JP3131976B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3131976B2
JP3131976B2 JP02112261A JP11226190A JP3131976B2 JP 3131976 B2 JP3131976 B2 JP 3131976B2 JP 02112261 A JP02112261 A JP 02112261A JP 11226190 A JP11226190 A JP 11226190A JP 3131976 B2 JP3131976 B2 JP 3131976B2
Authority
JP
Japan
Prior art keywords
electrode
layer
active material
negative electrode
peripheral layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02112261A
Other languages
Japanese (ja)
Other versions
JPH0412471A (en
Inventor
晋 原田
雅明 横川
邦泰 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02112261A priority Critical patent/JP3131976B2/en
Publication of JPH0412471A publication Critical patent/JPH0412471A/en
Application granted granted Critical
Publication of JP3131976B2 publication Critical patent/JP3131976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、帯状の第1及び第2の電極と帯状の第1及
び第2のセパレータとが交互に積層された状態で渦巻状
に巻回されて成る巻回電極体を具備しており、第1及び
第2の電極におけるリチウムのドープ及び脱ドープによ
って充放電反応が行なわれる非水電解質二次電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a spirally wound state in which strip-shaped first and second electrodes and strip-shaped first and second separators are alternately stacked. The present invention relates to a non-aqueous electrolyte secondary battery including a spirally wound wound electrode body, wherein a charge and discharge reaction is performed by doping and undoping of lithium in first and second electrodes.

〔発明の概要〕[Summary of the Invention]

本発明は、帯状の第1及び第2の電極と、上記の様な
非水電解質二次電池において、少なくとも第1又は第2
の電極のいずれか一方の電極の外周層における活物質量
をこの電極の内周層における活物質量よりも多くするこ
とによって、活物質の劣化や電極表面における活物質の
異常析出を防ぎ非水電解質二次電池の充放電の繰返しに
よって生じる容量低下を防止するようにしたものであ
る。
The present invention relates to a strip-shaped first and second electrode and a non-aqueous electrolyte secondary battery as described above, wherein at least the first or second
By making the amount of active material in the outer layer of one of the electrodes larger than the amount of active material in the inner layer of this electrode, deterioration of the active material and abnormal deposition of the active material on the electrode surface can be prevented. This is to prevent the capacity from being reduced due to repeated charge and discharge of the electrolyte secondary battery.

〔従来の技術〕[Conventional technology]

近年のビデオカメラやヘッドフォンステレオ等の電子
機器の高性能化、小型化には目ざましいものがあり、こ
れらの電子機器の電源となる二次電池の重負荷特性の改
善や高容量化への要求も強まってきている。二次電池と
しては、鉛二次電池やニッケルカドミウム電池が従来か
ら用いられている。
In recent years, there has been a remarkable increase in the performance and miniaturization of electronic devices such as video cameras and headphone stereos, and there is also a demand for improving the heavy load characteristics and increasing the capacity of secondary batteries that power these electronic devices. It is getting stronger. As a secondary battery, a lead secondary battery or a nickel cadmium battery has been conventionally used.

更に、最近はリチウム金属やリチウム合金もしくはコ
ークスや有機物焼成体等の炭素材のような、リチウムイ
オンをドープ、脱ドープできる物質を負極材料として用
いた非水電解質二次電池の開発も活発におこなわれてい
る。
Furthermore, recently, active development of a non-aqueous electrolyte secondary battery using a material capable of doping and undoping lithium ions, such as lithium metal, a lithium alloy, or a carbon material such as coke or a fired organic material, as a negative electrode material has been actively performed. Have been.

このような非水電解質二次電池においては、その重負
荷特性の改良のために渦巻状の巻回電極体が用いられて
いる。この従来の巻回電極体について第4A図及び第4B図
を参照して説明する。
In such a nonaqueous electrolyte secondary battery, a spirally wound electrode body is used to improve the heavy load characteristics. This conventional wound electrode body will be described with reference to FIGS. 4A and 4B.

第4A図は、帯状の負極1と帯状の第1のセパレータ3a
(第4B図に示す)と帯状の正極2と帯状の第2のセパレ
ータ3b(第4B図に示す)とをこの順に積層した状態で負
極1が最内周に位置するように渦巻状に多数回巻回する
ことによって得られる巻回電極体40の斜視図である。第
4B図は、上記巻回電極体40の中心付近の横断面を示す一
部拡大横断面図である。
FIG. 4A shows a strip-shaped negative electrode 1 and a strip-shaped first separator 3a.
(Shown in FIG. 4B), a strip-shaped positive electrode 2 and a strip-shaped second separator 3b (shown in FIG. 4B) are stacked in this order, and a large number of the negative electrodes 1 are spirally arranged so as to be located at the innermost periphery. FIG. 4 is a perspective view of a wound electrode body 40 obtained by winding. No.
FIG. 4B is a partially enlarged cross-sectional view showing a cross-section near the center of the wound electrode body 40.

第4B図に示すように、巻回電極体40における負極1
は、負極集電体11及びこの集電体11の内周面及び外周面
に負極活物質を有する負極内周層12及び負極外周層13を
夫々備えている。正極2は正極集電体21及びこの集電体
21の内周面及び外周面に正極活物質を有する正極内周層
22及び正極外周層23を夫々備えている。
As shown in FIG. 4B, the negative electrode 1 in the wound electrode body 40
Includes a negative electrode current collector 11 and a negative electrode inner peripheral layer 12 and a negative electrode outer peripheral layer 13 each having a negative electrode active material on the inner peripheral surface and the outer peripheral surface of the current collector 11. The positive electrode 2 includes a positive electrode current collector 21 and the current collector
Positive electrode inner peripheral layer having positive electrode active material on inner and outer peripheral surfaces of 21
22 and a positive electrode outer peripheral layer 23 are provided.

負極外周層13と正極内周層22との間に第1のセパレー
タが介在し、負極内周層12と正極外周層23との間に第2
のセパレータが介在している。
A first separator is interposed between the negative electrode outer layer 13 and the positive electrode inner layer 22, and a second separator is interposed between the negative electrode inner layer 12 and the positive electrode outer layer 23.
Separator is interposed.

なお、上記第1及び第2の金属集電体には、厚さの薄
い帯状の金属箔が用いられている。また、負極内周層12
と負極外周層13との厚さはほぼ等しく、正極内周層22と
正極外周層23との厚さもほぼ等しい。また、セパレータ
3a、3bには所定の電解液が含浸されている。
The first and second metal current collectors are formed of thin strip-shaped metal foils. Also, the negative electrode inner peripheral layer 12
And the negative electrode outer peripheral layer 13 have substantially the same thickness, and the positive electrode inner peripheral layer 22 and the positive electrode outer layer 23 have substantially the same thickness. Also, separator
3a and 3b are impregnated with a predetermined electrolytic solution.

以上のような巻回電極体40によれば、帯状の負極1及
び帯状の正極2は比較的大きな面積を有するから、二次
電池に大きな電流を流しても単位面積当りの電流は小さ
く、この二次電池を重負荷状態で使用することが可能と
なる。
According to the wound electrode body 40 as described above, since the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 have relatively large areas, the current per unit area is small even when a large current flows through the secondary battery. The secondary battery can be used under heavy load.

また、巻回電極体において電極の厚さを薄くすればす
るほど、面積のより大きい電極を巻回することができる
から、二次電池の重負荷特性はより良好になる。電極集
電体により薄い金属箔を用いるのが望ましく、放電容量
が損なわれない。
Further, as the thickness of the electrode in the wound electrode body is reduced, an electrode having a larger area can be wound, so that the heavy load characteristics of the secondary battery become better. It is desirable to use a thin metal foil for the electrode current collector, and the discharge capacity is not impaired.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、金属箔を電極集電体に用いた上述のような
巻回電極体を備える二次電池は、充放電サイクルが繰返
されると、電池容量が低下してしまい易いという問題点
を有していた。これは、主に電池の充電時において、本
来ならば電極表面に均一に析出あるいはドーピングされ
るべき活物質が、充放電が繰返されるうちに均一に析出
あるいはドーピングされなくなり、電極表面に偏って異
常に(例えばデンドライト状に)析出してしまい、これ
によって電極が劣化してしまうことに起因する。
However, the secondary battery including the above-mentioned wound electrode body using the metal foil as the electrode current collector has a problem that the battery capacity is likely to be reduced when the charge / discharge cycle is repeated. Was. This is mainly due to the fact that the active material, which should be deposited or doped uniformly on the electrode surface during the charging of the battery, does not deposit or dope uniformly during repeated charging and discharging, and the electrode surface is abnormally unevenly distributed. (For example, in the form of a dendrite), which results in deterioration of the electrode.

上述のような電極表面における活物質の異常析出につ
いて、本発明者らは鋭意研究の結果、次のような知見を
得た。これを第4B図を参照しながら説明する。
The present inventors have earnestly studied the abnormal deposition of the active material on the electrode surface as described above, and have obtained the following knowledge. This will be described with reference to FIG. 4B.

第4B図に示すように、負極1はその最内周に、すなわ
ち第1周目の負極14に負極外周層16、第2周目の負極17
に負極内周層18及び負極外周層19を夫々備え、正極2は
その第1周目の正極24に正極内周層25及び正極外周層26
を備えている。
As shown in FIG. 4B, the negative electrode 1 is provided on the innermost circumference thereof, that is, the negative electrode outer peripheral layer 16 and the negative electrode 17
The positive electrode 2 is provided with a positive electrode inner peripheral layer 25 and a positive electrode outer peripheral layer 26 on the first positive electrode 24 in the first round.
It has.

第1周目の負極外周層16と第1周目の正極内周層25と
が第1のセパレータ3aを介して対向し、この間で充放電
反応が行なわれる。また、第1周目の正極外周層26と第
2周目の負極内周層18とが第2のセパレータ3bを介して
対向し、この間で同様に充放電反応が行なわれる。この
ようにして負極1と正極2との間において充放電反応が
行なわれるが、負極1と正極2は共にそのほほ中央に夫
々集電体11及び21を有しているから、その内周層12(2
2)と外周層13(23)との間でイオンの移動はない。
The first outer circumferential layer 16 of the negative electrode and the inner circumferential layer 25 of the first positive electrode face each other with the first separator 3a interposed therebetween, and a charging / discharging reaction is performed between them. Further, the positive electrode outer peripheral layer 26 of the first cycle and the negative electrode inner peripheral layer 18 of the second cycle face each other with the second separator 3b interposed therebetween. The charge / discharge reaction takes place between the negative electrode 1 and the positive electrode 2 in this manner. Since both the negative electrode 1 and the positive electrode 2 have the current collectors 11 and 21 at the approximate center, respectively, 12 (2
There is no movement of ions between 2) and the outer layer 13 (23).

ここで、例えば第1周目の負極外周層16と第2周目の
負極内周層18とに着目すると、負極内周層18は負極外周
層16と比較して1周分外周に存在するため充放電反応に
関する円周方向の長さが長くなり、負極活物質がより多
い。これに比べて第1周目の正極内周層25と正極外周層
26との間には活物質に関する差はそれ程ない。従って、
ほぼ同一の正極活物質を有する正極内周層25と正極外周
層26とに夫々対向する負極外周層16と負極内周層18とに
おける負極活物質は、負極外周層16のほうが負極内周層
18よりも少ない。
Here, for example, when focusing on the negative electrode outer peripheral layer 16 in the first cycle and the negative electrode inner peripheral layer 18 in the second cycle, the negative electrode inner peripheral layer 18 is present on the outer circumference for one round as compared with the negative electrode outer layer 16. Therefore, the circumferential length of the charge / discharge reaction becomes longer, and the amount of the negative electrode active material increases. In comparison, the first inner circumferential layer 25 of the positive electrode and the outer circumferential layer of the positive electrode are compared.
There is not much difference between the 26 and the active material. Therefore,
The negative electrode active material in the negative electrode outer peripheral layer 16 and the negative electrode inner peripheral layer 18 opposed to the positive electrode inner peripheral layer 25 and the positive electrode outer peripheral layer 26 having substantially the same positive electrode active material,
Less than 18.

巻回電極体40を備えた二次電池において一定量の充電
が行なわれる場合、負極外周層16と負極内周層18とにお
いて同一量の充電が行なわれるが、負極活物質がより少
ない負極外周層16では充電に関する負荷が重く、負極内
周層18では負荷が相対的に軽くなる。このことは、第2
周目の負極17の外周層19と図示省略した第3周目の負極
の内周層との間においても同じであって、負極外周層19
の負荷が相対的に重くなる。
When a fixed amount of charge is performed in the secondary battery including the wound electrode body 40, the same amount of charge is performed in the negative electrode outer peripheral layer 16 and the negative electrode inner peripheral layer 18, but the negative electrode outer material has a smaller negative electrode active material. The load related to charging is heavy in the layer 16, and the load is relatively light in the negative electrode inner peripheral layer 18. This is the second
The same applies between the outer peripheral layer 19 of the negative electrode 17 in the circumference and the inner peripheral layer of the third negative electrode (not shown).
Load becomes relatively heavy.

従って、第4B図に示す巻回電極体40では常に負極外周
層13のほうが負極内周層12と比べて負荷が重くなるか
ら、負極1において活物質の劣化、電極表面における活
物質の異常析出等が起り易くなるのである。
Therefore, in the wound electrode body 40 shown in FIG. 4B, the load on the negative electrode outer layer 13 is always heavier than that on the negative electrode inner peripheral layer 12, so that the active material is degraded in the negative electrode 1, and the active material is abnormally deposited on the electrode surface. Etc. easily occur.

本発明の目的は、巻回電極体を具備する非水電解質二
次電池の充放電サイクルに伴う電池容量の低下を防止す
ることである。
An object of the present invention is to prevent a decrease in battery capacity due to a charge / discharge cycle of a nonaqueous electrolyte secondary battery including a wound electrode body.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を達成しようとする本発明者らの
上述のような知見に基づいて成されたものであって、リ
チウムとドープと脱ドープとが可能な第1及び第2の電
極活物質を含む合剤層が帯状の金属箔から成る集電体の
両面に形成されている帯状の第1及び第2の電極と、帯
状の第1及び第2のセパレータとが交互に積層された状
態で渦巻状に巻回されることによって、上記第1の電極
の上記合剤層である外周層と上記第2の電極の上記合剤
層である内周層との間に上記第1のセパレータが介在
し、上記第1の電極の上記合剤層である内周層と上記第
2の電極の上記合剤層である外周層との間に上記第2の
セパレータが介在している巻回電極体を具備する非水電
解質二次電池において、上記第1又は第2の電極の上記
外周層と上記第2又は第1の電極の上記内周層との間に
おける各充放電反応が上記第1の電極活物質と上記第2
の電極活物質との間でほぼ均一に行なわれるように、少
なくとも上記第1又は第2の電極のいずれか一方の電極
の上記外周層における活物質量がこの電極の上記内周層
における活物質量よりも多くなっている。
The present invention has been made based on the above-described findings of the present inventors to achieve the above object, and the first and second electrode activities capable of doping and undoping with lithium. Band-shaped first and second electrodes in which a mixture layer containing a substance is formed on both surfaces of a current collector made of a band-shaped metal foil, and band-shaped first and second separators are alternately laminated. By being spirally wound in the state, the first electrode is formed between the outer peripheral layer, which is the mixture layer of the first electrode, and the inner peripheral layer, which is the mixture layer of the second electrode. A winding in which a separator is interposed, and the second separator is interposed between the inner peripheral layer, which is the mixture layer of the first electrode, and the outer peripheral layer, which is the mixture layer of the second electrode. In a nonaqueous electrolyte secondary battery including a rotating electrode body, the outer peripheral layer of the first or second electrode and the second or Each charge-discharge reaction between the said inner layer of one electrode is the first electrode active material and the second
The amount of active material in the outer peripheral layer of at least one of the first and second electrodes is such that the amount of active material in the inner peripheral layer of the electrode is at least one of the first and second electrodes so as to be performed substantially uniformly with the electrode active material. More than the amount.

また、電極の上記外周層における活物質量をこの電極
の上記内周層よりも多くするために、上記外周層の厚さ
を上記内周層よりも厚くすること又は上記外周層におけ
る活物質含有率を上記内周層よりも高くすることが行わ
れている。
Further, in order to increase the amount of active material in the outer peripheral layer of the electrode more than that of the inner peripheral layer of the electrode, the thickness of the outer peripheral layer is made larger than that of the inner peripheral layer, or the active material content in the outer peripheral layer is increased. The ratio is made higher than that of the inner peripheral layer.

なお、上記第1の電極は負極又は正極を構成でき、上
記第2の電極は正極又は負極を構成できる。
Note that the first electrode can form a negative electrode or a positive electrode, and the second electrode can form a positive electrode or a negative electrode.

〔作用〕[Action]

上記巻回電極体において、第1又は第2の電極の外周
層はその外周に位置する第2又は第1の電極の内周層と
対向し、この第2又は第1の電極の外周層は、上記外周
層を備える第1又は第2の電極の1周分だけ外周に位置
する第1又は第2の電極の内周層と対向して各充放電反
応が行なわれる。そして、上記各充放電反応において第
1の電極活物質と第2の電極活物質との間で反応が均一
に行なわれるように、少なくとも第1又は第2の電極の
いずれか一方の電極の外周層における活物質量をこの電
極の内周層よりも多くしているから、電極の外周層にお
ける活物質量は、この外周層を備える電極よりも1周分
だけ外周に位置するこの電極の内周層における活物質量
と比べて少なくなりすぎることはなく、外周層の活物質
における充電又は放電に関する負荷が軽減されて内周層
程度になる。
In the above wound electrode body, the outer peripheral layer of the first or second electrode faces the inner peripheral layer of the second or first electrode located on the outer periphery thereof, and the outer peripheral layer of the second or first electrode is Each charge / discharge reaction is performed so as to face the inner peripheral layer of the first or second electrode located on the outer periphery by one rotation of the first or second electrode having the outer peripheral layer. Then, at least the outer periphery of one of the first and second electrodes so that the reaction between the first electrode active material and the second electrode active material is uniformly performed in each of the charge and discharge reactions. Since the amount of the active material in the layer is larger than that of the inner peripheral layer of the electrode, the amount of the active material in the outer peripheral layer of the electrode is smaller than that of the electrode having the outer peripheral layer by one rotation. The amount of the active material in the peripheral layer does not become too small, and the load on the charge or discharge of the active material in the outer peripheral layer is reduced to about the inner peripheral layer.

〔実施例〕〔Example〕

以下、本発明による非水電解質二次電池の実施例1及
び実施例2について第1図〜第3C図を参照しながら説明
する。なお、第4A図及び第4B図に示す巻回電極体と同一
部分には、同一符号を付けて、その説明を省略する。
Hereinafter, Examples 1 and 2 of the nonaqueous electrolyte secondary battery according to the present invention will be described with reference to FIGS. 1 to 3C. 4A and 4B are denoted by the same reference numerals, and description thereof will be omitted.

実施例1 本実施例1は負極内周層と負極外周層との厚さを変え
たものである。
Example 1 In Example 1, the thickness of the negative electrode inner peripheral layer and the negative electrode outer peripheral layer was changed.

第1図は、本実施例の非水電解質二次電池の概略的な
縦断面を示すものであるが、この電池を以下に述べるよ
うにして作製した。
FIG. 1 shows a schematic longitudinal section of a non-aqueous electrolyte secondary battery of this example. This battery was manufactured as described below.

まず、負極1は次のようにして作成した。 First, the negative electrode 1 was prepared as follows.

粉砕したピッチコークスを負極活物質担持体として用
い、このピッチコークス90重量部及び結着剤としてのポ
リフッ化ビニリデン10重量部を加え、混合し、負極合剤
とした。そしてこの負極合剤を溶剤N−メチルピロリド
ンに分散させてスラリー(ペースト状)にした。
Using the crushed pitch coke as a negative electrode active material carrier, 90 parts by weight of this pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were added and mixed to obtain a negative electrode mixture. The negative electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste).

次にこの負極合剤スラリーを、負極集電体11としての
厚さ10μmの帯状の銅箔の両面に一方の面と他方の面と
で塗布量を変えて塗布して、乾燥し、その後ローラプレ
ス機により圧縮成型し帯状の負極1を作った。このと
き、負極集電体11の一方の面側の負極合剤厚さ(後述の
第2A図及び第3A図に示す負極外周層13の厚さt13に相当
する)は84μm、他方の面側の負極合剤厚さ(負極内周
層12の厚さt12に相当する)は82μm、また負極1の幅
は41.5mmであった。
Next, this negative electrode mixture slurry was applied to both sides of a 10 μm-thick strip-shaped copper foil serving as the negative electrode current collector 11 by changing the application amount on one surface and the other surface, followed by drying, and then the roller A belt-shaped negative electrode 1 was formed by compression molding using a press machine. At this time, one of the anode mixture the thickness of the side (corresponding to the thickness t 13 of the negative electrode outer peripheral layer 13 shown in Figure 2A and Figure 3A below) is 84 .mu.m, the other surface of the anode current collector 11 anode mixture the thickness of the side (corresponding to the thickness t 12 in the negative electrode peripheral layer 12) is 82 .mu.m, the width of the negative electrode 1 was 41.5 mm.

次に、正極2は次のようにして作成した。 Next, the positive electrode 2 was prepared as follows.

炭酸リチウム1モルと炭酸コバルト1モルを混合し、
900℃の空気中で5時間焼成してLiCoO2を得て、これを
正極活物質として用い、このLiCoO291重量部に導電材と
してグラファイト6重量部、結着材としてポリフッ化ビ
ニリデン(PVDF)3重量部を加え、混合し、正極合剤と
した。そしてこの正極合剤を溶剤N−メチルピロリドン
に分散させてスラリー(ペースト状)にした。
1 mol of lithium carbonate and 1 mol of cobalt carbonate are mixed,
Baking in air at 900 ° C. for 5 hours to obtain LiCoO 2 , used as a positive electrode active material, 91 parts by weight of LiCoO 2, 6 parts by weight of graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder 3 parts by weight were added and mixed to obtain a positive electrode mixture. Then, this positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to obtain a slurry (paste).

次に、この正極合剤スラリーを、正極集電体21として
の厚さ20μmの帯状のアルミニウム箔の両面に均一に塗
布して、乾燥し、その後ローラープレス機により圧縮成
型し帯状の正極2を作った。このとき、正極集電体21の
一方の面側の正極合剤厚さ(後述の第2A図及び第3A図に
示す正極外周層23の厚さt23に相当する)と他方の面側
の正極合剤厚さ(正極内周層22の厚さt22に相当する)
とは等しく共に77μm、また正極2の幅は40.5mmであっ
た。
Next, this positive electrode mixture slurry is uniformly applied to both sides of a 20 μm-thick strip-shaped aluminum foil as a positive electrode current collector 21, dried, and then compression-molded by a roller press to form a strip-shaped positive electrode 2. Had made. At this time, one side of the positive electrode mixture thickness of the positive electrode current collector 21 (corresponding to the thickness t 23 of the positive electrode outer peripheral layer 23 shown in Figure 2A and Figure 3A below) and the other side positive electrode mixture thickness (corresponding to the thickness t 22 of the positive electrode peripheral layer 22)
And the width of the positive electrode 2 was 40.5 mm.

上記帯状の負極1、上記帯状の正極2及び厚さ25μm
の微孔性ポリプロピレンフィルムからなる第1及び第2
のセパレータ3a、3bを第2のセパレータ3b、正極2、第
1のセパレータ3a、負極1の順序で積層して第2A図に示
すような積層体31を得た。この積層体31を負極1が最内
周に位置するように積層体31の長さ方向へ巻芯33上で渦
巻状に多数回巻回することによって、巻回電極体10を作
成した。
The strip-shaped negative electrode 1, the strip-shaped positive electrode 2 and a thickness of 25 μm
First and second made of microporous polypropylene film
The separators 3a and 3b were laminated in the order of the second separator 3b, the positive electrode 2, the first separator 3a, and the negative electrode 1 to obtain a laminate 31 as shown in FIG. 2A. The spirally wound electrode body 10 was formed by spirally winding the stacked body 31 multiple times on the winding core 33 in the longitudinal direction of the stacked body 31 so that the negative electrode 1 was positioned at the innermost circumference.

上記巻回電極体10の中心付近の横断面を第3A図に示
す。第3A図の巻回電極体10は、第4B図に示すものと、負
極内周層12の厚さt12と負極外周層13の厚さt13とが違う
だけで、これ以外は同様の構造である。
A cross section near the center of the wound electrode body 10 is shown in FIG. 3A. The wound electrode body 10 of Figure 3A, as shown in Figure 4B, only different and the thickness t 13 of the thickness t 12 and the negative electrode outer peripheral layer 13 in the negative electrode peripheral layer 12, except for this same Structure.

なお、上記積層体31において正極2の厚さ、負極1の
厚さ及び第1、第2のセパレータ3a、3bの厚さの和Tは
400μmであった。また、上記積層体31において負極1
と正極2との積層の順序を入れかえて、巻回電極体10に
おいて正極2が最内周に位置してもよい。
The sum T of the thickness of the positive electrode 2, the thickness of the negative electrode 1, and the thickness of the first and second separators 3a and 3b in the laminate 31 is as follows.
It was 400 μm. Further, in the laminate 31, the negative electrode 1
The order of lamination of the positive electrode 2 and the positive electrode 2 may be changed, and the positive electrode 2 in the wound electrode body 10 may be located at the innermost circumference.

上述のようにして作った巻回電極体10を、第1図に示
すように、ニッケルめっきを施した鉄製電池缶5に収納
した。そして正極2の集電を行うためにアルミニウム製
の正極リード9を正極2に取り付け、これを正極2から
導出して金属製の安全弁34の突起部34aに溶接した。ま
た負極1の集電を行うために、ニッケル製の負極リード
8を負極1に取り付け、これを負極1から導出して、電
池缶5に溶接した。この電池缶5の中に、六フッ化リン
酸リチウムを1モル/溶解した炭酸プロピレンと1.2
−ジメトキシエタンとを混合して得た非水電解液を注入
した。
The wound electrode body 10 produced as described above was housed in a nickel-plated iron battery can 5 as shown in FIG. Then, in order to collect the current of the positive electrode 2, an aluminum positive electrode lead 9 was attached to the positive electrode 2, led out from the positive electrode 2, and welded to the projection 34 a of the metal safety valve 34. In order to collect the current of the negative electrode 1, a negative electrode lead 8 made of nickel was attached to the negative electrode 1, led out from the negative electrode 1, and welded to the battery can 5. In this battery can 5, 1 mol / mol of lithium hexafluorophosphate / propylene carbonate and 1.2 mol
-Non-aqueous electrolyte obtained by mixing with dimethoxyethane was injected.

次に、巻回電極体10の上下面に対向するように、電池
缶5内に一対の絶縁板4a、4bを夫々配設した。またこの
電池缶5、互いにそれらの外周で密着している安全弁34
及び電池蓋7を絶縁封口ガスケット6を介してかしめ
て、電池缶5を封口した。このとき、ガスケット6の第
1図における下端側は絶縁板4aの外周面と当接して、絶
縁板4aが巻回電極体10の上面側と密着する。
Next, a pair of insulating plates 4a and 4b were provided in the battery can 5 so as to face the upper and lower surfaces of the wound electrode body 10, respectively. Further, the battery can 5 is provided with a safety valve 34 which is in close contact with the outer periphery of the battery can 5.
Then, the battery lid 7 was swaged via the insulating sealing gasket 6 to seal the battery can 5. At this time, the lower end of the gasket 6 in FIG. 1 contacts the outer peripheral surface of the insulating plate 4a, and the insulating plate 4a comes into close contact with the upper surface of the spirally wound electrode body 10.

以上のように、直径14mm、高さ50mmの円筒型非水電解
質二次電池を作製した。この電池を、後掲の第1表に示
すように、便宜上、電池Aとする。
As described above, a cylindrical nonaqueous electrolyte secondary battery having a diameter of 14 mm and a height of 50 mm was produced. This battery is referred to as battery A for convenience, as shown in Table 1 below.

なお、上記円筒型非水電解質二次電池は、安全弁34、
ストリッパ36、これらの安全弁34とストリッパ36とを一
体にするための絶縁材料から成る中間嵌合体35を備えて
いる。図示省略するが、安全弁34にはこの安全弁34が変
形したときに開裂する開裂部が、電池蓋7には孔が夫々
設けられている。万一、電圧内圧が何らかの原因で上昇
した場合、安全弁34がその突起部34aを中心にして第1
図の上方へ変形することによって、正極リード9と突起
部34aとの接続が断たれて、電池電流を遮断するよう
に、あるいは安全弁34の開裂部が開裂して電池内に発生
したガスを排気するように夫々構成されている。
The cylindrical non-aqueous electrolyte secondary battery has a safety valve 34,
A stripper 36 is provided with an intermediate fitting 35 made of an insulating material for integrating the safety valve 34 and the stripper 36. Although not shown, the safety valve 34 is provided with a cleaving portion which is cleaved when the safety valve 34 is deformed, and the battery cover 7 is provided with a hole. If the voltage internal pressure rises for some reason, the safety valve 34 will
By deforming upward in the figure, the connection between the positive electrode lead 9 and the protruding portion 34a is disconnected, so that the battery current is interrupted, or the gas generated in the battery due to the cleavage of the safety valve 34 being opened is exhausted. Respectively.

また、第1及び第2のセパレータ3a、3bは、負極1及
び正極2のよりも長さ方向及び幅方向に若干大きく、第
1図及び第2A図に示すように負極1及び正極2のそれぞ
れの端部からわずかにはみ出ている。
Further, the first and second separators 3a and 3b are slightly larger in the length direction and the width direction than the negative electrode 1 and the positive electrode 2, and as shown in FIGS. 1 and 2A, the negative electrode 1 and the positive electrode 2 respectively. Slightly protruding from the end of the.

また、上記非水電解質二次電池において、負極1の活
物質として、リチウム、リチウム合金、あるいは活物質
担持体としてポリアセチレンのような導電性ポリマー、
コークスのような炭素材などを用いることができ、これ
らはいずれもリチウムをドープし脱ドープし得るもので
ある。一方、正極2の活物質としては二酸化マンガン、
五酸化バナジウムのような遷移金属化合物や、硫化鉄等
の遷移金属カルコゲン化合物、さらには遷移金属とリチ
ウムとの複合化合物を用いることができる。
Further, in the nonaqueous electrolyte secondary battery, as the active material of the negative electrode 1, lithium, a lithium alloy, or a conductive polymer such as polyacetylene as an active material carrier;
A carbon material such as coke can be used, and any of these can be doped with lithium and undoped. On the other hand, manganese dioxide,
A transition metal compound such as vanadium pentoxide, a transition metal chalcogen compound such as iron sulfide, or a composite compound of a transition metal and lithium can be used.

また、電解液としては、例えばリチウム塩を電解質と
しこれを有機溶剤(非水溶媒)に溶解した非水電解液が
使用される。
As the electrolyte, for example, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent (non-aqueous solvent) is used.

ここで有機溶剤としては、特に限定されるものではな
いが、例えばプロピレンカーボネート、エチレンカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、1,3−
ジオキソラン、4−メチル−1,3−ジオキシソラン、ジ
エチルエーテル、スルホラン、メチルスルホラン、アセ
トニトリル、プロピオニトリル等の単独もしくは2種以
上の混合溶剤が使用できる。
Here, the organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-
A single solvent or a mixture of two or more solvents such as dioxolan, 4-methyl-1,3-dioxysolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile and the like can be used.

電解質も従来より公知のものがいずれも使用可能であ
り、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5、L
iCl、LiBr、CH3SO3Li、CF3SO3Li等がある。また、非水
電解質において、従来より公知の固体状の電解質を用い
ることもできる。
Any known electrolyte can be used as the electrolyte. LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , L
There are iCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like. Further, as the non-aqueous electrolyte, a conventionally known solid electrolyte can also be used.

次に、負極1の負極内周層12の厚さt12と負極外周層1
3の厚さt13との組合せを、下記の第1表に示すように6
通りに変えた以外は上記電池Aと同様にして円筒型非水
電解質二次電池B、C、D、E、F、Kを作製した。な
お、これらの二次電池A〜F、Kの電極と厚さ(積層体
31の厚さ)Tはすべて400μmであった。
Next, the thickness t 12 of the negative electrode inner peripheral layer 12 of the negative electrode 1 and the negative electrode outer peripheral layer 1
3 of the combination of the thickness t 13, as shown in Table 1 below 6
Cylindrical non-aqueous electrolyte secondary batteries B, C, D, E, F, and K were produced in the same manner as the battery A, except that the above conditions were changed. In addition, the electrodes and thickness of these secondary batteries A to F and K (the laminate
All 31) T were 400 μm.

次に、負極1の厚さを増やしかつ負極内周層12の厚さ
t12と負極外周層13の厚さt13との組合せを、下記の第1
表に示すように5通りに変えるとともに、正極内周層22
の厚さt22を105μm、正極外周層23の厚さt23を99μm
にした以外は、上記電池Aと同様にして円筒非水電解質
二次電池G、H、I、M、Nを作製した。なお、これら
の電池G、H、I、M、Nの電極の厚さTはすべて500
μmであった。
Next, increase the thickness of the negative electrode 1 and the thickness of the negative electrode inner peripheral layer 12.
The combination of the thickness t 13 of t 12 and the negative electrode outer peripheral layer 13, the following 1
As shown in the table, it was changed to 5 ways,
Thickness t 22 to 105 .mu.m, the thickness t 23 of the positive electrode outer peripheral layer 23 99 .mu.m
Other than the above, cylindrical non-aqueous electrolyte secondary batteries G, H, I, M, and N were produced in the same manner as in Battery A. The thicknesses T of the electrodes of these batteries G, H, I, M, and N were all 500
μm.

比較例1 下記の第1表に示すように、本発明の効果を確認する
ための比較例として、上記電池A及び電池Gにおいて負
極内周層12の厚さt12と負極外周層の厚さt13とを等しく
した以外は、電池A及び電池Gと全く同様の円筒非水電
解質二次電池J、Lを夫々作製した。なお、電池Jは従
来と同様の構成である。
Comparative Example 1 As shown in Table 1 below, as a comparative example for confirming the effect of the present invention, the thickness of the thickness t 12 and the negative electrode outer peripheral layer of the battery A and battery negative electrode inner layer 12 in the G except that equal and t 13, the battery a and the battery G in exactly the same manner as the cylindrical nonaqueous electrolyte secondary battery J, and the L respectively were prepared. The battery J has the same configuration as the conventional one.

なお、上記第1表におけるΔt1、Δt2及びΔtは次の
ように定義される値である。
Note that Δt 1 , Δt 2, and Δt in the above Table 1 are values defined as follows.

上記14種類の電池A〜Nについて、それぞれ460mAの
電流で上限電圧4.1Vとして2時間充電し、続いて18Ω
で、放電終止電圧2.75Vまで放電させる充放電サイクル
を行い容量保持率を調査した。
Each of the 14 types of batteries A to N was charged at a current of 460 mA at an upper limit voltage of 4.1 V for 2 hours, and then charged at 18Ω.
Then, a charge / discharge cycle of discharging to a discharge end voltage of 2.75 V was performed, and the capacity retention was examined.

第1回目の放電容量、第200回目の放電容量及びこれ
らの値から求めた容量保持率を第2表に夫々示す。
Table 2 shows the first discharge capacity, the 200th discharge capacity, and the capacity retention obtained from these values.

第2表に示すように電池A〜Iは容量保持率が85%以
上あり、良好な結果を示している。
As shown in Table 2, the batteries A to I have a capacity retention of 85% or more, showing good results.

また比較例の電池Lは、負極1の内周層12と外周層13
との厚さが等しく、また正極2の内周層22の厚さt22
ほうが外周層23の厚さt23よりも厚い構成であるから、
負極外周層13の負極活物質における充電に関する負荷は
一層重くなると考えられ、従来と同様の構成である比較
例の電池Jよりも容量保持率が低い。
In addition, the battery L of the comparative example includes the inner peripheral layer 12 and the outer peripheral layer 13 of the negative electrode 1.
Thickness equal with, and because more of the thickness t 22 of the inner circumferential layer 22 of the positive electrode 2 is a thick structure than the thickness t 23 of the outer peripheral layer 23,
It is considered that the load related to charging of the negative electrode active material of the negative electrode outer peripheral layer 13 is further increased, and the capacity retention is lower than that of the battery J of the comparative example having the same configuration as the conventional example.

上述の結果より、第3A図に示す巻回電極体10の場合、
例えば負極1の1周目と2周目とに着目すれば、負極外
周層16と負極内周層18とにおける活物質量はほぼ同一と
なり、外周層16の活物質における充電に関する負荷は第
4B図に示す従来の場合と比べて軽減されて内周層18程度
であると考えられる。従って、負極電極の表面にデンド
ライト状等の異常析出が生じる恐れは極めて少ないか
ら、容量低下は少ないと考えられる。
From the above results, in the case of the wound electrode body 10 shown in FIG. 3A,
For example, paying attention to the first and second rounds of the negative electrode 1, the amounts of the active materials in the negative electrode outer peripheral layer 16 and the negative electrode inner peripheral layer 18 are substantially the same, and the load relating to charging of the active material in the outer peripheral layer 16 is the third.
It is considered that the diameter is reduced as compared with the conventional case shown in FIG. Therefore, the possibility that abnormal precipitation such as dendrite is generated on the surface of the negative electrode is extremely small, and it is considered that the capacity decrease is small.

また、上述の結果は、電極の内周層と外周層との厚さ
に関する比についてある好ましい範囲があることを示唆
している。
The above results also suggest that there is a certain preferred range for the ratio of the thickness of the inner and outer layers of the electrode.

本発明者らのさらなる研究によれば、一方の電極にお
ける内周層と外周層との厚さに関する比(上記式(1)
に示すΔt1)と他方の電極における内周層と外周層との
厚さに関する比(上記式(2)に示すΔt2)との和であ
るΔtの好ましい範囲は、 2≦Δt≦0.055 T (4) である。ここでTの単位はμmである。
According to a further study of the present inventors, the ratio of the thickness of the inner layer to the outer layer in one electrode (the above equation (1))
Δt 1 ), which is the sum of the ratio of the thickness of the inner layer and the outer layer in the other electrode (Δt 2 shown in the above equation (2)), is preferably 2 ≦ Δt ≦ 0.055 T (4) Here, the unit of T is μm.

また、Δtのより好ましい範囲は、 4≦Δt≦0.048 T (5) である。 Further, a more preferable range of Δt is 4 ≦ Δt ≦ 0.048 T (5).

そして、Δtのさらに好ましい範囲は、 6≦Δt≦0.040 T (6) である。 Further, a more preferable range of Δt is 6 ≦ Δt ≦ 0.040 T (6).

なお、上記式(1)によって定義されるΔt1は、巻回
電極体において最内周に位置する一方の電極に関する外
周層と内周層との厚さに関する比であり、上記式(2)
によって定義されるΔt2は、上記最内周に位置しない他
方の電極に関する外周層と内周層との厚さに関する比で
ある。上記一方の電極は正極、負極のいずれでもよい。
Note that Δt 1 defined by the above equation (1) is a ratio of the thickness of the outer peripheral layer and the inner peripheral layer with respect to one of the electrodes located at the innermost circumference in the spirally wound electrode body.
Δt 2 defined by is the ratio of the thickness of the outer peripheral layer to the thickness of the inner peripheral layer with respect to the other electrode not located at the innermost periphery. The one electrode may be either a positive electrode or a negative electrode.

上記式(4)〜(6)から上記第1表及び第2表にお
ける結果を考察すると、式(3)で定義されるΔtが少
なくとも式(4)を満足すれば電池の容量保持率は85%
以上となることがわかり、Δtが式(5)さらに(6)
を満足するにつれて容量保持率はさらに上昇することが
わかる。以上のことから式(3)で定義されるΔtが少
なくとも式(4)を満足するように、巻回電極体におい
て各電極における内周層と外周層との厚さを決定するこ
とによって容量保持率のよい二次電池を得ることができ
る。
Considering the results in Tables 1 and 2 from the above equations (4) to (6), if the Δt defined by the equation (3) satisfies at least the equation (4), the capacity retention rate of the battery becomes 85. %
It can be seen that Δt is given by the equation (5) and the equation (6).
It can be seen that the capacity retention rate further increases as the condition is satisfied. From the above, the capacitance holding is achieved by determining the thicknesses of the inner and outer layers of each electrode in the wound electrode body so that Δt defined by the equation (3) satisfies at least the equation (4). A highly efficient secondary battery can be obtained.

変形例 第2B図、第2C図、第3B図及び第3C図に本実施例1の変
形例について二例を示す。
Modified Example FIGS. 2B, 2C, 3B and 3C show two examples of modified examples of the first embodiment.

第2B図は、第2A図に示す積層体31において、負極1の
外周層12と内周層13との厚さを等しくし、正極2の外周
層23の厚さt23を内周層22の厚さt22よりも厚くして構成
された積層体31aを示す。第3B図に、このような積層体3
1aを用いて実施例1と同様にして得られる巻回電極体10
aの中心付近の横断面を示す。
Figure 2B, in the laminate 31 shown in Figure 2A, equal the thickness of the inner circumferential layer 13 and the outer peripheral layer 12 of the negative electrode 1, the inner circumferential layer thickness t 23 of the outer peripheral layer 23 of the positive electrode 2 22 thicker than the thickness t 22 illustrates a laminate 31a which is configured for. FIG. 3B shows such a laminate 3
A wound electrode body 10 obtained in the same manner as in Example 1 using 1a
The cross section near the center of a is shown.

この巻回電極体10aによれば、負極1の外周層12と内
周層13との厚さは等しいが、正極2の外周層23の厚さt
23が内周層22の厚さt22よりも厚いから、負極外周層13
と対向する正極内周層22の正極活物質がより少なくなり
かつ負極外周層13のさらに1周だけ外周に位置する負極
内周層12と対向する正極外周層23の正極活物質がより多
くなる。
According to the wound electrode body 10a, the outer layer 12 and the inner layer 13 of the negative electrode 1 have the same thickness, but the outer layer 23 of the positive electrode 2 has the same thickness t.
Since 23 is greater than the thickness t 22 of the inner peripheral layer 22, the negative electrode outer peripheral layer 13
The positive electrode active material of the positive electrode outer peripheral layer 23 facing the negative electrode inner peripheral layer 12 located further around the outer periphery of the negative electrode outer peripheral layer 13 is further reduced, and the positive electrode active material of the positive electrode outer peripheral layer 23 facing the negative electrode inner peripheral layer 12 is further increased. .

従って、負極外周層13の負極活物質における充電に関
する負荷は、この外周層13のさらに1周だけ外周に位置
する負極内周層12と比べて重すぎることはないから、上
述と同様の効果を得ることができる。
Therefore, the load related to charging of the negative electrode active material of the negative electrode outer layer 13 is not too heavy as compared with the negative electrode inner peripheral layer 12 which is located one outer circumference of the outer peripheral layer 13. Obtainable.

次に、第2C図には、第2A図に示す積層体31において、
負極1及び正極2ともに外周層を内周層よりも厚くして
構成された積層体31bを示す。第3C図に、このような積
層体31bを用いて実施例1と同様にして得られる巻回電
極体10bの中心付近の横断面を示す。
Next, in FIG. 2C, in the laminate 31 shown in FIG. 2A,
Both the negative electrode 1 and the positive electrode 2 show a laminate 31b in which the outer layer is thicker than the inner layer. FIG. 3C shows a cross section near the center of a wound electrode body 10b obtained in the same manner as in Example 1 using such a laminate 31b.

この巻回電極体10bは、両電極においてそれらの外周
層を内周層よりも厚く構成しているから、上述と同様の
効果を得ることができる。
In the spirally wound electrode body 10b, the outer layer is formed thicker than the inner layer in both electrodes, so that the same effect as described above can be obtained.

実施例2 本実施例2は負極内周層と負極外周層とにおける負極
活物質担持体の含有率を変えたものである。
Example 2 In Example 2, the content of the negative electrode active material carrier in the negative electrode inner peripheral layer and the negative electrode outer peripheral layer was changed.

本実施例2による非水電解質二次電池は、第1図に示
すものと同様の構成でありかつ実施例1における電池A
と同様にして作製でき、以下に述べる点が異なるもので
ある。
The non-aqueous electrolyte secondary battery according to the second embodiment has the same configuration as that shown in FIG.
It can be manufactured in the same manner as described above, and differs in the following points.

負極1を作成するために、負極活物質担持体としての
ピッチコークスを87重量部及び結着剤としてのPVDFを13
重量部を混合して第1の負極合剤のスラリーを得た。
To prepare the negative electrode 1, 87 parts by weight of pitch coke as a negative electrode active material support and 13 parts of PVDF as a binder were used.
Parts by weight were mixed to obtain a slurry of the first negative electrode mixture.

また、ピッチコークス85重量部及びPVDFを15重量部を
混合して第2の負極合剤のスラリーを得た。
Separately, 85 parts by weight of pitch coke and 15 parts by weight of PVDF were mixed to obtain a second slurry of the negative electrode mixture.

負極集電体11の一方の面(第4B図に示す巻回電極体40
にした際の負極外周層13に相当する側)に上記第1の負
極合剤のスラリーを塗布した。そして、他方の面(巻回
電極体40における負極内周層12に相当する側)に上記第
2の負極合剤のスラリーを塗布した。続いて実施例1と
同様の工程をへて帯状の負極1を得た。
One surface of the negative electrode current collector 11 (the wound electrode body 40 shown in FIG. 4B)
The above-mentioned slurry of the first negative electrode mixture was applied to the negative electrode outer peripheral layer 13). Then, the slurry of the second negative electrode mixture was applied to the other surface (the side corresponding to the negative electrode inner peripheral layer 12 in the wound electrode body 40). Subsequently, a strip-shaped negative electrode 1 was obtained through the same steps as in Example 1.

負極集電体11の両面において、両層の厚さt13とt12
は等しく80μmであった。また、この負極1の幅は41.5
5mm、長さLは270mmであった。
In both sides of the negative electrode current collector 11 were equally 80μm and the thickness t 13 and t 12 of both layers. The width of the negative electrode 1 is 41.5
The length L was 5 mm and the length L was 270 mm.

次に、正極2を実施例1と同様にして得て、その正極
集電体21の両面において、両層の厚さt23とt22とは等し
く80μmであった。また、この正極2の幅は40.55mm、
長さLは230mmであった。
Next, the positive electrode 2 obtained in the same manner as in Example 1, in both the positive electrode current collector 21 were equally 80μm and the thickness t 23 and t 22 of both layers. The width of the positive electrode 2 is 40.55 mm,
The length L was 230 mm.

上記負極1の外周層13側及び内周層12側における負極
活物質担持体としてのピッチコークスの含有率は、第1
及び第2の負極合剤におけるピッチコークスの混合比
(配合比)が上述の通りであるから、それぞれ87重量%
及び85重量%である。
The content of the pitch coke as a negative electrode active material carrier on the outer layer 13 side and the inner layer 12 side of the negative electrode 1 is 1st.
And the mixing ratio (mixing ratio) of the pitch coke in the second negative electrode mixture is as described above, and therefore, each is 87% by weight.
And 85% by weight.

次に、上述の負極1及び正極2を第2A図に示すような
順序で第1及び第2のセパレータ3a、3bとともに積層し
て積層体を得てから、この積層体から実施例1と同様に
して巻回電極体40を得た。この場合、両電極において内
周層と外周層との厚さは夫々等しいから、巻回電極体40
の構造は、第4B図に示すものと実質的に同じである。
Next, the above-described negative electrode 1 and positive electrode 2 were laminated with the first and second separators 3a and 3b in the order shown in FIG. 2A to obtain a laminate. Thus, a wound electrode body 40 was obtained. In this case, since the thicknesses of the inner layer and the outer layer are equal in both electrodes, the wound electrode body 40
Is substantially the same as that shown in FIG. 4B.

上記巻回電極体40によって実施例1と同様にして得ら
れた円筒型非水電解質二次電池を、便宜上、電池B′と
する。
The cylindrical non-aqueous electrolyte secondary battery obtained in the same manner as in Example 1 by using the wound electrode body 40 is referred to as a battery B 'for convenience.

また、上記第1及び第2の負極合剤におけるピッチコ
ークスの配合比を変えることによって、負極外周層13と
負極内周層12とにおけるピッチコークスの含有率を下記
の第3表に示すように3通りに変えた負極1を用いた以
外は、電池B′と同様にして得られた非水電解質二次電
池を、夫々電池C′、D′、E′とする。
Further, by changing the mixing ratio of pitch coke in the first and second negative electrode mixtures, the content of pitch coke in the negative electrode outer peripheral layer 13 and the negative electrode inner peripheral layer 12 was changed as shown in Table 3 below. The non-aqueous electrolyte secondary batteries obtained in the same manner as the battery B 'except that the negative electrode 1 was changed in three ways are referred to as batteries C', D ', and E', respectively.

また、上述の電池B′〜E′と同様にピッチコークス
の含有率を4通りに変えるとともに負極外周層13と負極
内周層12との厚さを100μm及び80μmにした以外は、
電池B′と同様にして得られた非水電解質二次電池を、
下記の第3表に示すように、夫々電池G′、H′、
I′、J′とする。この場合の電極巻回体の構造は、第
3A図に示すものと実質的に同じである。
Also, except that the content of the pitch coke was changed to four in the same manner as in the batteries B ′ to E ′, and the thicknesses of the negative electrode outer peripheral layer 13 and the negative electrode inner peripheral layer 12 were set to 100 μm and 80 μm, respectively.
Non-aqueous electrolyte secondary battery obtained in the same manner as battery B '
As shown in Table 3 below, batteries G ', H',
I 'and J'. The structure of the electrode winding body in this case is
It is substantially the same as that shown in FIG. 3A.

比較例2 下記の第3表に示すように、負極外周層13と負極内周
層12とにおけるピッチコークスの含有率を等しく(85重
量%)し、各々の厚さを電池B′、電池G′と同様にし
た以外は、電池B′と同様にして得られた非水電解質二
次電池を比較例として夫々電池A′、F′とする。電池
A′は従来と同様の構成である。
Comparative Example 2 As shown in Table 3 below, the content of the pitch coke in the negative electrode outer peripheral layer 13 and the negative electrode inner peripheral layer 12 was made equal (85% by weight), and the thicknesses of the batteries B 'and G were changed. The non-aqueous electrolyte secondary batteries obtained in the same manner as the battery B 'except for the same procedure as the battery B' are referred to as batteries A 'and F', respectively, as comparative examples. Battery A 'has the same configuration as the conventional one.

上記10種類の電池について、それぞれ460mAの電流で
上限電圧4.1Vとして2時間充電し、続いて18Ωで、放電
終止電圧2.75Vまで放電させる充放電サイクルを行い容
量保持率を調査した。
Each of the 10 batteries was charged at a current of 460 mA at an upper limit voltage of 4.1 V for 2 hours, and then subjected to a charge / discharge cycle of discharging at 18Ω to a discharge end voltage of 2.75 V, and the capacity retention was examined.

第1回目の放電容量、第200回目の放電容量及びこれ
らの値から求めた容量保持率を第4表に夫々示す。
Table 4 shows the first discharge capacity, the 200th discharge capacity, and the capacity retention rates obtained from these values.

上記第4表に示すように電池B′、C′、D′、
H′、I′は容量保持率が85%以上あり、良好な結果を
示している。
As shown in Table 4 above, batteries B ', C', D ',
H 'and I' have a capacity retention of 85% or more, showing good results.

また、従来と同様の構成である比較例2の電池A′は
最も低い容量保持率を示している。電池F′はその負極
外周層13の厚さが負極内周層12よりも厚いから電池A′
よりも高い容量保持率を示すと考えられる。
Further, the battery A 'of Comparative Example 2 having the same configuration as the conventional one has the lowest capacity retention. Since the thickness of the negative electrode outer peripheral layer 13 of the battery F 'is larger than that of the negative electrode inner peripheral layer 12, the battery A'
It is thought to show a higher capacity retention rate.

上述の結果より、負極内周層12と負極外周層13とにお
ける負極活物質担持体の含有率を外周層13においてより
高くすることによって、外周層13における活物質量を内
周層12よりも多くすることができるから、実施例1と同
様の効果が得られる。
From the above results, by increasing the content of the negative electrode active material carrier in the negative electrode inner peripheral layer 12 and the negative electrode outer layer 13 in the outer layer 13, the amount of active material in the outer layer 13 is smaller than that in the inner layer 12. Since the number can be increased, the same effect as in the first embodiment can be obtained.

なお、正極2の外周層23における正極活物質の含有率
を内周層22よりも高くすることによっても、同様の効果
が得られる。また、両電極において外周層の活物質又は
活物質担持体の含有率を内周層よりも高くすることによ
って、同様の効果が得られる。
The same effect can be obtained by making the content ratio of the positive electrode active material in the outer peripheral layer 23 of the positive electrode 2 higher than that in the inner peripheral layer 22. The same effect can be obtained by making the content of the active material or the active material carrier in the outer layer higher than that in the inner layer in both electrodes.

また、上述の結果は、電極の内周層と外周層とにおけ
る活物質又は活物質担持体の含有率比(Xa/Xb)に関し
てある好ましい範囲があることを示唆している。
Further, the above results suggest that there is a certain preferable range for the content ratio ( Xa / Xb ) of the active material or the active material carrier in the inner peripheral layer and the outer peripheral layer of the electrode.

本発明者らのさらなる研究によれば、電極における外
周層の活物質又は活物質担持体の含有率(Xa)とこの電
極における内周層の活物質又は活物質担持体の含有率
(Xb)との比(Xa/Xb)の好ましい範囲は、 である。ここでLは電極の長さ(mm)、taは電極の外周
層の厚さ(mm)及びtbは同じ電極の内周層の厚さ(mm)
である。
According to further studies by the present inventors, the content (X a ) of the active material or the active material carrier in the outer peripheral layer in the electrode and the content (X a ) of the active material or the active material carrier in the inner peripheral layer in the electrode are described. a preferred range of b) the ratio of (X a / X b), the It is. Where L is the electrode length (mm), t a is the thickness of the peripheral layer of the electrode (mm) and t b is the thickness of the inner circumferential layer of the same electrode (mm)
It is.

また、Xa/Xbのより好ましい範囲は、 である。Further, a more preferable range of X a / X b is: It is.

なお、上記電極は負極、正極のいずれであってもよ
い。
The electrode may be a negative electrode or a positive electrode.

上記式(7)及び(8)から上記第3表及び第4表に
おける結果を考察すると、電極の外周層と内周層とにお
ける活物質又は活物質担持体の含有率比(Xa/Xb)が、
少なくとも式(7)を満足すれば電池の容量保持率は85
%以上となることがわかり、Xa/Xbが式(8)をさらに
満足すれば容量保持率はさらに上昇することがわかる。
以上のことからXa/Xbが少なくとも式(7)を満足する
ように、巻回電極体において電極の外周層と内周層とに
おける活物質又は活物質担持体の含有率比を決定するこ
とによって容量保持率のよい二次電池を得ることができ
る。
Considering the results in Tables 3 and 4 from the above equations (7) and (8), the content ratio (X a / X) of the active material or the active material carrier in the outer layer and the inner layer of the electrode is considered. b )
If at least equation (7) is satisfied, the battery capacity retention rate is 85
%, And it can be seen that when X a / X b further satisfies the expression (8), the capacity retention rate further increases.
From the above, the content ratio of the active material or the active material carrier in the outer layer and the inner layer of the electrode in the spirally wound electrode body is determined so that X a / X b satisfies at least the expression (7). Thereby, a secondary battery having a good capacity retention can be obtained.

なお、本発明による非水電解質二次電池は、渦巻状の
巻回電極体を備える非水電解質二次電池であれば円筒型
以外の形状であってよく、角筒型などでもよい。
The non-aqueous electrolyte secondary battery according to the present invention may have a shape other than a cylindrical shape, or may be a prismatic shape, as long as the non-aqueous electrolyte secondary battery includes a spirally wound electrode body.

〔発明の効果〕〔The invention's effect〕

本発明によれば、非水電解質二次電池の巻回電極体に
おいて少なくともいずれか一方の電極の外周層における
活物質量をこの電極の内周層よりも多くすることによっ
て、この電極の外周層における活物質の充放電反応に関
する負荷をこの電極の内周層と同程度にできるから、充
放電の繰り返しによる活物質の劣化及び電極表面におけ
る活物質の異常析出等を防止できる。従って、非水電解
質二次電池における充放電サイクルに伴う電池容量の低
下を防ぐことができる。この結果、充放電サイクル特性
及び重負荷特性に優れ、信頼性の高い非水電解質二次電
池を提供できるようになり、その工業的及び商業的価値
は大である。
According to the present invention, in the wound electrode body of the non-aqueous electrolyte secondary battery, the amount of active material in the outer layer of at least one of the electrodes is made larger than that of the inner layer of the electrode, whereby the outer layer of the electrode is formed. In this case, the load on the charge / discharge reaction of the active material can be made approximately the same as that of the inner peripheral layer of the electrode. Therefore, it is possible to prevent a decrease in battery capacity due to a charge / discharge cycle in the nonaqueous electrolyte secondary battery. As a result, a highly reliable nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and heavy load characteristics can be provided, and its industrial and commercial value is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3C図は本発明による実施例1、実施例2及び
変形例を示すものであって、第1図は第3A図に示す巻回
電極体を具備する円筒型非水電解質二次電池の概略的な
縦断面図、第2A図〜第2C図は、負極、正極、第1及び第
2のセパレータを積層して得られる積層体を示すもので
あって、第2A図は負極の外周層側の厚さを負極の内周層
側の厚さよりも厚くし正極の外周層側と内周層側との厚
さを等しく構成した積層体の側面図、第2B図は正極の外
周層側の厚さを正極の内周層側の厚さよりも厚くし負極
の外周層側と内周層側との厚さを等しく構成した変形例
の積層体の側面図、第2C図は負極及び正極共にそれぞれ
の外周層側の厚さを内周層側の厚さよりも厚く構成した
別の変形例の積層体の側面図、第3A図は第2A図に示す積
層体を渦巻状に巻回して得られる巻回電極体の中心付近
の一部横断面図、第3B図は第2B図に示す積層体を渦巻状
に巻回して得られる変形例の巻回電極体の中心付近の一
部横断面図、第3C図は第2C図に示す積層体を渦巻状に巻
回して得られる別の変形例の巻回電極体の中心付近の一
部横断面図である。 第4A図は従来例、比較例及び本実施例における巻回電極
体の斜視図、第4B図は従来例、比較例及び実施例におい
て両電極のそれぞれの外周層と内周層との厚さを等しく
構成した巻回電極体の中心付近の一部横断面図である。 なお図面に用いられた符号において、 1……負極(第1又は第2の電極) 2……正極(第2又は第1の電極) 3a……第1のセパレータ 3b……第2のセパレータ 10、10a、10b、40……巻回電極体 11……負極集電体 12……負極内周層 13……負極外周層 t12……負極内周層の厚さ t13……負極外周層の厚さ 21……正極集電体 22……正極内周層 23……正極外周層 t22……正極内周層の厚さ t23……正極外周層の厚さ である。
1 to 3C show Embodiments 1, 2 and modifications according to the present invention. FIG. 1 shows a cylindrical nonaqueous electrolyte having a wound electrode body shown in FIG. 3A. 2A to 2C show a laminate obtained by laminating a negative electrode, a positive electrode, and first and second separators, and FIG. 2A shows a negative electrode. The thickness of the outer layer of the negative electrode is larger than the thickness of the inner layer of the negative electrode, and the thickness of the outer layer and the inner layer of the positive electrode is equal to each other. FIG. 2C is a side view of a laminated body of a modified example in which the thickness of the outer peripheral layer side is made larger than the thickness of the inner peripheral layer side of the positive electrode and the thickness of the outer peripheral layer side and the inner peripheral layer side of the negative electrode are equal. The negative electrode and the positive electrode are both side views of the laminate of another modified example in which the thickness of the outer layer side is larger than the thickness of the inner layer side, and FIG. 3A is a spiral of the laminate shown in FIG. 2A. Winding 3B is a partial cross-sectional view near the center of the wound electrode body, and FIG. 3B is a partial cross-sectional view near the center of a wound electrode body of a modified example obtained by spirally winding the laminate shown in FIG. 2B. FIG. 3C is a partial cross-sectional view near the center of a spirally wound electrode body of another modified example obtained by spirally winding the laminate shown in FIG. 2C. FIG. 4A is a perspective view of the wound electrode body in the conventional example, the comparative example, and the present example, and FIG. 4B is the thickness of the outer peripheral layer and the inner peripheral layer of each of the conventional example, the comparative example, and the example. FIG. 4 is a partial cross-sectional view near the center of a wound electrode body configured equally. In addition, in the code | symbol used for drawing, 1 ... Negative electrode (1st or 2nd electrode) 2 ... Positive electrode (2nd or 1st electrode) 3a ... 1st separator 3b ... 2nd separator 10 , 10a, 10b, 40 ...... wound electrode body 11 ...... thickness t 13 ...... anode peripheral layer of the negative electrode current collector 12 ...... Fukyokunai peripheral layer 13 ...... anode peripheral layer t 12 ...... Fukyokunai circumferential layer of the thickness of the thickness 21 ...... cathode current collector 22 ...... positive electrode peripheral layer 23 ...... positive peripheral layer t 22 ...... positive electrode peripheral layer thickness t 23 ...... positive peripheral layer of.

フロントページの続き (72)発明者 大矢 邦泰 福島県郡山市日和田町高倉字下杉下1― 1 株式会社ソニー・エナジー・テック 郡山工場内 (56)参考文献 特開 平2−56871(JP,A) 特開 平2−51875(JP,A) 特開 平1−279578(JP,A) 特開 昭61−77255(JP,A) 特開 昭63−285878(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 10/04 H01M 4/02 - 4/04 Continued on the front page (72) Inventor Kuniyasu Oya 1-1, Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Koriyama Plant (56) References JP-A-2-56871 (JP, A JP-A-2-51875 (JP, A) JP-A-1-279578 (JP, A) JP-A-61-77255 (JP, A) JP-A-63-285878 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 10/40 H01M 10/04 H01M 4/02-4/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムのドープと脱ドープとが可能な活
物質担持体として炭素材が用いられている負極の合剤層
と、リチウムのドープと脱ドープとが可能な電極活物質
として遷移金属とリチウムとの複合化合物が用いられて
いる正極の合剤層とが、帯状の金属箔から成る集電体の
両面に形成されている帯状の第1及び第2の電極と、帯
状の第1及び第2のセパレータとが交互に積層された状
態で渦巻状に巻回されており、 上記第1の電極の上記合剤層である外周層と上記第2の
電極の上記合剤層である内周層との間に上記第1のセパ
レータが介在しており、 上記第1の電極の上記合剤層である内周層と上記第2の
電極の上記合剤層である外周層との間に上記第2のセパ
レータが介在しており、 少なくとも上記第1又は第2の電極のいずれか一方の電
極の上記外周層の厚さがこの電極の上記内周層の厚さよ
りも厚いことによって、上記一方の電極の上記外周層に
おける活物質量がこの電極の上記内周層における活物質
量よりも多くなっている巻回電極体を具備する非水電解
質二次電池において、 上記第1の電極における上記内周層の厚さt12及び上記
外周層の厚さt13並びに上記第2の電極における上記内
周層の厚さt22及び上記外周層の厚さt23が、上記第1及
び第2の電極並びに上記第1及び第2のセパレータの厚
さの和Tと、 Δt1={(t13−t12)/t12}×100 Δt2={(t23−t22)/t22}×100 Δt=Δt1+Δt2 2≦Δt≦0.055T の関係にあることを特徴とする非水電解質二次電池。
1. A negative electrode mixture layer in which a carbon material is used as an active material carrier capable of doping and undoping lithium, and a transition metal as an electrode active material capable of doping and undoping lithium. A first electrode layer and a second electrode formed on both sides of a current collector formed of a strip-shaped metal foil; and a first strip-shaped electrode formed on both sides of a collector formed of a strip-shaped metal foil. And the second separator are spirally wound in a state of being alternately laminated, and are an outer peripheral layer that is the mixture layer of the first electrode and the mixture layer of the second electrode. The first separator is interposed between the inner layer and the inner layer, and the inner layer that is the mixture layer of the first electrode and the outer layer that is the mixture layer of the second electrode The second separator is interposed therebetween, and at least one of the first and second electrodes Since the thickness of the outer layer of one electrode is greater than the thickness of the inner layer of the electrode, the amount of active material in the outer layer of the one electrode is reduced by the amount of active material in the inner layer of the electrode. In a non-aqueous electrolyte secondary battery including a wound electrode body that is larger than the above, the thickness t 12 of the inner peripheral layer and the thickness t 13 of the outer peripheral layer in the first electrode and the second electrode the thickness t 23 of the thickness t 22 and the peripheral layer of the inner peripheral layer, the sum T of the thickness of the first and second electrodes and the first and second separators in the electrode, Delta] t 1 = {(T 13 −t 12 ) / t 12 } × 100 Δt 2 = {(t 23 −t 22 ) / t 22 } × 100 Δt = Δt 1 + Δt 2 2 ≦ Δt ≦ 0.055T Non-aqueous electrolyte secondary battery.
【請求項2】上記帯状の第1及び第2の電極と上記帯状
の第1及び第2のセパレータとが上記第2のセパレー
タ、上記正極、上記第1のセパレータ及び上記負極の順
序で積層されている積層体が、上記負極が最内周に位置
するように上記積層体の長さ方向へ巻芯上で渦巻状に多
数回巻回されていることを特徴とする請求項1記載の非
水電解質二次電池。
2. The strip-shaped first and second electrodes and the strip-shaped first and second separators are laminated in the order of the second separator, the positive electrode, the first separator, and the negative electrode. 2. The non-woven fabric according to claim 1, wherein the stacked body is spirally wound many times on a winding core in a length direction of the stacked body such that the negative electrode is located at an innermost circumference. 3. Water electrolyte secondary battery.
【請求項3】リチウムのドープと脱ドープとが可能な活
物質担持体として炭素材が用いられている負極の合剤層
と、リチウムとドープと脱ドープとが可能な電極活物質
として遷移金属とリチウムとの複合化合物が用いられて
いる正極の合剤層とが、帯状の金属箔から成る集電体の
両面に形成されている帯状の第1及び第2の電極と、帯
状の第1及び第2のセパレータとが交互に積層された状
態で渦巻状に巻回されており、 上記第1の電極の上記合剤層である外周層と上記第2の
電極の上記合剤層である内周層との間に上記第1のセパ
レータが介在しており、 上記第1の電極の上記合剤層である内周層と上記第2の
電極の上記合剤層である外周層との間に上記第2のセパ
レータが介在しており、 少なくとも上記第1又は第2の電極のいずれか一方の電
極の上記外周層における活物質含有率がこの電極の上記
内周層における活物質含有率よりも高いことによって、
上記一方の電極の上記外周層における活物質量がこの電
極の上記内周層における活物質量よりも多くなっている
巻回電極体を具備する非水電解質二次電池において、 上記第1及び第2の電極における上記外周層の上記電極
活物質又は上記活物質担持体の含有率Xaと上記内周層の
上記電極活物質又は上記活物質担持体の含有率Xbとの比
Xa/Xbが、上記第1及び第2の電極の長さL、上記外周
層の厚さta及び上記内周層の厚さtbと、 (L+40ta)/(L−40tb)≦Xa/Xb≦(L+120ta)/(L−120tb) の関係にあることを特徴とする非水電解質二次電池。
3. A negative electrode mixture layer in which a carbon material is used as an active material carrier capable of doping and undoping lithium, and a transition metal as an electrode active material capable of doping and undoping lithium. A first electrode layer and a second electrode formed on both sides of a current collector formed of a strip-shaped metal foil; and a first strip-shaped electrode formed on both sides of a collector formed of a strip-shaped metal foil. And the second separator are spirally wound in a state of being alternately laminated, and are an outer peripheral layer that is the mixture layer of the first electrode and the mixture layer of the second electrode. The first separator is interposed between the inner layer and the inner layer, and the inner layer that is the mixture layer of the first electrode and the outer layer that is the mixture layer of the second electrode The second separator is interposed therebetween, and at least one of the first and second electrodes The active material content in the peripheral layer of the square of the electrode is higher than the active material content in the inner peripheral layer of the electrode,
In a nonaqueous electrolyte secondary battery including a wound electrode body in which the amount of active material in the outer peripheral layer of the one electrode is larger than the amount of active material in the inner peripheral layer of the electrode, the ratio between the content of X b of the electrode active material or the active material support of the electrode active material or the active material carrying member content X a and the inner peripheral layer of the peripheral layer in the second electrode
X a / X b is, the thickness t b of the lengths of the first and second electrodes L, the thickness of the peripheral layer t a and the inner peripheral layer, (L + 40t a) / (L-40t b A non-aqueous electrolyte secondary battery characterized by the following relationship: ≦ X a / X b ≦ (L + 120 t a ) / (L−120 t b ).
【請求項4】上記帯状の第1及び第2の電極と上記帯状
の第1及び第2のセパレータとが上記第2のセパレー
タ、上記正極、上記第1のセパレータ及び上記負極の順
序で積層されている積層体が、上記負極が最内周に位置
するように上記積層体の長さ方向へ巻芯上で渦巻状に多
数回巻回されていることを特徴とする請求項3記載の非
水電解質二次電池。
4. The strip-shaped first and second electrodes and the strip-shaped first and second separators are laminated in the order of the second separator, the positive electrode, the first separator, and the negative electrode. The non-woven fabric according to claim 3, wherein the stacked body is spirally wound a number of times on a winding core in a length direction of the stacked body such that the negative electrode is located at an innermost circumference. Water electrolyte secondary battery.
JP02112261A 1990-04-28 1990-04-28 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3131976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02112261A JP3131976B2 (en) 1990-04-28 1990-04-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02112261A JP3131976B2 (en) 1990-04-28 1990-04-28 Non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP29009899A Division JP3246553B2 (en) 1999-10-12 1999-10-12 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0412471A JPH0412471A (en) 1992-01-17
JP3131976B2 true JP3131976B2 (en) 2001-02-05

Family

ID=14582281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02112261A Expired - Lifetime JP3131976B2 (en) 1990-04-28 1990-04-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3131976B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257717B2 (en) 2011-07-22 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
US9742024B2 (en) 2010-12-13 2017-08-22 Sony Corporation Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683834A (en) * 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2207801C (en) * 1996-06-19 2004-03-30 Hideki Kaido Nonaqueous electrolyte battery
KR100274884B1 (en) * 1998-01-22 2000-12-15 김순택 Prismatic secondary battery righting n/p rate
KR100274895B1 (en) * 1998-09-03 2000-12-15 김순택 Manufacturing method of secondary battery
JP3997702B2 (en) * 2000-10-06 2007-10-24 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP4261834B2 (en) * 2002-07-25 2009-04-30 泉工医科工業株式会社 Liquid bag, liquid bag mouth member and method of manufacturing the same
JP4529750B2 (en) * 2005-03-23 2010-08-25 新神戸電機株式会社 Winding type sealed lead-acid battery
JP4855708B2 (en) * 2005-04-25 2012-01-18 パナソニック株式会社 Electrode hoop rolling method
US7867553B2 (en) 2006-08-23 2011-01-11 The Gillette Company Method of making cathode including iron disulfide
US8313862B2 (en) 2006-09-07 2012-11-20 Panasonic Corporation Non-aqueous battery with columnar active material
NZ584315A (en) 2007-10-19 2012-05-25 Eveready Battery Inc Lithium-iron disulfide cell design comprising a jellyroll electrode
SG178262A1 (en) 2009-08-27 2012-03-29 Eveready Battery Inc Lithium-iron disulfide cathode formulation having high pyrite content and low conductive additives
JP6155605B2 (en) 2012-11-16 2017-07-05 ソニー株式会社 Lithium ion secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177255A (en) * 1984-09-20 1986-04-19 Sanyo Electric Co Ltd Cylindrical alkaline zinc storage battery
JPH0795454B2 (en) * 1987-05-19 1995-10-11 三洋電機株式会社 Non-aqueous secondary battery
JP2638919B2 (en) * 1988-04-30 1997-08-06 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2770334B2 (en) * 1988-08-12 1998-07-02 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2701347B2 (en) * 1988-08-23 1998-01-21 ソニー株式会社 Non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742024B2 (en) 2010-12-13 2017-08-22 Sony Corporation Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system
US9257717B2 (en) 2011-07-22 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH0412471A (en) 1992-01-17

Similar Documents

Publication Publication Date Title
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
US8530081B2 (en) Nonaqueous electrolyte secondary battery including positive electrode active material layers having parallel grooves
US7556881B2 (en) Lithium secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
JP3131976B2 (en) Non-aqueous electrolyte secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JPH08171917A (en) Cell
JP3589021B2 (en) Lithium ion secondary battery
US11936030B2 (en) Fabrication process to make electrodes by rolling
JP3466631B2 (en) Non-aqueous electrolyte secondary battery
JP3182786B2 (en) Battery
JP3371908B2 (en) Non-aqueous electrolyte secondary battery
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP3013392B2 (en) Spiral type non-aqueous electrolyte battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP2000082495A (en) Solid electrolyte battery
JP2506572Y2 (en) Lithium ion secondary battery
JP4594591B2 (en) Electrochemical element
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JP2932498B2 (en) Battery
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JP2932516B2 (en) Non-aqueous electrolyte secondary battery
JP3196223B2 (en) Battery pack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10