JP3309449B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3309449B2
JP3309449B2 JP30552992A JP30552992A JP3309449B2 JP 3309449 B2 JP3309449 B2 JP 3309449B2 JP 30552992 A JP30552992 A JP 30552992A JP 30552992 A JP30552992 A JP 30552992A JP 3309449 B2 JP3309449 B2 JP 3309449B2
Authority
JP
Japan
Prior art keywords
carbon
aqueous electrolyte
secondary battery
electrolyte secondary
particle layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30552992A
Other languages
Japanese (ja)
Other versions
JPH06163030A (en
Inventor
和典 小沢
博 辨野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP30552992A priority Critical patent/JP3309449B2/en
Publication of JPH06163030A publication Critical patent/JPH06163030A/en
Application granted granted Critical
Publication of JP3309449B2 publication Critical patent/JP3309449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
電池などに代わる二次電池として、例えば負極に炭素材
料のようなリチウムイオンをドープ・脱ドープすること
が可能な物質を用い、正極にリチウムコバルト複合酸化
物などのリチウム複合酸化物を用いた非水電解液二次電
池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a secondary battery which replaces a nickel-cadmium battery or the like. For example, a negative electrode is made of a material capable of doping and undoping lithium ions such as a carbon material, and a positive electrode is made of lithium. The present invention relates to a non-aqueous electrolyte secondary battery using a lithium composite oxide such as a cobalt composite oxide.

【0002】[0002]

【従来の技術】[Prior art]

【0003】近年、電子技術の進歩により、電子機器の
高性能化、小型化、ポータブル化が進み、これら電子機
器に使用される二次電池への高エネルギー密度の要求が
強まっている。
[0003] In recent years, with the advance of electronic technology, electronic devices have been improved in performance, downsized, and portable, and the demand for high energy density for secondary batteries used in these electronic devices has been increasing.

【0004】従来、これらの電子機器に使用される二次
電池としては、ニッケル・カドミウム電池や鉛電池など
があげられるが、これらの電池では放電電圧が低くエネ
ルギー密度の高い電池を得るという点では未だ不十分で
ある。
Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries are low in discharge voltage and high in energy density. Not enough.

【0005】そこで、最近、上述のニッケル・カドミウ
ム電池などに代わる二次電池として、負極に炭素材料の
ようなリチウムイオンをドープ・脱ドープすることが可
能な物質を用い、正極にリチウムコバルト複合酸化物な
どのリチウム複合酸化物を用いた非水電解液二次電池の
研究・開発が盛んに行われている。この電池は、電池電
圧が高く自己放電も少なく高エネルギー密度を有してい
る。
Therefore, recently, as a secondary battery which replaces the above-mentioned nickel-cadmium battery or the like, a material capable of doping and undoping lithium ions such as a carbon material is used for a negative electrode, and a lithium-cobalt composite oxide is used for a positive electrode. Research and development of non-aqueous electrolyte secondary batteries using lithium composite oxides such as materials have been actively conducted. This battery has a high battery voltage, a low self-discharge, and a high energy density.

【0006】ここで、リチウムイオン非水電解液二次電
池の原理について説明しよう。まず、正極はLiXO2
またはLiX2 4 (Xは、Co、Ni、Mnなどの遷
移金属の1種または複数種)からなり、他方、負極1は
カーボン(黒鉛、易黒鉛化炭素、難黒鉛化炭素など)か
らなるものであり(図5参照)、リチウムイオンが正極
と負極1の間を行き来するものである。正極と負極1中
では、リチウムがインターカレートされている。すなわ
ち、正極または負極1を形成する媒体の層間にリチウム
イオンが入ることを意味するものである。
Here, the principle of the lithium ion non-aqueous electrolyte secondary battery will be described. First, the positive electrode is LiXO 2
Or, the anode 1 is made of LiX 2 O 4 (X is one or more kinds of transition metals such as Co, Ni, and Mn), while the anode 1 is made of carbon (graphite, easily graphitized carbon, hardly graphitized carbon, etc.). (See FIG. 5), in which lithium ions move between the positive electrode and the negative electrode 1. In the positive electrode and the negative electrode 1, lithium is intercalated. That is, it means that lithium ions enter between layers of the medium forming the positive electrode or the negative electrode 1.

【0007】一方、充放電を繰り返すことにより、主と
して、負極材料の性能が劣化してくる。ただし、正極の
場合は、Liを0.6程度までの引き出しに止めておけ
ば劣化は少なくすることができる。
[0007] On the other hand, the performance of the negative electrode material mainly deteriorates due to repeated charging and discharging. However, in the case of a positive electrode, deterioration can be reduced by stopping the extraction of Li up to about 0.6.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この本
来の負極の劣化の他にLiが集電体であるCu箔または
Ni箔の表面に析出し、電気化学的に不活性なLiとな
ると、容量劣化をさらに促進する。
However, in addition to the original deterioration of the negative electrode, when Li deposits on the surface of the current collector Cu foil or Ni foil and becomes electrochemically inactive Li, the capacity is reduced. Further accelerates deterioration.

【0009】すなわち、負極の構造は、図6に示すよう
に、集電体9の上に炭素粒子をPVDFなどのバインダ
ーと混ぜて塗布してあり、この集電体9には電極リード
が接続されているものである。充電をする場合は、図7
に示すように、正極からリチウムイオンが引き出され炭
素粒子中にインターカレートするが、実際には、集電体
表面にも一部は付着する。このCuまたはNi上のLi
メタルは、微粉であり、電解液と反応し電気化学的に活
性を失うこととなる。そのため、全体に有効なLiイオ
ンが減少し、著しい容量劣化を引き起こすという問題が
あった。
That is, as shown in FIG. 6, the structure of the negative electrode is such that carbon particles are mixed with a binder such as PVDF and applied on a current collector 9, and an electrode lead is connected to the current collector 9. Is what is being done. When charging, see Fig. 7.
As shown in (1), lithium ions are extracted from the positive electrode and intercalated into the carbon particles, but actually, a part of the lithium ions is also attached to the surface of the current collector. This Li on Cu or Ni
Metal is a fine powder and reacts with an electrolytic solution to lose electrochemical activity. Therefore, there has been a problem that the effective Li ions are reduced as a whole, causing significant capacity deterioration.

【0010】本発明はこのような課題に鑑みてなされた
ものであり、充放電サイクルによる容量劣化を改善した
非水電解液二次電池を得ることを目的とする。
The present invention has been made in view of such problems, and has as its object to provide a non-aqueous electrolyte secondary battery in which capacity deterioration due to charge / discharge cycles is improved.

【0011】[0011]

【課題を解決するための手段】本発明の非水電解液二次
電池は、例えば図1に示すように、正極と、リチウムを
ドープ・脱ドープし得る炭素材料の粒子と結着剤よりな
る炭素粒子層16を集電体9上に設けてなる負極1と、
非水電解液とを有する非水電解液二次電池において、こ
の集電体9とこの炭素粒子層16の間に、平均粒径が5
μm以下の炭素微粒子と結着剤よりなる炭素微粒子層1
5を有する非水電解液二次電池である。
The non-aqueous electrolyte secondary battery of the present invention comprises, for example, as shown in FIG. 1, a positive electrode, particles of a carbon material capable of doping / dedoping lithium, and a binder. A negative electrode 1 having a carbon particle layer 16 provided on a current collector 9;
In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, the average particle size between the current collector 9 and the carbon particle layer 16 is 5
Carbon fine particle layer 1 composed of carbon fine particles of μm or less and a binder
5 is a non-aqueous electrolyte secondary battery.

【0012】また、本発明の非水電解液二次電池は、例
えば図1に示すように、炭素微粒子層15の厚さが1μ
m以上50μm以下である上述構成の非水電解液二次電
池である。
In the nonaqueous electrolyte secondary battery of the present invention, for example, as shown in FIG.
It is a non-aqueous electrolyte secondary battery of the above-described configuration having a size of m to 50 μm.

【0013】[0013]

【作用】本発明の非水電解液二次電池によれば、正極
と、リチウムをドープ・脱ドープし得る炭素材料の粒子
と結着剤よりなる炭素粒子層16を集電体9上に設けて
なる負極1と、非水電解液とを有する非水電解液二次電
池において、この集電体9とこの炭素粒子層16の間
に、平均粒径が5μm以下の炭素微粒子と結着剤よりな
る炭素微粒子層15を有する非水電解液二次電池とする
ことにより、非水電解液二次電池の充放電サイクルによ
る容量劣化を改善することができる。
According to the non-aqueous electrolyte secondary battery of the present invention, the positive electrode and the carbon particle layer 16 composed of particles of a carbon material capable of doping / dedoping lithium and a binder are provided on the current collector 9. In the non-aqueous electrolyte secondary battery having the negative electrode 1 and the non-aqueous electrolyte, between the current collector 9 and the carbon particle layer 16, carbon fine particles having an average particle size of 5 μm or less and a binder By using a non-aqueous electrolyte secondary battery having the carbon fine particle layer 15 made of the above, capacity deterioration of the non-aqueous electrolyte secondary battery due to charge and discharge cycles can be improved.

【0014】[0014]

【実施例】以下、本発明非水電解液二次電池の一実施例
について図1〜図4を参照しながら説明しよう。ここで
は、サンプルA、サンプルB、及びサンプルCの試料を
作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the nonaqueous electrolyte secondary battery of the present invention will be described below with reference to FIGS. Here, samples A, B, and C were prepared.

【0015】サンプルA まず、負極1は次のようにして作製した。出発原料とし
て石油ピッチを用い、これを焼成して粗粒状のピッチコ
ークスを得た。この粗粒状のピッチコークスを粉砕し
て、平均粒径1.5μm及び平均粒径20μmの微粒子
及び粒子を得た。これらをそれぞれ不活性ガス中100
0℃にて焼成して不純物を除去し、コークス材料の平均
粒径1.5μmの炭素微粒子及び20μmの炭素粒子を
得た。20μmの炭素粒子はさらに風力分級により、そ
の中に含まれる3μm以下の粒径の微粒子を除去した。
20μmの炭素粒子の粒径範囲は3μm〜50μmであ
り、その分布は正規分布であった。
Sample A First, the negative electrode 1 was manufactured as follows. A petroleum pitch was used as a starting material, and was calcined to obtain coarse-grained pitch coke. This coarse-grained pitch coke was pulverized to obtain fine particles and particles having an average particle size of 1.5 μm and an average particle size of 20 μm. Each of these is placed in an inert gas for 100
By baking at 0 ° C. to remove impurities, carbon fine particles having an average particle diameter of 1.5 μm and carbon particles of 20 μm of the coke material were obtained. The 20 μm carbon particles were further subjected to air classification to remove fine particles having a particle diameter of 3 μm or less contained therein.
The particle size range of the 20 μm carbon particles was 3 μm to 50 μm, and the distribution was a normal distribution.

【0016】このようにして、得た平均粒径1.5μm
の炭素微粒子に10重量%のポリフッ化ビニリデン(P
VDF)を加え混合し、さらに溶剤であるN−メチルピ
ロリドンに分散させて炭素微粒子スラリーにした。
The average particle size thus obtained is 1.5 μm
10% by weight of polyvinylidene fluoride (P
VDF) was added and mixed, and further dispersed in N-methylpyrrolidone as a solvent to obtain a carbon fine particle slurry.

【0017】また、上記のようにして得た平均粒径20
μmの炭素粒子に10重量%のPVDFを加え混合し、
さらに溶剤であるN−メチルピロリドンに分散させて炭
素粒子スラリーにした。
The average particle diameter of 20 obtained as described above is used.
10% by weight of PVDF is added to and mixed with μm carbon particles,
Further, it was dispersed in N-methylpyrrolidone as a solvent to obtain a carbon particle slurry.

【0018】次に、上記(平均粒径1.5μm)の炭素
微粒子スラリーを厚さ10μmの帯状の銅箔である負極
集電体9の両面に塗布し、溶剤を乾燥させて両面ともに
5μmの厚さの炭素粒子層1を形成した(図1参
照)。
Next, the above-mentioned slurry of carbon fine particles (average particle size: 1.5 μm) is applied to both sides of a negative electrode current collector 9, which is a strip-shaped copper foil having a thickness of 10 μm, and the solvent is dried so that both sides have a thickness of 5 μm. the thickness of the formation of the fine carbon particles layer 1 5 (see FIG. 1).

【0019】次に、上記(3μm以下の粒径のものを除
去した平均粒径20μm)の炭素粒子スラリーを上記の
炭素微粒子層15の上に重ねて塗布し、炭素粒子層16
を形成し、溶剤を乾燥後、ローラープレス機により圧縮
成形して帯状負極1を得た。
Next, the above-mentioned carbon particle slurry (average particle diameter of 20 μm from which particles having a particle diameter of 3 μm or less are removed) is applied on the above-mentioned carbon fine particle layer 15 so as to be applied thereto.
Was formed, and the solvent was dried, and then compression-molded using a roller press to obtain a belt-shaped negative electrode 1.

【0020】なお、成形後の炭素粒子層16の厚さは、
両面とも150μmであり、炭素粒子層16と集電体の
間には、約5μmの厚さの炭素微粒子層15が形成され
た。また、帯状の負極1の幅は、41.5mm長さは5
30mmとした。
The thickness of the carbon particle layer 16 after molding is as follows:
Both surfaces were 150 μm, and a carbon fine particle layer 15 having a thickness of about 5 μm was formed between the carbon particle layer 16 and the current collector. The width of the strip-shaped negative electrode 1 is 41.5 mm and the length is 5
It was 30 mm.

【0021】次に、正極を次のようにして作製した。炭
酸リチウム0.5モルと炭酸コバルト1モルとを混合し
て空気中、900℃で5時間焼成することによってLi
CoO2 を得た。このLiCoO2 を正極活物質とし、
このLiCoO2 を91重量部、導電剤としてのグラフ
ァイト6重量部と結着剤としてのポリフッ化ビニリデン
3重量部とを混合し、正極合剤とした。この正極合剤を
溶剤N−メチルピロリドンに分散させてスラリー(ペー
スト状)にした。
Next, a positive electrode was produced as follows. 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate are mixed and calcined at 900 ° C. for 5 hours in air to obtain Li.
CoO 2 was obtained. This LiCoO 2 is used as a positive electrode active material,
91 parts by weight of this LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste).

【0022】次に、この正極合剤を、厚さ20μmの帯
状のアルミニウム箔である正極集電体の両面に均一に塗
布して乾燥し、この乾燥後に圧縮成形して帯状正極を得
た。なお、成形後の合剤膜厚は両面ともに80μmで同
一であり、帯状正極の幅は39.5mm、長さは500
mmとした。
Next, this positive electrode mixture was uniformly applied on both sides of a positive electrode current collector, which is a 20-μm-thick strip-shaped aluminum foil, and dried. After drying, compression molding was performed to obtain a strip-shaped positive electrode. The film thickness of the mixture after molding was the same at 80 μm on both sides, and the width of the belt-shaped positive electrode was 39.5 mm and the length was 500
mm.

【0023】以上のように作製した帯状負極と、帯状正
極と、厚さが25μmで幅が44mmの微多孔性ポリプ
ロピレンフィルムよりなるセパレータを、負極1、セパ
レータ、正極、セパレータの順に積層して4層構造の積
層電極体とし、この積層電極体をその長さ方向に沿って
負極1を内側にして渦巻型に多数回巻回し、最外周セパ
レータ最終端部をテープで固定し、渦巻式電極体を作製
した。
The strip-shaped negative electrode prepared as described above, a strip-shaped positive electrode, and a separator made of a microporous polypropylene film having a thickness of 25 μm and a width of 44 mm were laminated in the order of negative electrode 1, separator, positive electrode, and separator in the order of 4. A laminated electrode body having a layered structure is formed. The laminated electrode body is wound in a spiral shape many times along the length direction with the negative electrode 1 inside, and the final end of the outermost peripheral separator is fixed with tape. Was prepared.

【0024】上述のように作製した渦巻式電極体を、ニ
ッケルメッキを施した鉄製の電池缶に収納した(図3参
照)。また、渦巻式電極体上下両面には絶縁板を配設
し、負極1及び正極の集電を行うためにアルミニウム製
正極リードを正極集電体から導出して電池蓋に、ニッケ
ル製負極リードを負極集電体9から導出して電池缶に溶
接した。
The spiral electrode body manufactured as described above was housed in a nickel-plated iron battery can (see FIG. 3). Insulating plates are provided on the upper and lower surfaces of the spiral electrode body, and an aluminum positive electrode lead is led out from the positive electrode current collector to collect the negative electrode 1 and the positive electrode. It was taken out from the negative electrode current collector 9 and welded to the battery can.

【0025】その後、電池缶の中にプロピレンカーボネ
ートとジエチルカーボネートとの等容量混合溶媒中にL
iPF6 を1モル/lの割合で溶解した非水電解液を
5.5g注入して、渦巻式電極体に含浸させた。
Then, L was added to a mixed solvent of propylene carbonate and diethyl carbonate in an equal volume in a battery can.
5.5 g of a non-aqueous electrolyte in which iPF 6 was dissolved at a ratio of 1 mol / l was injected, and impregnated in the spiral electrode body.

【0026】そして、アスファルトで表面を塗布した絶
縁封口ガスケットを介して電池缶をかしめることによ
り、電池蓋を固定し、電池内に気密性を保持させた。以
上のようにして、直径20mm、高さ50mmの円筒型
非水電解液二次電池を作製した。
Then, the battery can was caulked through an insulating sealing gasket whose surface was coated with asphalt, thereby fixing the battery lid and maintaining the airtightness in the battery. As described above, a cylindrical nonaqueous electrolyte secondary battery having a diameter of 20 mm and a height of 50 mm was produced.

【0027】サンプルB 負極1は次のようにして作製した。上述したサンプルA
において用いた炭素粒子(3μm以下の粒径のものを除
去した平均粒径20μm)のスラリーを厚さ10μmの
帯状の銅箔である負極集電体9の両面に塗布し、炭素粒
子層16を形成し、溶剤を乾燥後、ローラープレス機に
より圧縮成形して帯状負極1を得た。なお、成形後の炭
素粒子層16の厚さは、両面とも150μmである。そ
の他の条件は、サンプルAと同様である。
Sample B The negative electrode 1 was produced as follows. Sample A described above
The slurry of the carbon particles (average particle diameter of 20 μm obtained by removing particles having a particle diameter of 3 μm or less) used in the above was applied to both surfaces of the negative electrode current collector 9 which is a strip-shaped copper foil having a thickness of 10 μm, and the carbon particle layer 16 was formed. After forming and drying the solvent, compression molding was performed by a roller press machine to obtain a belt-shaped negative electrode 1. The thickness of the carbon particle layer 16 after molding is 150 μm on both sides. Other conditions are the same as those of the sample A.

【0028】サンプルC 負極1は次のようにして作製した。サンプルAにおいて
説明したように、ピッチコークスの焼成の段階で得られ
た平均粒径20μmの炭素粒子(ただし、3μm以下の
粒径のものを除去していない。)のスラリーを厚さ10
μmの帯状の銅箔である負極集電体9の両面に塗布し、
炭素粒子層16を形成し、溶剤を乾燥後、ローラープレ
ス機により圧縮成形して帯状負極1を得た。なお、成形
後の炭素粒子層16の厚さは、両面とも150μmであ
る。その他の条件は、サンプルAと同様である。
Sample C The negative electrode 1 was produced as follows. As described in the sample A, the slurry of carbon particles having an average particle diameter of 20 μm (though particles having a particle diameter of 3 μm or less is not removed) obtained in the step of firing the pitch coke has a thickness of 10 μm.
coated on both sides of a negative electrode current collector 9 which is a μm band-shaped copper foil,
After forming the carbon particle layer 16 and drying the solvent, it was compression-molded by a roller press to obtain a strip-shaped negative electrode 1. The thickness of the carbon particle layer 16 after molding is 150 μm on both sides. Other conditions are the same as those of the sample A.

【0029】このようにして作製された非水電解液二次
電池をそれぞれ10個づつ用い、各電池について、充電
率0.2C及び放電率0.2Cで充放電を繰り返し、電
池容量の充放電回数依存性を求めた。この結果が以下の
値であり、これを図示したのが図4である。
Using each of the ten non-aqueous electrolyte secondary batteries prepared as described above, charging and discharging were repeated at a charging rate of 0.2 C and a discharging rate of 0.2 C for each battery, and the battery capacity was charged and discharged. Frequency dependence was determined. The result is the following value, which is shown in FIG.

【0030】 充放電サイクル数 サンプルA サンプルB サンプルC 300サイクル 94% 87% 90% 600サイクル 89% 76% 84% 1200サイクル 84% 60% 77%Number of charge / discharge cycles Sample A Sample B Sample C 300 cycles 94% 87% 90% 600 cycles 89% 76% 84% 1200 cycles 84% 60% 77%

【0031】この結果からもわかるように、充放電サイ
クル数1200サイクルにおいて、サンプルAが84%
と容量劣化が最も小さく、ついでサンプルCの77%、
最も容量劣化が大きいのがサンプルBの60%である。
As can be seen from the results, when the number of charge / discharge cycles was 1200, sample A was 84%
And the smallest capacity degradation, followed by 77% of sample C,
60% of sample B has the largest capacity deterioration.

【0032】ただし、サンプルCは満充電にて外部ショ
ートさせたとき電流が流れすぎるという安全上の問題が
あった。これを抑制するためバインダーの量を多く(1
5%)すると、炭素粒子の表面がバインダーにより覆わ
れる割合が大きくなるので、初期容量が減少する(7
%)という欠点があった。
However, sample C had a safety problem that the current flowed too much when the external short circuit occurred at full charge. To suppress this, increase the amount of binder (1
5%), the rate at which the surface of the carbon particles is covered with the binder increases, so that the initial capacity decreases (7).
%).

【0033】ここで、サンプルAにおいて、充放電サイ
クルによる容量劣化を小さくすることができた要因につ
いて説明する。
Here, a description will be given of the factors that can reduce the capacity deterioration due to the charge / discharge cycle in the sample A.

【0034】すでに説明したように、従来の非水電解液
二次電池の充電をする場合は、図7に示すように、正極
からリチウムイオンが引き出され炭素粒子中にインター
カレートするが、実際には、集電体表面にも一部は付着
する。このCuまたはNi上のLiメタルは、微粉であ
り、電解液と反応し電気化学的に活性を失うこととな
る。そのため、全体に有効なLiイオンが減少し、容量
劣化を引き起こす。
As described above, when a conventional non-aqueous electrolyte secondary battery is charged, lithium ions are extracted from the positive electrode and intercalated into carbon particles as shown in FIG. , A part of the surface also adheres to the current collector surface. The Li metal on Cu or Ni is a fine powder and reacts with the electrolyte to lose electrochemical activity. For this reason, the effective Li ions are reduced as a whole, which causes capacity deterioration.

【0035】これを防止するためには、集電体表面を炭
素粒子で埋めてやれば良いことになる。このためには、
微粉の炭素粒子を用いれば良い。しかし、微粉が多いと
炭素粒子を集電体上に塗布するためにバインダーが大量
に必要になり、初期容量が減少するとともに、安全性も
悪化することとなる。
In order to prevent this, the surface of the current collector may be filled with carbon particles. To do this,
Fine carbon particles may be used. However, when the amount of fine powder is large, a large amount of a binder is required to apply the carbon particles on the current collector, and the initial capacity is reduced and the safety is also deteriorated.

【0036】そこで、集電体上に、微粉カーボンを薄く
塗布し、その後、所定の大きさの炭素粒子を所定量だけ
塗布する、いわゆる2層塗りを行うのが良い方法である
と考えられる(図2参照)。
Therefore, it is considered to be a good method to apply fine carbon powder thinly on the current collector and then apply a predetermined amount of carbon particles of a predetermined size, that is, a so-called two-layer coating. (See FIG. 2).

【0037】粒径3μm以下の炭素粒子をカットする
と、粒子の比表面積が不必要に大きくならず、すなわち
活性な炭素質材料の表面積を少なくすることができるの
で、自己放電が抑制されることになる。また、集電体表
面は、炭素粒子で埋められているのでLiメタルの微粉
が析出する心配がないことになる。上述実施例において
は、この考えを支持する結果が得られた。
When carbon particles having a particle size of 3 μm or less are cut, the specific surface area of the particles does not become unnecessarily large, that is, the surface area of the active carbonaceous material can be reduced. Become. Further, since the current collector surface is filled with carbon particles, there is no need to worry about fine powder of Li metal being precipitated. In the above-described embodiment, a result supporting this idea was obtained.

【0038】なお、上述実施例においては、負極はピッ
チコークスより作製したが、負極の材料はこれに限るも
のではない。すなわち、負極には、炭素材料を使用し、
例えば熱分解炭素類、コークス類(ピッチコークス、ニ
ードルコークス、石油コークスなど)、グラファイト
類、ガラス状炭素類、有機高分子化合物焼成体(フェノ
ール樹脂、フラン樹脂などを適当な温度で焼成し炭素化
したもの)、炭素繊維、活性炭などが使用可能である。
In the above embodiment, the negative electrode was made of pitch coke, but the material of the negative electrode is not limited to this. That is, a carbon material is used for the negative electrode,
For example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and organic polymer compound fired bodies (phenol resin, furan resin, etc.) are fired at appropriate temperatures to carbonize. ), Carbon fiber, activated carbon and the like can be used.

【0039】また、非水電解液二次電池に使用する非水
電解液としては、上述実施例に限らず、例えばリチウム
塩を電解質とし、これを有機溶剤に溶解した電解液が用
いられる。ここで有機溶媒としては、例えばプロピレン
カーボネート、エチレンカーボネート、1、2−ジメト
キシエタン、1、2−ジエトキシエタン、ジエチルカー
ボネート、γ−ブチロラクトン、テトラヒドロフラン、
1、3−ジオキソラン、4−メチル−1、3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリルなどの単独もし
くは2種類以上の混合溶媒が使用でき、電解質も従来よ
り公知のものがいずれも使用でき、LiClO4 、Li
AsF6 、LiPF4 、LiBF4 、LiB(C
6 5 4 、LiCl、LiBr、CH3 SO3 Li、
CF3 SO3 Liなどがある。
The non-aqueous electrolyte used for the non-aqueous electrolyte secondary battery is not limited to the above-described embodiment. For example, an electrolyte obtained by using a lithium salt as an electrolyte and dissolving it in an organic solvent is used. Here, as the organic solvent, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl carbonate, γ-butyrolactone, tetrahydrofuran,
A single solvent or a mixture of two or more solvents such as 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, and propionitrile can be used. Can be used, and LiClO 4 , Li
AsF 6 , LiPF 4 , LiBF 4 , LiB (C
6 H 5) 4, LiCl, LiBr, CH 3 SO 3 Li,
CF 3 SO 3 Li and the like.

【0040】また、電極は2層塗りに限らず1層塗りと
することも当然にできる。さらに、本発明は渦巻き電極
を用いる円筒型電池に限らず、コイン型などの偏平型電
池などに(電極の形状に関係なく)適用することができ
る。
The electrode is not limited to the two-layer coating, but may be a one-layer coating. Further, the present invention is not limited to a cylindrical battery using a spiral electrode, and can be applied to a flat battery such as a coin type (irrespective of the shape of the electrode).

【0041】以上のことから、本例によれば非水電解液
二次電池の充放電サイクルによる容量劣化を改善するこ
とができる。
As described above, according to this example, it is possible to improve the capacity deterioration of the nonaqueous electrolyte secondary battery due to the charge / discharge cycle.

【0042】なお、本発明は上述の実施例に限らず本発
明の要旨を逸脱することなくその他種々の構成を採り得
ることはもちろんである。
It should be noted that the present invention is not limited to the above-described embodiment, but can adopt various other configurations without departing from the gist of the present invention.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば非
水電解液二次電池の充放電サイクルによる容量劣化を改
善することができるという利益が得られる。
As described above, according to the present invention, there is obtained an advantage that capacity deterioration due to charge / discharge cycles of a nonaqueous electrolyte secondary battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明非水電解液二次電池の負極を示す断面図
である。
FIG. 1 is a sectional view showing a negative electrode of a nonaqueous electrolyte secondary battery of the present invention.

【図2】本発明非水電解液二次電池の負極の要部を示す
断面図である。
FIG. 2 is a sectional view showing a main part of a negative electrode of the non-aqueous electrolyte secondary battery of the present invention.

【図3】本発明非水電解液二次電池の一実施例を示す断
面図である。
FIG. 3 is a cross-sectional view showing one embodiment of the non-aqueous electrolyte secondary battery of the present invention.

【図4】本発明非水電解液二次電池の充放電サイクルに
よる容量劣化を示す線図である。
FIG. 4 is a diagram showing capacity deterioration due to charge / discharge cycles of the nonaqueous electrolyte secondary battery of the present invention.

【図5】従来の非水電解液二次電池の負極を示す断面図
である。
FIG. 5 is a cross-sectional view showing a negative electrode of a conventional non-aqueous electrolyte secondary battery.

【図6】従来の非水電解液二次電池の負極の要部を示す
断面図である。
FIG. 6 is a cross-sectional view showing a main part of a negative electrode of a conventional non-aqueous electrolyte secondary battery.

【図7】従来の非水電解液二次電池の負極の要部を示す
モデル図である。
FIG. 7 is a model diagram showing a main part of a negative electrode of a conventional nonaqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 負極 9 負極集電体 15 炭素微粒子層 16 炭素粒子層 Reference Signs List 1 negative electrode 9 negative electrode current collector 15 carbon fine particle layer 16 carbon particle layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/04 H01M 10/36 - 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/00-4/04 H01M 10/36-10/40

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、リチウムをドープ・脱ドープし
得る炭素材料の粒子と結着剤よりなる炭素粒子層を集電
両面に形成した負極と、非水電解液とを有する非水電
解液二次電池において、 上記集電体と上記炭素粒子層の間に、平均粒径が5μm
以下の炭素微粒子と結着剤よりなる炭素微粒子層を中間
層として負極両面に形成したことを特徴とする非水電解
液二次電池。
1. A non-aqueous electrolyte comprising a positive electrode, a negative electrode having carbon particle layers formed of carbon material particles capable of doping / dedoping lithium and a binder on both surfaces of a current collector, and a non-aqueous electrolyte. In the liquid secondary battery, the average particle diameter is 5 μm between the current collector and the carbon particle layer.
Intermediate carbon fine particle layer consisting of the following carbon fine particles and binder
A non-aqueous electrolyte secondary battery formed as a layer on both surfaces of a negative electrode .
【請求項2】 炭素微粒子層の厚さが1μm以上50μ
m以下であることを特徴とする請求項1記載の非水電解
液二次電池。
2. The carbon fine particle layer has a thickness of 1 μm or more and 50 μm or more.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein m is equal to or less than m.
【請求項3】 正極と、リチウムをドープ・脱ドープし
得る炭素材料の粒子と結着剤よりなる炭素粒子層を集電
体上に設けてなる負極と、非水電解液とを有する非水電
解液二次電池において、 以下のことを特徴とする非水電解液二次電池。 (イ)上記集電体と上記炭素粒子層の間に、炭素微粒子
と結着剤よりなる炭素微粒子層を有する。 (ロ)上記炭素微粒子の平均粒径は、上記炭素材料の粒
子の平均粒径よりも小さい。
3. A positive electrode, doped with lithium and dedoped.
Collection of carbon particle layer consisting of particles of carbon material and binder
Non-aqueous electrolyte having a negative electrode provided on the body and a non-aqueous electrolyte
In solution secondary battery, non-aqueous electrolyte secondary batteries, characterized by the following. (A) carbon fine particles between the current collector and the carbon particle layer;
And a carbon fine particle layer made of a binder. (B) The average particle size of the carbon fine particles is the average particle size of the carbon material.
Smaller than the average particle size of the particles.
【請求項4】 炭素微粒子の平均粒径は、約1.5μm
であることを特徴とする請求項3記載の非水電解液二次
電池。
4. The carbon fine particles have an average particle size of about 1.5 μm.
4. The non-aqueous electrolyte secondary according to claim 3, wherein
battery.
【請求項5】 炭素粒子層は、粒径の小さいものを除去
してある炭素材料を含むことを特徴とする請求項3また
は4記載の非水電解液二次電池。
5. The carbon particle layer removes particles having a small particle diameter.
3. A carbon material comprising:
Is a non-aqueous electrolyte secondary battery according to 4.
【請求項6】 炭素粒子層中の炭素材料は、3μm以下
の粒径のものを除去してあることを特徴とする請求項5
記載の非水電解液二次電池。
6. The carbon material in the carbon particle layer is 3 μm or less.
6. The particle having a particle size of (a) is removed.
The non-aqueous electrolyte secondary battery according to the above.
【請求項7】 炭素微粒子層の厚さは、炭素粒子層の厚
さよりも薄いことを特徴とする請求項3、4、5、また
は6記載の非水電解液二次電池。
7. The thickness of the carbon particle layer is determined by the thickness of the carbon particle layer.
Claims 3, 4, 5, characterized in that it is thinner than
Is a non-aqueous electrolyte secondary battery according to 6.
【請求項8】 炭素微粒子層の厚さが約5μmであるこ
とを特徴とする請求項7記載の非水電解液二次電池。
8. The carbon fine particle layer has a thickness of about 5 μm.
The non-aqueous electrolyte secondary battery according to claim 7, wherein
JP30552992A 1992-11-16 1992-11-16 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3309449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30552992A JP3309449B2 (en) 1992-11-16 1992-11-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30552992A JP3309449B2 (en) 1992-11-16 1992-11-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06163030A JPH06163030A (en) 1994-06-10
JP3309449B2 true JP3309449B2 (en) 2002-07-29

Family

ID=17946251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30552992A Expired - Fee Related JP3309449B2 (en) 1992-11-16 1992-11-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3309449B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508514B2 (en) * 1997-11-18 2004-03-22 松下電器産業株式会社 Organic electrolyte battery
KR100637122B1 (en) * 2000-04-11 2006-10-20 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery
JP2006324288A (en) * 2005-05-17 2006-11-30 Tdk Corp Method of manufacturing electrode for electrochemical capacitor
KR101101153B1 (en) * 2007-04-26 2012-01-05 주식회사 엘지화학 Current Collector for Secondary Battery Coated with Carbon Nano Tube and Secondary Battery Employed with the Same
EP2738854B1 (en) 2011-07-29 2017-08-30 UACJ Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
JP5783029B2 (en) * 2011-12-16 2015-09-24 トヨタ自動車株式会社 Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH06163030A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
JP3371301B2 (en) Non-aqueous electrolyte secondary battery
JP2797390B2 (en) Non-aqueous electrolyte secondary battery
JP3077218B2 (en) Non-aqueous electrolyte secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
JPH11260415A (en) Nonaqueous electrolyte secondary battery
JPH08171917A (en) Cell
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP3143951B2 (en) Non-aqueous electrolyte secondary battery
JP2701347B2 (en) Non-aqueous electrolyte secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JPH1074502A (en) Nonaqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JPH08329946A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP3153922B2 (en) Non-aqueous electrolyte secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JPH08180878A (en) Lithium secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP2506572Y2 (en) Lithium ion secondary battery
JP3057499B2 (en) Non-aqueous electrolyte secondary battery
JP3104264B2 (en) Coin type non-aqueous electrolyte secondary battery
JP2932516B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees