JP2964833B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2964833B2
JP2964833B2 JP5120861A JP12086193A JP2964833B2 JP 2964833 B2 JP2964833 B2 JP 2964833B2 JP 5120861 A JP5120861 A JP 5120861A JP 12086193 A JP12086193 A JP 12086193A JP 2964833 B2 JP2964833 B2 JP 2964833B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
lithium secondary
foil
iron foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5120861A
Other languages
Japanese (ja)
Other versions
JPH06310147A (en
Inventor
寿 塚本
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP5120861A priority Critical patent/JP2964833B2/en
Publication of JPH06310147A publication Critical patent/JPH06310147A/en
Application granted granted Critical
Publication of JP2964833B2 publication Critical patent/JP2964833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術とその課題】リチウム二次電池は、高エネ
ルギー密度の新しい電池として期待されている。この電
池は、負極の集電体として銅箔を用いている。従来は、
強度の点からもっぱら圧延法により製造した銅箔を用い
ていた。
2. Description of the Related Art A lithium secondary battery is expected as a new battery having a high energy density. This battery uses a copper foil as a negative electrode current collector. conventionally,
From the point of strength, a copper foil produced exclusively by a rolling method was used.

【0003】しかし、圧延銅箔を用いたリチウム二次電
池は、銅箔の厚さが35ミクロン以下になると著しく高
価になるため、薄形化がコスト面で困難であった。
However, a lithium secondary battery using a rolled copper foil becomes extremely expensive when the thickness of the copper foil is 35 μm or less, so that it has been difficult to reduce the thickness in terms of cost.

【0004】また、電解法によって製造した銅箔を用い
ると、厚さが35μm以下ではコスト面で有利になる
が、圧延箔に比較して強度が低下するので、電極製造が
困難になるという新たな問題を生じる。
[0004] When a copper foil manufactured by an electrolytic method is used, a thickness of 35 μm or less is advantageous in terms of cost, but the strength is lower than that of a rolled foil. Problems arise.

【0005】[0005]

【課題を解決するための手段】本発明は、厚さ35ミク
ロン以下の電解鉄箔を負極の集電体に用いたリチウム二
次電池を用いて上記課題を解決するものである。また、
前記の電解鉄箔の両面にニッケルメッキを施して本発明
の効果をより高めるものである。
The present invention solves the above-mentioned problems by using a lithium secondary battery in which an electrolytic iron foil having a thickness of 35 μm or less is used as a current collector for a negative electrode. Also,
Nickel plating is applied to both surfaces of the electrolytic iron foil to further enhance the effect of the present invention.

【0006】[0006]

【作用】鉄は、銅の約20%と極めて安価な材料である
ので、コスト上本質的に有利である。鉄箔の厚さが35
μm以下になると、圧延鉄箔に比較して電解鉄箔がより
安価となる。電解鉄箔は、圧延鉄箔に比較して強度が若
干低下するが、それでも銅箔に比較して5倍以上の引っ
張り強度を有するので、電極製造上なんら問題を生じな
い。鉄箔の問題点としては、輸送中、保管中などの錆の
発生があるが、取り扱いに注意すれば殆ど問題がない。
さらに、鉄箔の両面にニッケルメッキすることにより上
記問題は、完全に解決できる。
Since iron is a very inexpensive material of about 20% of copper, it is essentially advantageous in cost. Iron foil thickness is 35
When the thickness is less than μm, the price of the electrolytic iron foil is lower than that of the rolled iron foil. Although the strength of the electrolytic iron foil is slightly lower than that of the rolled iron foil, it still has a tensile strength five times or more that of the copper foil. As a problem of iron foil, there is rust during transportation and storage, but there is almost no problem if care is taken in handling.
Further, the above problem can be completely solved by nickel plating on both sides of the iron foil.

【0007】上記の結果、本発明のリチウム二次電池
は、負極集電体に用いる電解鉄箔が従来の銅箔に比較し
て約30%ときわめて安価なため電池の製造原価を低下
させることができる。また、電解鉄箔に1ミクロンのニ
ッケルメッキを施した場合にでも、銅箔の約80%程度
の原価となるのでコスト的にまだ有利である。
As a result, in the lithium secondary battery of the present invention, the production cost of the battery is reduced because the electrolytic iron foil used for the negative electrode current collector is extremely inexpensive at about 30% as compared with the conventional copper foil. Can be. Further, even if the electrolytic iron foil is plated with nickel of 1 micron, the cost is still about 80% of that of the copper foil, which is still advantageous in terms of cost.

【0008】また、電解鉄箔は、銅箔に比較して箔の引
っ張り強度が著しく高いので電極製造が容易になるこ
と、およびニッケルメッキによって電極の耐過放電特性
が銅箔に比較して向上することなどの作用もある。この
結果、本発明のリチウム二次電池は、安価で生産性に優
れ、耐過充電性能にも優れたものとなる。
Further, the electrolytic iron foil has an extremely high tensile strength as compared with the copper foil, so that the production of the electrode is easy, and the overdischarge resistance of the electrode is improved by the nickel plating as compared with the copper foil. There are also actions such as doing. As a result, the lithium secondary battery of the present invention is inexpensive, has excellent productivity, and has excellent overcharge resistance.

【0009】[0009]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
The present invention will be described below with reference to preferred embodiments.

【0010】図1に本発明のリチウム二次電池(A)を
示す。この電池は、厚みが7.8mm、幅が40mm、
長さが48mmの角型リチウム二次電池である。
FIG. 1 shows a lithium secondary battery (A) of the present invention. This battery has a thickness of 7.8 mm, a width of 40 mm,
This is a square lithium secondary battery having a length of 48 mm.

【0011】電池ケース1および電池ケース蓋板2は、
60ミクロンのポリプロピレンフィルムで両面をコーテ
ィングした鋼板(厚み0.22mm)を絞り加工して製
作した。
The battery case 1 and the battery case cover plate 2
It was manufactured by drawing a steel plate (0.22 mm thick) coated on both sides with a 60-micron polypropylene film.

【0012】正極板は、活物質のリチウムマンガンスピ
ネル(LiMn2 O4 、平均粒径5μm、91重量部)、導
電助材のケッチェンブラック(2重量部)および結着剤
のポリフッ化ビニリデン粉末(7重量部)をNーメチル
ピロリドン中で混合してペースト化し20μmの圧延ア
ルミニウム箔(正極集電体)に片面が70μmになるよ
うに両面塗布して得た。
The positive electrode plate comprises lithium manganese spinel (LiMn 2 O 4 , average particle size 5 μm, 91 parts by weight) as an active material, ketjen black (2 parts by weight) as a conductive additive, and polyvinylidene fluoride powder as a binder. (7 parts by weight) was mixed in N-methylpyrrolidone to form a paste, which was applied to a rolled aluminum foil (positive electrode current collector) of 20 μm so that one side was 70 μm on both sides.

【0013】負極板は、活物質の人造黒鉛(平均粒径2
5μm、90重量部)と結着剤のポリフッ化ビニリデン
粉末(10重量部)とをNーメチルピロリドン中で混合
してペースト化し、厚さ20ミクロンの電解鉄箔(負極
集電体)上に片面厚さ60μmに両面塗布して得た。こ
れら帯状の電極と微多孔膜セパレータ(厚さ25μm)
とを楕円状に巻回して電極群3を形成した。
The negative electrode plate is made of artificial graphite as an active material (average particle size: 2).
5 μm, 90 parts by weight) and polyvinylidene fluoride powder (10 parts by weight) as a binder are mixed in N-methylpyrrolidone to form a paste, and placed on a 20-μm-thick electrolytic iron foil (negative electrode current collector). It was obtained by coating both sides to a thickness of 60 μm on one side. These band-shaped electrodes and microporous membrane separator (25 μm thickness)
Were wound in an elliptical shape to form an electrode group 3.

【0014】前記電極群の電極端子を電池端子と接続し
た。そして、エチレンカーボネート、ジメチルカーボネ
ートとジエチルカーボネートとを2:2:1の体積比で
混合した溶媒に六フッ化燐酸リチウムを1モル/リット
ル溶解させた電解液を注入後、二重巻締め方式により封
口した。この電池は、平均放電電圧が3.7Vで放電容
量が1000mAhである。
The electrode terminals of the electrode group were connected to battery terminals. Then, an electrolyte obtained by dissolving 1 mol / l of lithium hexafluorophosphate in a solvent in which ethylene carbonate, dimethyl carbonate and diethyl carbonate are mixed at a volume ratio of 2: 2: 1 is injected, and then the double winding method is used. I sealed it. This battery has an average discharge voltage of 3.7 V and a discharge capacity of 1000 mAh.

【0015】つぎに前記実施例の電池(A)で用いた負
極集電体の電解鉄箔を両面に1μmのニッケルメッキを
施した電解鉄箔とした以外は、電池(A)と同様なリチ
ウム二次電池を製作した。これを本発明の電池(B)と
する。
Next, a lithium battery similar to the battery (A) was used except that the electrolytic iron foil of the negative electrode current collector used in the battery (A) of the embodiment was an electrolytic iron foil having nickel plating of 1 μm on both sides. A secondary battery was manufactured. This is designated as battery (B) of the present invention.

【0016】なお、上記実施例では正極活物質としてリ
チウムマンガンスピネルを用いた場合を示したが、正極
活物質は基本的に限定されず、例えばリチウムコバルト
複合酸化物、二硫化チタン、二酸化マンガン、リチウム
マンガン複合酸化物、五酸化バナジウムおよび三酸化モ
リブデンなど種々のものを用いてよい。また、負極活物
質も基本的に限定されず、黒鉛以外の炭素材料やその他
のリチウムインターカレション材料を用いてもよい。さ
らに、電解質も基本的に限定されず、たとえば有機溶媒
として非プロトン溶媒であるエチレンカーボネイトなど
の環状エステル類およびテトラハイドロフラン,ジオキ
ソランなどのエーテル類を単独もしくは2種以上を混合
した溶媒を用い、支持電解質に LiAsF6 ,LiPF6 ,LiCF
3 SO3 ,LiBF4 などを1種または混合して用いてもよ
い。また、固体電解質を用いる場合には、リチウムイオ
ン導電性で電気絶縁性のものであれば何を用いてもよい
が、代表的なものとして、ポリエチレンオキサイドがあ
げられる。
In the above embodiment, the case where lithium manganese spinel was used as the positive electrode active material was shown. However, the positive electrode active material is not fundamentally limited. For example, lithium cobalt composite oxide, titanium disulfide, manganese dioxide, Various materials such as lithium manganese composite oxide, vanadium pentoxide and molybdenum trioxide may be used. Further, the negative electrode active material is not fundamentally limited, and a carbon material other than graphite or another lithium intercalation material may be used. Furthermore, the electrolyte is also basically not limited. For example, as an organic solvent, a solvent in which a cyclic ester such as ethylene carbonate which is an aprotic solvent and an ether such as tetrahydrofuran or dioxolane alone or a mixture of two or more kinds is used, LiAsF 6 , LiPF 6 , LiCF for supporting electrolyte
3 SO 3 , LiBF 4 or the like may be used alone or in combination. When a solid electrolyte is used, any material may be used as long as it has lithium ion conductivity and electrical insulation, but a typical example is polyethylene oxide.

【0017】つぎに負極集電体に圧延銅箔(20μm)
を用いた以外は電池(A)と同様の構成であるリチウム
二次電池製作した。これを従来の電池(ア)とする。
Next, rolled copper foil (20 μm) is formed on the negative electrode current collector.
A lithium secondary battery having the same configuration as that of the battery (A) except for using was manufactured. This is referred to as a conventional battery (A).

【0018】これらの電池の工場原価および負極板製造
工程中の不良発生率について、電池(A)を100%と
して表1に示す。
Table 1 shows the factory cost of these batteries and the rate of occurrence of defects during the negative electrode plate manufacturing process, assuming that battery (A) is 100%.

【0019】[0019]

【表1】 表より本発明の電池(A),(B)は、従来の電池
(ア)に比較して安価でかつ工程不良が少ないとわか
る。これは、本発明の電池では、負極集電体に電解鉄箔
を用いているので、原材料費が安くかつ電極強度が高い
ので製造中の負電極切断などの不良が少なくなったため
である。工程不良の減少すなわち生産性の向上は、工場
原価の低減にさらに効果的である。なお、電池(B)の
不良率が電池(A)のそれよりも低くなっている理由
は、鉄箔にニッケルメッキを施して錆不良が減少したた
めである。
[Table 1] From the table, it can be seen that the batteries (A) and (B) of the present invention are inexpensive and have few process defects as compared with the conventional battery (A). This is because, in the battery of the present invention, the use of electrolytic iron foil for the negative electrode current collector reduces the cost of raw materials and increases the strength of the electrodes, thereby reducing defects such as disconnection of the negative electrode during manufacturing. Reduction of process defects, that is, improvement of productivity, is more effective in reducing factory costs. The reason why the failure rate of the battery (B) is lower than that of the battery (A) is that nickel plating is applied to the iron foil to reduce rust defects.

【0020】[0020]

【発明の効果】本発明により、リチウム二次電池の原材
料費を低下させ、かつ、生産性を向上させることが可能
となる。
According to the present invention, it is possible to reduce raw material costs of a lithium secondary battery and improve productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウム二次電池を示した図。FIG. 1 is a diagram showing a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 電池ケース蓋板 3 電極群 DESCRIPTION OF SYMBOLS 1 Battery case 2 Battery case cover plate 3 Electrode group

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】厚さ35ミクロン以下の電解鉄箔を負極の
集電体に用いたことを特徴とするリチウム二次電池。
1. A lithium secondary battery using an electrolytic iron foil having a thickness of 35 μm or less as a current collector of a negative electrode.
【請求項2】両面にニッケルメッキを施した電解鉄箔を
用いた請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein an electrolytic iron foil plated with nickel on both sides is used.
JP5120861A 1993-04-23 1993-04-23 Lithium secondary battery Expired - Fee Related JP2964833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120861A JP2964833B2 (en) 1993-04-23 1993-04-23 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120861A JP2964833B2 (en) 1993-04-23 1993-04-23 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH06310147A JPH06310147A (en) 1994-11-04
JP2964833B2 true JP2964833B2 (en) 1999-10-18

Family

ID=14796772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120861A Expired - Fee Related JP2964833B2 (en) 1993-04-23 1993-04-23 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2964833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220021000A1 (en) * 2020-07-16 2022-01-20 Toyota Jidosha Kabushiki Kaisha Sulfide all-solid-state battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555298B2 (en) * 1996-01-19 2004-08-18 日本電池株式会社 Sealed secondary battery
JP5277523B2 (en) * 2006-06-27 2013-08-28 日産自動車株式会社 Assembled battery and manufacturing method of assembled battery
WO2013157598A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
KR20140108214A (en) 2012-04-19 2014-09-05 신닛테츠스미킨 카부시키카이샤 Steel foil and method for producing same
WO2014017968A1 (en) * 2012-07-26 2014-01-30 Lifesize Ab Sustainable current collectors for lithium batteries
JP6938128B2 (en) * 2016-10-14 2021-09-22 東洋鋼鈑株式会社 Battery current collector and battery
CN115362580A (en) 2020-03-31 2022-11-18 日铁化学材料株式会社 Ni-plated steel foil for nickel-metal hydride secondary battery current collector, and nickel-metal hydride secondary battery
WO2024207458A1 (en) * 2023-04-07 2024-10-10 宁德时代新能源科技股份有限公司 Current collector and preparation method therefor, secondary battery, and electric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220021000A1 (en) * 2020-07-16 2022-01-20 Toyota Jidosha Kabushiki Kaisha Sulfide all-solid-state battery
US12021243B2 (en) * 2020-07-16 2024-06-25 Toyota Jidosha Kabushiki Kaisha Sulfide all-solid-state battery

Also Published As

Publication number Publication date
JPH06310147A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US8808910B2 (en) Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
JP4049506B2 (en) Lithium secondary battery
JP2011081931A (en) Lithium ion secondary battery
JP3589021B2 (en) Lithium ion secondary battery
JP2020095931A (en) Lithium secondary battery
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP6179404B2 (en) Manufacturing method of secondary battery
JP2001351612A (en) Non-aqueous electrolyte secondary battery
JP2964833B2 (en) Lithium secondary battery
JP2000082471A (en) Lithium ion secondary battery and its manufacture
JPH11329447A (en) Non-aqueous secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP3237015B2 (en) Non-aqueous electrolyte secondary battery
JPH06260168A (en) Lithium secondary battery
JP4199839B2 (en) Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
JP6658069B2 (en) Lithium battery
CN108365171A (en) Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
EP1191618B1 (en) Rechargeable battery using nonaqueous electrolyte
JP2019169346A (en) Lithium ion secondary battery
JP4360022B2 (en) Li-ion battery electrode material and Li-ion battery
JP3511489B2 (en) Method for producing wound electrode body for lithium secondary battery
JP4878690B2 (en) Lithium secondary battery
JP2007335308A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees