 ° C. could be maintained. Moreover, the effect which productivity improves by the manufacturing method of the electrode plate of this invention was also able to be verified.

実施例2と比較例5の結果を比較すると、負極板の製造工程において水蒸気を導入した250℃の熱処理を10分間行っても、正極板の場合と同様、0℃の放電特性を維持しながら、サイクル寿命を向上できることも確認された。また、実施例3の結果より、水蒸気を導入した熱処理を正極板および負極板の双方で行うと、正負極板のいずれか一方で行うよりさらにサイクル寿命を向上させることができる。これらの結果から、加水分解によって増粘剤のみを気化除去しやすい物性に変質させることができ、これによって短時間の熱処理で増粘剤を分解できるようになった。このため、結着剤の劣化を抑制し、サイクル寿命を向上させることができたものと考えられる。   Comparing the results of Example 2 and Comparative Example 5, when the heat treatment at 250 ° C. into which water vapor was introduced in the negative electrode plate manufacturing process was performed for 10 minutes, the discharge characteristics at 0 ° C. were maintained as in the case of the positive electrode plate. It was also confirmed that the cycle life could be improved. Further, from the results of Example 3, when the heat treatment in which water vapor is introduced is performed on both the positive electrode plate and the negative electrode plate, the cycle life can be further improved as compared with the case where either the positive electrode plate or the negative electrode plate is used. From these results, it was possible to change only the thickener to a physical property that can be easily vaporized and removed by hydrolysis, so that the thickener can be decomposed by a short heat treatment. For this reason, it is considered that the deterioration of the binder was suppressed and the cycle life could be improved.

次に、比較例1と、正極板の製造工程において水蒸気を導入した250℃の熱処理を10分間行った実施例4を比較すると、乾燥空気中での熱処理を250℃10時間から150℃10時間へ100℃温度を下げても、0℃の放電特性を維持できることが確認された。さらには、比較例1の300サイクル後の容量維持率55%から、実施例4では81%にまで特性向上できることも確認された。実施例4と比較例6、実施例5と比較例7の特性を比較した結果、10分間の水蒸気雰囲気下での熱処理を一方の電極板に行うことにより、そのような処理を行わない場合には乾燥空気中で250℃で10時間の熱処理が必要であるが、この熱処理温度を250℃から150℃に下げることができ、しかもサイクル寿命を向上できることがわかる。   Next, comparing Comparative Example 1 with Example 4 in which a heat treatment at 250 ° C. with water vapor introduced in the positive electrode plate production process was performed for 10 minutes, the heat treatment in dry air was performed at 250 ° C. for 10 hours to 150 ° C. for 10 hours. It was confirmed that the discharge characteristics of 0 ° C. can be maintained even when the temperature is lowered to 100 ° C. Furthermore, it was also confirmed that the characteristics could be improved from 55% capacity retention rate after 300 cycles of Comparative Example 1 to 81% in Example 4. As a result of comparing the characteristics of Example 4 and Comparative Example 6, and Example 5 and Comparative Example 7, when such a treatment is not performed by performing heat treatment in one steam plate for 10 minutes. It is understood that heat treatment at 250 ° C. for 10 hours is required in dry air, but the heat treatment temperature can be lowered from 250 ° C. to 150 ° C., and the cycle life can be improved.

比較例8および9では、正極板または負極板の水蒸気雰囲気下での熱処理温度が95℃であり、1気圧の水の沸点100℃より低いため、熱処理による加水分解効果がなく、0℃の放電特性を向上する効果がないことが確認された。また、比較例1に比べて、比較例8および9の電池特性が大きく悪化している。これは、水蒸気が増粘剤の加水分解に作用せず、結着剤および増粘剤に水が吸着し、その吸着された水が放電特性の悪化に作用したためと考えられる。   In Comparative Examples 8 and 9, the heat treatment temperature in the water vapor atmosphere of the positive electrode plate or the negative electrode plate was 95 ° C., and the boiling point of water at 1 atm was lower than 100 ° C. It was confirmed that there was no effect of improving the characteristics. Compared with Comparative Example 1, the battery characteristics of Comparative Examples 8 and 9 are greatly deteriorated. This is presumably because water vapor did not act on the hydrolysis of the thickener, water was adsorbed on the binder and thickener, and the adsorbed water acted on the deterioration of the discharge characteristics.

本発明による非水電解質二次電池は、寿命特性および高出力放電特性に優れており、各種のポータブル電気機器用電源等として有用である。   The nonaqueous electrolyte secondary battery according to the present invention is excellent in life characteristics and high output discharge characteristics, and is useful as a power source for various portable electric devices.

本発明の実施例にかかる電池の縦断面略図である。1 is a schematic vertical sectional view of a battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 セパレータ
8 上部絶縁板
9 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Upper insulating plate 9 Lower insulating plate

Claims (4)

少なくとも電極活物質、結着剤、水溶性増粘剤、および水を含む合剤塗料を調製する工程、前記合剤塗料を集電体上に塗布し、乾燥して合剤層を形成する工程、水蒸気を導入した、水の沸点以上の高温雰囲気中において熱処理する工程、および熱処理により水分を除去する工程を有し
前記増粘剤がメチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリエチレングリコール、およびポリエチレンオキサイドからなる群より選ばれる少なくとも1種を含む非水電解質二次電池用電極板の製造方法。
A step of preparing a mixture paint containing at least an electrode active material, a binder, a water-soluble thickener, and water; a step of applying the mixture paint on a current collector and drying to form a mixture layer; , Having a step of heat treatment in a high temperature atmosphere having a boiling point of water or higher, in which water vapor is introduced, and a step of removing moisture by the heat treatment ,
Non- aqueous electrolyte secondary battery electrode , wherein the thickener comprises at least one selected from the group consisting of methylcellulose, carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol, and polyethylene oxide. A manufacturing method of a board.
前記電極活物質が、リチウム含有複合酸化物であり、前記合剤塗料がさらに導電材を含む請求項1記載の非水電解質二次電池用電極板の製造方法。   The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode active material is a lithium-containing composite oxide, and the mixture paint further contains a conductive material. 前記電極活物質が、リチウムの吸蔵・放出が可能な炭素材料である請求項1記載の非水電解質二次電池用電極板の製造方法。   The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode active material is a carbon material capable of inserting and extracting lithium. 請求項1〜3のいずれかに記載の製造方法により製造された電極板を備えた非水電解質二次電池。 Non-aqueous electrolyte secondary battery comprising an electrode plate manufactured by the manufacturing method according to any one of claims 1-3.
JP2004163174A 2004-06-01 2004-06-01 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof Expired - Fee Related JP4780935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163174A JP4780935B2 (en) 2004-06-01 2004-06-01 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163174A JP4780935B2 (en) 2004-06-01 2004-06-01 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof

Publications (2)

Publication Number Publication Date
JP2005347019A JP2005347019A (en) 2005-12-15
JP4780935B2 true JP4780935B2 (en) 2011-09-28

Family

ID=35499207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163174A Expired - Fee Related JP4780935B2 (en) 2004-06-01 2004-06-01 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof

Country Status (1)

Country Link
JP (1) JP4780935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102277227B1 (en) * 2016-03-03 2021-07-15 주식회사 엘지에너지솔루션 Negative Electrode Mix for Secondary Battery Comprising CMC-Li Salt and Lithium Secondary Battery Comprising the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191614B2 (en) * 1995-05-29 2001-07-23 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JPH11176429A (en) * 1997-12-08 1999-07-02 Matsushita Electric Ind Co Ltd Manufacture of electrode for battery
JPH11288718A (en) * 1998-04-01 1999-10-19 Toyota Central Res & Dev Lab Inc Nonaqueous solvent secondary battery
JP2002050360A (en) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd Lithium ion secondary battery electrode binder and its usage

Also Published As

Publication number Publication date
JP2005347019A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP6037052B2 (en) Porous silicon-based particles, production method thereof, and negative electrode active material including the same
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
WO2013018486A1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
KR101027120B1 (en) The method for preparation of inorganic/organic composite membranes by radiation and inorganic/organic composite membranes thereof
KR101807348B1 (en) Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
JP6704625B2 (en) Separation membrane for lithium secondary battery and lithium secondary battery including the same
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
KR100973315B1 (en) Electrode Assembly and Secondary Battery having the Same
JP6094841B2 (en) Conductive material for secondary battery and electrode for lithium secondary battery including the same
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
KR20240018538A (en) Manufacturing method for recycled cathode active material
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP2006228544A (en) Lithium ion secondary battery
JP2007157496A (en) Electrode and secondary battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP4780935B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof
JP2007207461A (en) Nonaqueous electrolyte secondary battery
JP3877147B2 (en) Method for producing positive electrode for lithium battery
CN111653725B (en) Negative electrode for nonaqueous lithium ion secondary battery and nonaqueous lithium ion secondary battery using the same
JP2014222582A (en) Positive electrode active material and lithium ion secondary battery
KR101438696B1 (en) Electrode Assembly and Secondary Battery having the Same
JP7463418B2 (en) Anode active material, anode using said anode active material, and method for producing anode active material
JP4535761B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees