JP2932516B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2932516B2
JP2932516B2 JP1228432A JP22843289A JP2932516B2 JP 2932516 B2 JP2932516 B2 JP 2932516B2 JP 1228432 A JP1228432 A JP 1228432A JP 22843289 A JP22843289 A JP 22843289A JP 2932516 B2 JP2932516 B2 JP 2932516B2
Authority
JP
Japan
Prior art keywords
electrode
current collector
battery
width
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1228432A
Other languages
Japanese (ja)
Other versions
JPH0393164A (en
Inventor
喜代志 片山
俊光 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1228432A priority Critical patent/JP2932516B2/en
Publication of JPH0393164A publication Critical patent/JPH0393164A/en
Application granted granted Critical
Publication of JP2932516B2 publication Critical patent/JP2932516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、正極及び負極の帯状電極をセパレータを介
して渦巻状に巻いた電極構造を有する円筒型非水電解液
二次電池の構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to a structure of a cylindrical nonaqueous electrolyte secondary battery having an electrode structure in which a positive electrode and a negative electrode are spirally wound via a separator. Things.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラやヘッドフォンステレオ等の電子
機器の高性能化、小型化には目ざましいものがあり、こ
れらの電子機器の電源となる二次電池の重負荷特性の改
善や高容量化への要求も強まってきている。二次電池と
しては、鉛二次電池やニッケル−カドミウム電池が従来
から用いられている。更には金属リチウムやリチウム合
金あるいはリチウムイオンをドープ、脱ドープできる物
質を負極活物質材料として用いた非水電解液二次電池
は、高エネルギー密度が得られるものとしてその開発が
活発に行われている。この中でも特に、正極及び負極の
帯状電極をセパレータを介して渦巻状に巻いて電極面積
を大きくした円筒型渦巻式非水電解液二次電池(以下、
渦巻式非水電解液二次電池と記す)は急速充放電ができ
るとして最近着目されている。しかしながら、この電池
は、帯状電極の幅方向の両端部の電極材料がセパレータ
を突き破ってしまうことに起因する内部短絡を起こし易
いという問題点がある。この種の電極は、多くの場合活
物質あるいは電極合剤を溶剤に分散させたスラリーを、
帯状の集電体の全面に塗布して乾燥し、その後にローラ
ープレス機により圧縮成形して、これを所定の幅にカッ
トして作製されるが、この方法で得られた電極は、その
カットされた両端部が切り立っており、これがセパレー
タを突き破り内部短絡を引き起こし易い。
In recent years, there has been a remarkable increase in the performance and miniaturization of electronic devices such as video cameras and headphone stereos, and there is also a demand for improved heavy load characteristics and higher capacity of the secondary batteries that power these electronic devices. It is getting stronger. As a secondary battery, a lead secondary battery and a nickel-cadmium battery have been conventionally used. In addition, non-aqueous electrolyte secondary batteries using materials capable of doping and undoping lithium metal, lithium alloys, or lithium ions as negative electrode active material materials are being actively developed as being capable of obtaining high energy density. I have. Among them, in particular, a cylindrical spiral non-aqueous electrolyte secondary battery (hereinafter, referred to as a spiral electrode) in which a positive electrode electrode and a negative electrode electrode are spirally wound via a separator to increase the electrode area.
Spiral type non-aqueous electrolyte secondary batteries) have recently attracted attention as being capable of rapid charging and discharging. However, this battery has a problem in that an internal short circuit is likely to occur due to the fact that the electrode material at both ends in the width direction of the strip electrode breaks through the separator. This type of electrode often uses a slurry in which an active material or an electrode mixture is dispersed in a solvent,
It is applied to the entire surface of the belt-shaped current collector, dried, and then compression-molded by a roller press, and cut into a predetermined width. The electrode obtained by this method is manufactured by cutting the electrode. The cut ends are steep, which easily breaks through the separator and easily causes an internal short circuit.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の課題は、帯状の集電体に活物質あるいは電極
合剤を被覆してなる電極の幅方向の両端部の構造を改良
し、上述した問題の生じない渦巻式非水電解液二次電池
を提供することである。
An object of the present invention is to improve the structure of both ends in the width direction of an electrode obtained by coating a belt-shaped current collector with an active material or an electrode mixture, and to provide a spiral nonaqueous electrolyte secondary solution which does not cause the above-described problems. It is to provide a battery.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の非水電解液二次電池は、正極及び負極の帯状
電極をセパレータを介して渦巻状に巻いた電極構造を有
する渦巻式非水電解液二次電池であって、前記帯状電極
のうち、少なくとも一方の電極は、予め所定の幅に切断
した帯状集電体と、該帯状集電体を幅方向の両端部を残
して被覆する活物質あるいは電極合剤の層からなること
を特徴とする。ここで、集電体の幅方向の両端部におい
て、活物質あるいは電極合剤の層によって被覆されてい
ない部分の幅は、前記帯状集電体の幅の0.05倍以下であ
ることが好ましい。
The non-aqueous electrolyte secondary battery of the present invention is a spiral non-aqueous electrolyte secondary battery having an electrode structure in which a positive electrode and a negative electrode are spirally wound via a separator, and The at least one electrode is formed of a band-shaped current collector cut to a predetermined width in advance, and a layer of an active material or an electrode mixture that covers the band-shaped current collector except for both ends in the width direction. I do. Here, at both ends in the width direction of the current collector, the width of a portion that is not covered with the layer of the active material or the electrode mixture is preferably 0.05 times or less the width of the strip-shaped current collector.

本発明は、帯状の集電体に活物質あるいは電極合剤の
層を被覆してなる電極を用いた電池に適用できる。例え
ば、有機高分子焼成体やピッチコークスを粉砕し、これ
を集電体に被覆した負極やリチウムマンガン酸化物やリ
チウムコバルト酸化物を集電体に被覆した正極等であ
る。また、本発明に係わる電解液としては、例えばリチ
ウム塩を電解質とし、これを有機溶剤(非水溶媒)に溶
解した非水電解液が使用される。ここで有機溶剤として
は、特に限定されるものではないが、例えば、プロピレ
ンカーボネート、エチレンカーボネート、1.2−ジメト
キシエタン、1.2−ジエトキシエタン、γ−ブチロラク
トン、テトラヒドロフラン、1.3−ジオキソラン、4−
メチル−1.3−ジオキソラン、ジエチルエーテル、スル
ホラン、メチルスルホラン、アセトニトリル、プロピオ
ニトリル等の単独もしくは2種以上の混合溶剤が使用で
きる。電解液も従来より公知のものがいずれも使用可能
であり、例えば、LiClO4、LiAsF6、LiPF6、LiBF4、LiB
(C6H5、LiCl、LiBr、CH3SO3Li、CF3SO3Li等があ
る。
INDUSTRIAL APPLICABILITY The present invention can be applied to a battery using an electrode in which a band-shaped current collector is coated with a layer of an active material or an electrode mixture. For example, a negative electrode in which a calcined organic polymer or pitch coke is pulverized and coated on a current collector, or a positive electrode in which a current collector is coated with lithium manganese oxide or lithium cobalt oxide is used. As the electrolyte according to the present invention, for example, a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in an organic solvent (non-aqueous solvent) is used. Here, examples of the organic solvent include, but are not particularly limited to, propylene carbonate, ethylene carbonate, 1.2-dimethoxyethane, 1.2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1.3-dioxolan, 4-
A single solvent such as methyl-1.3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, or a mixture of two or more thereof can be used. As the electrolyte, any of those conventionally known can be used, for example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB
(C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like.

〔作用〕[Action]

集電体の幅方向の両端部を残して活物質あるいは電極
合剤を被覆することによって内部短絡を防止できる。
An internal short circuit can be prevented by coating the active material or the electrode mixture while leaving both ends in the width direction of the current collector.

〔実施例〕〔Example〕

第3図は、本発明に係わる渦巻式非水電解液二次電池
の構造を模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing the structure of the spiral nonaqueous electrolyte secondary battery according to the present invention.

以下、実施例及び比較例を第3図を参照しながら説明
する。
Hereinafter, examples and comparative examples will be described with reference to FIG.

実施例1 正極活物質としてLiCoO2、負極活物質としてニードル
コークスを用いて電池を作製した。粉砕したニードルコ
ークス90重量部及び結着剤としてのポリフッ化ビニリデ
ン10重量部を混合し、負極合剤とした。そして、この負
極合剤を溶剤N−メチルピロリドンに分散させてスラリ
ー(ペースト状)にした。次に34.5mmの幅にカットされ
た厚さ10μmの銅箔の帯状の負極集電体の両面に、その
両端からそれぞれ0.5mm残してこの負極合剤スラリーを
塗布し、乾燥した。
Example 1 A battery was manufactured using LiCoO 2 as a positive electrode active material and needle coke as a negative electrode active material. 90 parts by weight of the crushed needle coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture. Then, this negative electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste). Next, the negative electrode mixture slurry was applied to both sides of a 10 μm thick copper foil strip-shaped negative electrode current collector cut to a width of 34.5 mm, leaving 0.5 mm from both ends thereof, and dried.

乾燥後、ローラープレス機により圧縮成形して、これ
を帯状の負極2とした。この帯状の負極2において、負
極合剤は負極集電体の両面にほぼ同じ膜厚で形成され、
これらの膜厚の和は約175μmであった。
After drying, it was compression-molded by a roller press machine to obtain a belt-shaped negative electrode 2. In the strip-shaped negative electrode 2, the negative electrode mixture is formed on both surfaces of the negative electrode current collector with substantially the same thickness,
The sum of these film thicknesses was about 175 μm.

次に正極は次のようにして作製した。炭酸リチウム1
モルと炭酸コバルト1モルを混合し、900℃の空気中で
5時間焼成して紛状のLiCoO2を得て、これを正極活物質
として用い、このLiCoO291重量に導電材としてうグラフ
ァイト6重量部、結着剤としてポリフッ化ビニリデン3
重量部を加え混合し正極合剤とした。そしてこの正極合
剤を溶剤N−メチルピロリドンに分散させてスラリー
(ペースト状)にした。次に33.5mmの幅にカットされた
厚さ20μmの帯状のアルミニウム箔の正極集電体の両面
に、その両端部からそれぞれ0.5mm残してこの正極合剤
スラリーを塗布し、乾燥した。乾燥後にローラープレス
機により圧縮成形して、これを帯状の正極1とした。こ
の帯状の正極1において、正極合剤は正極集電体の両面
にほぼ同じ膜厚で形成され、これらの膜厚の和は約175
μmであった。そして、帯状の正極1、帯状の負極2及
び厚さ25μmの微孔性ポリプロピレンフィルムからなる
セパレータ3を、負極2、セパレータ3、正極1、セパ
レータ3の順序で積層してから、この積層体を渦巻状に
多数回巻回すことによって巻回体を作った。以上のよう
にして作った巻回体を、第3図に示すように、ニッケル
メッキを施した内径13.3mmの鉄製電池缶5に収納した。
そして正極1の集電を行うためにアルミニウム製の正極
リードの一端を正極1に取付け、その他端を防爆弁8に
溶接した。また負極2の集電を行うために、ニッケル製
の負極リードの一端を負極2に取付け、その他端を電池
缶5に溶接した。この電池缶5の中に、六フッ化リン酸
リチウムを1モル/溶解した炭酸プロピレン1.2−ジ
メトキシエタンとを混合して得た電解液を注入した。次
に巻回体の上下面に対向するように、電池缶5内に絶縁
板4を配設した。最後にこの電池缶5と電池蓋7を絶縁
封口ガスケット6を介してかしめて、電池蓋7を封口し
た。以上のようにして直径13.8mm高さ42mmの渦巻式非水
電解液二次電池を作製した。
Next, the positive electrode was produced as follows. Lithium carbonate 1
Mixing molar and cobalt 1 mole carbonate, to give a 5 hours firing LiCoO 2 of powdery and in 900 ° C. in air, used as a positive electrode active material, earthenware pots by this LiCoO 2 91 weight conductive material graphite 6 Parts by weight, polyvinylidene fluoride 3 as binder
Parts by weight were added and mixed to obtain a positive electrode mixture. Then, this positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to obtain a slurry (paste). Next, this positive electrode mixture slurry was applied to both surfaces of a 20 μm-thick strip-shaped aluminum foil positive electrode current collector cut to a width of 33.5 mm, leaving 0.5 mm from both ends thereof, and dried. After drying, it was compression-molded by a roller press machine to obtain a belt-shaped positive electrode 1. In this strip-shaped positive electrode 1, the positive electrode mixture is formed on both surfaces of the positive electrode current collector with substantially the same film thickness, and the sum of these film thicknesses is about 175.
μm. Then, a strip-shaped positive electrode 1, a strip-shaped negative electrode 2, and a separator 3 made of a microporous polypropylene film having a thickness of 25 μm are laminated in the order of the negative electrode 2, the separator 3, the positive electrode 1, and the separator 3. A wound body was made by spirally winding a large number of times. The wound body made as described above was housed in a nickel-plated iron battery can 5 having an inner diameter of 13.3 mm, as shown in FIG.
Then, one end of an aluminum positive electrode lead was attached to the positive electrode 1 and the other end was welded to the explosion-proof valve 8 to collect the current of the positive electrode 1. To collect the current of the negative electrode 2, one end of a nickel negative electrode lead was attached to the negative electrode 2, and the other end was welded to the battery can 5. Into this battery can 5, an electrolyte obtained by mixing propylene carbonate 1.2-dimethoxyethane in which lithium hexafluorophosphate 1 mol / dissolved was injected. Next, the insulating plate 4 was disposed in the battery can 5 so as to face the upper and lower surfaces of the wound body. Finally, the battery can 5 and the battery lid 7 were caulked via an insulating sealing gasket 6 to seal the battery lid 7. As described above, a spiral nonaqueous electrolyte secondary battery having a diameter of 13.8 mm and a height of 42 mm was produced.

実施例2 負極及び正極を作製するとき、合剤スラリーを集電体
の両端からそれぞれ1mm残して集電体の両面に塗布し、
それ以外は実施例1と同様にして電池を作製した。
Example 2 When preparing a negative electrode and a positive electrode, the mixture slurry was applied to both surfaces of the current collector except for 1 mm from both ends of the current collector,
Otherwise, the procedure of Example 1 was followed to fabricate a battery.

実施例3 負極及び正極を作製するとき、合剤スラリーを集電体
の両端からそれぞれ1.8mm残して集電体の両面に塗布
し、それ以外は実施例1と同様にして電池を作製した。
Example 3 When preparing a negative electrode and a positive electrode, the mixture slurry was applied to both surfaces of the current collector except for 1.8 mm from both ends of the current collector, and a battery was prepared in the same manner as in Example 1 except for the above.

比較例1 負極は、集電体の全面に負極合剤スラリーを塗布・乾
燥し、これをローラープレス機により圧縮成形した後、
34.5mmの幅にカットして作った。正極は集電体の全面に
正極合剤スラリーを塗布・乾燥し、これをローラープレ
ス機により圧縮成形した後、33.5mmの幅にカットして作
った。そして、それ以外は実施例1と同様にして電池を
作製した。
Comparative Example 1 The negative electrode was formed by applying and drying a negative electrode mixture slurry on the entire surface of the current collector, and compression-molding the slurry by a roller press.
Cut to 34.5mm width. The positive electrode was prepared by applying and drying a positive electrode mixture slurry on the entire surface of the current collector, compression-molding the slurry by a roller press, and then cutting the slurry to a width of 33.5 mm. Otherwise, a battery was fabricated in the same manner as in Example 1.

比較例2 負極は34.5mmの幅にカットされた集電体の全面に負極
合剤スラリーを塗布・乾燥し、これをローラープレス機
により圧縮成形して作った。正極は、33.5mmの幅にカッ
トされた集電体の全面に正極合剤スラリーを塗布・乾燥
し、これをローラープレス機により圧縮成形して作っ
た。そして、それ以外は実施例1と同様にして電池を作
製した。
Comparative Example 2 A negative electrode was prepared by applying and drying a negative electrode mixture slurry on the entire surface of a current collector cut to a width of 34.5 mm, and compression-molding the slurry with a roller press. The positive electrode was formed by applying and drying a positive electrode mixture slurry on the entire surface of a current collector cut to a width of 33.5 mm, and compressing and molding the slurry with a roller press. Otherwise, a battery was fabricated in the same manner as in Example 1.

実施例及び比較例で得た正極及び負極の帯状電極の断
面を顕微鏡で観察したところ次の結果を得た。第1図
は、実施例1、2、3で得た電極の断面を模式的に示し
た図である。第2図Aは、比較例1で得た電極の断面を
模式的に示した図、また第2図Bは比較例2で得た電極
の断面を模式的に示した図である。以上の結果で示され
るように、実施例で得た電極は、予め所定の幅に切断さ
れた帯状集電体上に合剤スラリーを塗布するので、その
幅方向の端面は丸みを帯、カドがとれている。一方、比
較例1で得た電極は、帯状集電体に合剤スラリーを塗布
し、乾燥させた後、所定の電極幅に裁断するため幅方向
の端面が切り立っている。また、比較例2で得た電極は
幅方向の端面のカドが取れてはいるものの、第2図Bで
示すように電極両端部には集電体が存在しない。
When the cross sections of the positive and negative electrode strip electrodes obtained in the examples and comparative examples were observed with a microscope, the following results were obtained. FIG. 1 is a diagram schematically showing a cross section of an electrode obtained in Examples 1, 2, and 3. FIG. 2A is a diagram schematically illustrating a cross section of the electrode obtained in Comparative Example 1, and FIG. 2B is a diagram schematically illustrating a cross section of the electrode obtained in Comparative Example 2. As shown by the above results, the electrode obtained in the example is applied with the mixture slurry on the band-shaped current collector cut into a predetermined width in advance, so that the end face in the width direction has a rounded band, Have been taken. On the other hand, in the electrode obtained in Comparative Example 1, the mixture slurry was applied to the belt-shaped current collector, dried, and then cut into a predetermined electrode width. In addition, although the electrode obtained in Comparative Example 2 has a corner at the end face in the width direction, as shown in FIG. 2B, there is no current collector at both ends of the electrode.

前記実施例1、2、3及び比較例1、2の電池を各々
50個作製し、これらについてそれぞれ190mAの電流で上
限電圧4.1Vとして3時間充電し、続いて160Ωの定抵抗
で、放電終止電圧2.9Vまで放電させる充放電サイクルを
30サイクル行い、再び前述の条件で充電した後常温で10
日間放置し、3.9V以下に開路電圧が低下した電池を内部
短絡品としてその発生率を調べた。また、これらの電池
のうち、内部短絡していないものについて前述の条件で
放電させその容量も調べた。その結果を第1表に示す。
The batteries of Examples 1, 2, 3 and Comparative Examples 1, 2 were respectively
A 50 charge / discharge cycle was performed in which each of them was charged with a current of 190 mA at an upper limit voltage of 4.1 V for 3 hours, and then discharged with a constant resistance of 160 Ω to a discharge end voltage of 2.9 V.
Perform 30 cycles, charge again under the above conditions, and then
The battery was left to stand for a few days, and the occurrence rate of the battery whose open-circuit voltage dropped to 3.9 V or less was examined as an internal short-circuited product. Further, among these batteries, those having no internal short circuit were discharged under the above-mentioned conditions, and their capacities were also examined. Table 1 shows the results.

この表から判るように、比較例1の電池は、内部短絡
品の発生率は極めて多い。この内部短絡している電池を
解体して調べたところ電極の両端部の電極合剤が一部セ
パレータを突き破っているのが観察された。また比較例
2の電池でも内部短絡品が発生しているが、この内部短
絡している電池を解体して調べたところ電極の両端部の
電極合剤が電極から脱落して、これがセパレータを突き
破っているのが観察された。
As can be seen from this table, the battery of Comparative Example 1 has an extremely high incidence of internally short-circuited products. When the internal short-circuited battery was disassembled and examined, it was observed that the electrode mixture at both ends of the electrode partially broke through the separator. In the battery of Comparative Example 2, an internally short-circuited product was also generated. When the battery with the internally short-circuited was disassembled and examined, the electrode mixture at both ends of the electrode fell off from the electrode, and this broke through the separator. Was observed.

実施例1、2、3の電池では内部短絡品が発生せず、
従って集電体の両端部に電極合剤を被覆しないことの効
果は大きいと考えられる。また放電容量について、実施
例1、2、3を比べると集電体の電極合剤が被覆してい
ない部分の幅が大きい程放電容量が小さくなっている。
両端部で電極合剤を被覆しない部分の幅が集電体の幅に
対して0.05倍以上ある実施例3では、電極合剤を集電体
全面に被覆した比較例1の場合に比べて、放電容量が10
%以上も小さくなっており好ましくない。なお、以上の
実施例で示したように、正極及び負極の両電極につい
て、集電体の両端部が活物質あるいは電極合剤で被覆さ
れないことが好ましいが、正極あるいは負極のどちらか
一方の電極についてそうであっても、内部短絡防止に有
効であることはいうまでもない。
In the batteries of Examples 1, 2, and 3, no internal short-circuit product was generated.
Therefore, it is considered that the effect of not covering both ends of the current collector with the electrode mixture is great. Further, regarding the discharge capacity, as compared with Examples 1, 2, and 3, the discharge capacity decreases as the width of the portion of the current collector that is not covered with the electrode mixture increases.
In Example 3 in which the width of the portion not covered with the electrode mixture at both ends was 0.05 times or more the width of the current collector, compared to Comparative Example 1 in which the entire surface of the current collector was covered with the electrode mixture, Discharge capacity is 10
% Or less, which is not preferable. Note that, as shown in the above examples, for both the positive electrode and the negative electrode, it is preferable that both ends of the current collector are not covered with the active material or the electrode mixture, but either one of the positive electrode and the negative electrode However, it goes without saying that the above is effective for preventing an internal short circuit.

〔発明の効果〕〔The invention's effect〕

本発明により、渦巻式非水電解液二次電池において、
その問題点の一つであった電池の内部短絡を防止するこ
とが可能となった。この結果、エネルギー密度が大き
く、急速充放電サイクル特性に優れた二次電池を提供で
きるようになり、その工業的な価値は大きい。
According to the present invention, in a spiral nonaqueous electrolyte secondary battery,
It has become possible to prevent internal short circuit of the battery, which is one of the problems. As a result, a secondary battery having high energy density and excellent rapid charge / discharge cycle characteristics can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例の帯状電極の模式的断面図で、第2図
A、Bは比較例の帯状電極の模式的断面図で、第3図は
本発明の渦巻式非水電解液二次電池の構造を示す模式的
断面図である。 第1図及び第2図A、Bの中で、10は集電体、20は電極
合剤を示す。 第3図の中で、1は正極、2は負極、3はセパレータ、
5は電池缶を示す。
FIG. 1 is a schematic cross-sectional view of a strip-shaped electrode of an example, FIGS. 2A and 2B are schematic cross-sectional views of a strip-shaped electrode of a comparative example, and FIG. 3 is a spiral nonaqueous electrolyte secondary solution of the present invention. FIG. 2 is a schematic cross-sectional view illustrating a structure of a battery. 1 and 2A and B, reference numeral 10 denotes a current collector, and reference numeral 20 denotes an electrode mixture. In FIG. 3, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator,
Reference numeral 5 denotes a battery can.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極及び負極の帯状電極をセパレータを介
して渦巻状に巻いた電極構造を有する円筒型非水電解液
二次電池において、前記帯状電極のうち、少なくとも一
方の電極は、予め所定の幅に裁断した帯状集電体と、該
帯状集電体を、幅方向の両端部を残して被覆する活物質
あるいは電極合剤の層からなり、且つ、前記活物質ある
いは電極合剤の層の両端部は曲面構成であることを特徴
とする円筒型非水電解液二次電池。
In a cylindrical non-aqueous electrolyte secondary battery having an electrode structure in which positive and negative electrode strips are spirally wound with a separator interposed therebetween, at least one of the electrode strips is predetermined. A band-shaped current collector cut to a width of, and a layer of the active material or the electrode mixture that covers the band-shaped current collector except for both ends in the width direction, and the layer of the active material or the electrode mixture. Characterized in that both end portions have a curved surface configuration.
【請求項2】帯状集電体の幅方向の両端部の、活物質あ
るいは電極合剤が被覆されていない部分の幅が前記帯状
集電体の幅の0.05倍以下である特許請求の範囲第1項記
載の円筒型非水電解液二次電池。
2. The width of both ends in the width direction of the strip-shaped current collector, which is not covered with the active material or the electrode mixture, is 0.05 times or less of the width of the strip-shaped current collector. 2. The cylindrical non-aqueous electrolyte secondary battery according to claim 1.
JP1228432A 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2932516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228432A JP2932516B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228432A JP2932516B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0393164A JPH0393164A (en) 1991-04-18
JP2932516B2 true JP2932516B2 (en) 1999-08-09

Family

ID=16876396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228432A Expired - Fee Related JP2932516B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2932516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508390A (en) * 2007-12-25 2011-03-10 ビーワイディー カンパニー リミテッド Electrochemical storage battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404178B2 (en) * 2001-12-03 2010-01-27 ソニー株式会社 Secondary battery and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508390A (en) * 2007-12-25 2011-03-10 ビーワイディー カンパニー リミテッド Electrochemical storage battery

Also Published As

Publication number Publication date
JPH0393164A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JP3436600B2 (en) Rechargeable battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP3589021B2 (en) Lithium ion secondary battery
JP3131976B2 (en) Non-aqueous electrolyte secondary battery
JP3140977B2 (en) Lithium secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP3237015B2 (en) Non-aqueous electrolyte secondary battery
JPH11329447A (en) Non-aqueous secondary battery
JP2964833B2 (en) Lithium secondary battery
JP3371908B2 (en) Non-aqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP2932516B2 (en) Non-aqueous electrolyte secondary battery
JP7363443B2 (en) Lithium ion secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2002075460A (en) Lithium secondary cell
JP3013392B2 (en) Spiral type non-aqueous electrolyte battery
JP2506572Y2 (en) Lithium ion secondary battery
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP2000082495A (en) Solid electrolyte battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JPH08180878A (en) Lithium secondary battery
JP2001015168A (en) Lithium secondary battery
JP7322684B2 (en) lithium ion secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees