JP2001357874A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001357874A
JP2001357874A JP2000176281A JP2000176281A JP2001357874A JP 2001357874 A JP2001357874 A JP 2001357874A JP 2000176281 A JP2000176281 A JP 2000176281A JP 2000176281 A JP2000176281 A JP 2000176281A JP 2001357874 A JP2001357874 A JP 2001357874A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
secondary battery
leveling agent
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000176281A
Other languages
Japanese (ja)
Other versions
JP4106856B2 (en
Inventor
Koji Higashimoto
晃二 東本
Katsunori Suzuki
克典 鈴木
Tomohiro Iguchi
智博 井口
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000176281A priority Critical patent/JP4106856B2/en
Publication of JP2001357874A publication Critical patent/JP2001357874A/en
Application granted granted Critical
Publication of JP4106856B2 publication Critical patent/JP4106856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery of high reliability capable of suppressing voltage drop and excellent in the lifetime characteristic. SOLUTION: In a nonaqueous electrolyte, leveling agent is contained to suppress concentrated precipitation of metal ions in an electrode plat. Examples of such a leveling agent are 1,5-naphthalene-sodium disulfonate, 1,3,6-naphthalene- sodium trisulfonate, saccharin, aldehyde, gelatin, 2 butyne-1,4diol, quinaldine, pyridium compound, ethylene-cyane hydrine, azo dye, potassium thiocyanate, and potassium pyrophosphate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は充放電によりリチウ
ムイオンの放出・吸蔵が可能な正極と、充放電によりリ
チウムイオンの吸蔵・放出が可能な負極と、を非水電解
液に浸潤させた非水電解液二次電池の、寿命特性と信頼
性の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte in which a positive electrode capable of releasing and storing lithium ions by charging and discharging and a negative electrode capable of storing and releasing lithium ions by charging and discharging are infiltrated into a non-aqueous electrolyte. It relates to improvement of life characteristics and reliability of a water electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池に代表される非
水電解液二次電池は、高エネルギー密度であるメリット
を活かして、主にVTRカメラやノートパソコン、携帯
電話などのポータブル機器に使用されている。特に近年
は、負極に炭素材等のリチウムイオンの吸蔵・放出が可
能な材料を用いたリチウムイオン二次電池が普及してい
る。通常、リチウムイオン二次電池の内部構造は捲回式
とされている。すなわち、金属箔に活物質を塗布した正
極及び負極がセパレータを挟んで捲回され、この捲回体
(捲回群)を容器となる円筒形の電池缶に収納し、非水
電解液を注液した後、キャップをつけて封口している。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are mainly used for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. ing. Particularly in recent years, lithium ion secondary batteries using a material capable of inserting and extracting lithium ions, such as a carbon material, for the negative electrode have become widespread. Usually, the internal structure of a lithium ion secondary battery is a wound type. That is, a positive electrode and a negative electrode obtained by applying an active material to a metal foil are wound with a separator interposed therebetween, and the wound body (wound group) is housed in a cylindrical battery can serving as a container, and a nonaqueous electrolyte is poured. After the solution, the cap is put on and sealed.

【0003】電池組立時に、負極活物質として用いられ
る炭素材は、リチウムイオンがいわば放出しきった状
態、すなわち放電状態にある。従って、通常は正極にも
放電状態の活物質、例えば、コバルト酸リチウム(Li
CoO)、ニッケル酸リチウム(LiNiO)、マ
ンガン酸リチウム(LiMn)等が用いられる。
このような正極活物質には十分な電子伝導性がないの
で、リチウムイオン二次電池の正極では、一般に、正極
活物質に、導電剤として黒鉛やカーボンブラック等の低
コストかつ電池内で安定な導電性粉末を含有させ、更に
バインダ(結着剤)を加え、混合して用いられている。
そして、リチウムイオン二次電池は、組立後の初充電に
よって、電池としての機能が付与される。
When assembling a battery, a carbon material used as a negative electrode active material is in a state where lithium ions have been completely released, that is, in a discharged state. Therefore, normally, the positive electrode also has a discharged active material, for example, lithium cobalt oxide (Li).
CoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), or the like is used.
Since such a positive electrode active material does not have sufficient electron conductivity, in the positive electrode of a lithium ion secondary battery, the positive electrode active material generally has a low cost and stable inside the battery such as graphite or carbon black as a conductive agent. A conductive powder is contained, a binder (binder) is further added, and the mixture is used.
Then, the function as a battery is given to the lithium ion secondary battery by initial charging after assembly.

【0004】また、非水電解液二次電池は、高容量、高
出力という利点を有している。このため、近時、電気自
動車や内燃機関と電気モータとを併用したハイブリッド
電気自動車(以下、両者を電気自動車という。)の電源
としても使用されるに至っている。非水電解液二次電池
を電気自動車の電源とする場合には、高電圧を確保する
ために、電池モジュールとして複数の非水電解液二次電
池を電気的に直列に繋いで使用され、直列に接続された
箇々の非水電解液二次電池は電池ジュール内の制御回路
により電圧等が制御されている。
[0004] Non-aqueous electrolyte secondary batteries have the advantages of high capacity and high output. For this reason, recently, it has been used as a power source for an electric vehicle or a hybrid electric vehicle using both an internal combustion engine and an electric motor (hereinafter, both are referred to as electric vehicles). When a non-aqueous electrolyte secondary battery is used as a power source for an electric vehicle, a plurality of non-aqueous electrolyte secondary batteries are used as a battery module by electrically connecting them in series to secure a high voltage. The voltage and the like of each of the non-aqueous electrolyte secondary batteries connected to are controlled by a control circuit in the battery module.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電池モ
ジュールを構成する非水電解液二次電池のうち、一つで
も電圧や容量等の電池特性が他の非水電解液二次電池の
電池特性と異なったり、経時変化等により電池特性の低
下を招くと、その異常特性の非水電解液二次電池が他の
非水電解液二次電池の負荷となって電池モジュール全体
の特性を悪化させる。特に、自己放電が異なると、各非
水電解液二次電池の電圧低下にバラツキが生じ、電池モ
ジュール全体の特性、寿命が非常に短くなる、という問
題がある。また、各非水電解液二次電池の電圧低下のバ
ラツキが大きすぎると、制御回路では非水電解液二次電
池の電圧等の調整制御ができなくなり、最悪の場合には
制御回路内のCPUが暴走して電池モジュールの信頼性
の低下を招く、という問題がある。
However, among the non-aqueous electrolyte secondary batteries constituting the battery module, even one of the non-aqueous electrolyte secondary batteries has battery characteristics such as voltage and capacity that are different from those of other non-aqueous electrolyte secondary batteries. If the battery characteristics are deteriorated due to a difference or a change over time, the non-aqueous electrolyte secondary battery having the abnormal characteristics becomes a load of another non-aqueous electrolyte secondary battery, and deteriorates the characteristics of the entire battery module. In particular, if the self-discharge is different, there is a problem in that the voltage drop of each non-aqueous electrolyte secondary battery varies, and the characteristics and life of the entire battery module become extremely short. Also, if the variation in the voltage drop of each non-aqueous electrolyte secondary battery is too large, the control circuit cannot control and adjust the voltage of the non-aqueous electrolyte secondary battery. Runs out of control and causes a decrease in the reliability of the battery module.

【0006】本発明は、このような問題を解決するため
に、電圧低下の抑制が可能で寿命特性に優れ信頼性の高
い非水電解液二次電池を提供することを目的とする。
An object of the present invention is to provide a highly reliable non-aqueous electrolyte secondary battery capable of suppressing voltage drop, having excellent life characteristics, and having high reliability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、充放電によりリチウムイオンの放出・吸
蔵が可能な正極と、充放電によりリチウムイオンの吸蔵
・放出が可能な負極と、を非水電解液に浸潤させた非水
電解液二次電池において、前記非水電解液中に前記正極
及び/又は負極での金属イオンの集中析出を抑制するレ
ベリング剤を含有させたことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a positive electrode capable of releasing and occluding lithium ions by charging and discharging, and a negative electrode capable of occluding and releasing lithium ions by charging and discharging. In a non-aqueous electrolyte secondary battery impregnated with a non-aqueous electrolyte, the non-aqueous electrolyte contains a leveling agent that suppresses concentrated precipitation of metal ions at the positive electrode and / or the negative electrode. Features.

【0008】本発明では、充放電時に電池内の金属イオ
ンが極板に集中析出して正負極間に微小短絡(自己放
電)を引き起こすことが電圧低下の原因であり、かつ、
非水電解液二次電池間に電圧のバラツキを生じさせる結
果となることに着目し、非水電解液中に正極及び/又は
負極での金属イオンの集中析出を抑制するレベリング剤
を含有させることにより、極板での金属イオンの集中析
出を抑制するものである。本発明によれば、レベリング
剤の含有により極板での金属イオンの集中析出を抑制す
ることができるので、微少短絡による電圧低下を抑制す
ることができると共に、極板の劣化を抑制することがで
きるので、寿命特性に優れ信頼性の高い非水電解液二次
電池を得ることができる。
In the present invention, the voltage drop is caused by the fact that metal ions in the battery concentrate on the electrode plate during charge / discharge and cause a minute short circuit (self-discharge) between the positive and negative electrodes.
Paying attention to the fact that voltage variation occurs between non-aqueous electrolyte secondary batteries, and including a leveling agent in the non-aqueous electrolyte that suppresses the concentrated precipitation of metal ions at the positive electrode and / or the negative electrode. Thus, concentrated precipitation of metal ions on the electrode plate is suppressed. According to the present invention, the concentration of metal ions on the electrode plate can be suppressed by the inclusion of the leveling agent, so that a voltage drop due to a minute short circuit can be suppressed and the deterioration of the electrode plate can be suppressed. Therefore, a highly reliable non-aqueous electrolyte secondary battery having excellent life characteristics can be obtained.

【0009】この場合において、レベリング剤には、ポ
リエーテル基若しくは有機スルホン基を有する物質、又
は、リン化合物若しくはいおう化合物が好ましく、1,
5−ナフタリン−ジスルホン酸ナトリウム、1,3,6
ナフタリン−トリスルホン酸ナトリウム、サッカリン、
アルデヒド、ゼラチン、2ブチン−1,4ジオール、キ
ナルジン、ピリジウム化合物、エチレンシアンヒドリ
ン、アゾ染料、チオシアン酸カリウム及びピロ燐酸カリ
ウムからなる群の少なくともいずれか1種であることが
更に好ましい。
In this case, the leveling agent is preferably a substance having a polyether group or an organic sulfone group, or a phosphorus compound or a sulfur compound.
Sodium 5-naphthalene-disulfonate, 1,3,6
Naphthalene-sodium trisulfonate, saccharin,
More preferably, it is at least one selected from the group consisting of aldehyde, gelatin, 2-butyne-1,4 diol, quinaldine, pyridium compound, ethylene cyanohydrin, azo dye, potassium thiocyanate and potassium pyrophosphate.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して、本発明を
電気自動車用密閉円筒形リチウムイオン二次電池に適用
した実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a sealed cylindrical lithium ion secondary battery for an electric vehicle will be described below with reference to the drawings.

【0011】<正極の作製>充放電によりリチウムイオ
ンの放出・吸蔵が可能な正極活物質としてマンガン酸リ
チウム(LiMnO)粉末80重量%(以下、wt
%と表記する。)と、導電剤としてかさ密度の異なる炭
素粉末15wt%と、バインダとしてポリフッ化ビニリ
デン(PVDF)5wt%を、分散溶媒のN−メチル−
2−ピロリドン(以下、NMPという。)に溶解し、混
練してスラリを得る。得られたスラリを、コンマロール
を用いてアルミニウム箔(正極集電体)の両面に塗布、
乾燥させて正極活物質層を形成する。
<Preparation of Positive Electrode> 80% by weight of lithium manganate (LiMn 2 O 4 ) powder (hereinafter referred to as wt.) As a positive electrode active material capable of releasing and occluding lithium ions by charging and discharging.
Expressed as%. ), 15 wt% of carbon powder having a different bulk density as a conductive agent, and 5 wt% of polyvinylidene fluoride (PVDF) as a binder, and N-methyl-
It is dissolved in 2-pyrrolidone (hereinafter referred to as NMP) and kneaded to obtain a slurry. The obtained slurry is applied to both sides of an aluminum foil (positive electrode current collector) using a comma roll,
After drying, a positive electrode active material layer is formed.

【0012】図2(A)に示すように、コンマロールに
よるスラリ塗工時に、正極として必要な長さを連続的に
かつ塗工位置が表裏面で一致するように塗工し、正極活
物質層2をカットしないように、アルミニウム箔1の一
側(正極タブ端子8の形成部分)を30mm残し、アル
ミニウム箔1の反対側を3mm残してスリットする。次
に、図2(B)に示すように、30mm残したアルミニ
ウム箔1の一側を矩形状の打ち抜きで切り取って、正極
タブ端子8を形成する。そして、正極を80°C〜12
0°Cに加熱したロールを有するロールプレス機にて、
プレス圧(線圧)200〜500kg/cmで正極活物
質層2のかさ密度が2.6g/cmとなるまで圧縮し
て帯状のフープを作製する。
As shown in FIG. 2 (A), when a slurry is applied by a comma roll, the length required for the positive electrode is applied continuously so that the application position coincides with the front and back surfaces, and the positive electrode active material is applied. In order to prevent the layer 2 from being cut, slitting is performed while leaving one side of the aluminum foil 1 (the portion where the positive electrode tab terminal 8 is formed) at 30 mm and leaving the opposite side of the aluminum foil 1 at 3 mm. Next, as shown in FIG. 2 (B), one side of the aluminum foil 1 left by 30 mm is cut out by rectangular punching to form a positive electrode tab terminal 8. Then, the positive electrode is heated to 80 ° C to 12 ° C.
In a roll press having a roll heated to 0 ° C,
A band-shaped hoop is produced by compressing the powder under a press pressure (linear pressure) of 200 to 500 kg / cm until the bulk density of the positive electrode active material layer 2 becomes 2.6 g / cm 3 .

【0013】<負極の作製>充放電によりリチウムイオ
ンの吸蔵・放出が可能な負極活物質として非晶質炭素粉
末を用い、炭素粉末90wt%とPVDF10wt%と
からなる混合物にNMPを加え、混練してスラリを得
る。得られたスラリを、正極と同様に、コンマロールを
用いて、銅箔3(負極集電体)の両面に負極として必要
な長さを連続的にかつ塗工位置が表裏面で一致するよう
に塗布し、乾燥させて負極活物質層4を形成する。
<Preparation of Negative Electrode> Amorphous carbon powder was used as a negative electrode active material capable of inserting and extracting lithium ions by charging and discharging. NMP was added to a mixture of 90 wt% of carbon powder and 10 wt% of PVDF, and kneaded. To get a slurry. Using a comma roll, the obtained slurry is continuously coated on both surfaces of the copper foil 3 (negative electrode current collector) with the length required for the negative electrode using a comma roll so that the coating position is the same on the front and back surfaces. To form a negative electrode active material layer 4.

【0014】図2(A)に示すように、コンマロールに
よるスラリ塗工時に、負極活物質層4をカットしないよ
うに、銅箔3の一側(負極タブ端子9の形成部分)を3
0mm残し、銅箔3の反対側を3mm残してスリットす
る。次に、図2(B)に示すように、30mm残した銅
箔3の一側を矩形状の打ち抜きで切り取って、負極タブ
端子9を形成する。そして、負極を80°C〜120°
Cに加熱したロールを有するロールプレス機にて、プレ
ス圧(線圧)200〜500kg/cmで負極活物質層
4のかさ密度が1.0g/cmとなるまで圧縮して帯
状のフープを作製する。
As shown in FIG. 2A, one side of the copper foil 3 (the portion where the negative electrode tab terminal 9 is formed) is 3 so that the negative electrode active material layer 4 is not cut during slurry coating using a comma roll.
The slit is left leaving 3 mm on the opposite side of the copper foil 3, leaving 0 mm. Next, as shown in FIG. 2B, one side of the copper foil 3 left by 30 mm is cut out by rectangular punching to form a negative electrode tab terminal 9. Then, the negative electrode is heated to 80 ° C to 120 °.
C. Using a roll press having a roll heated to C, the belt-shaped hoop is compressed at a pressing pressure (linear pressure) of 200 to 500 kg / cm until the bulk density of the negative electrode active material layer 4 becomes 1.0 g / cm 3. Make it.

【0015】<電池の組立>得られた帯状の正、負極フ
ープを、正極タブ端子8と負極タブ端子9とが上下方向
で反対側となるように配置し、リチウムイオンが通過可
能な帯状のセパレータを介して重ね、捲回する。このと
き、正負極が接触しないように、長さ、幅方向におい
て、正極タブ端子8及び負極タブ端子9を除く正、負極
フープの端部が、セパレータの外寸から外へはみ出さな
いように捲回する。必要な極板長さを捲回して正、負極
フープを切断して、捲回群を形成する。なお、セパレー
タにはポリエチレン製の微孔多孔性シートを用いること
ができる。
<Assembly of Battery> The obtained band-shaped positive and negative electrode hoops are arranged so that the positive electrode tab terminal 8 and the negative electrode tab terminal 9 are on the opposite sides in the vertical direction, and the band-shaped lithium ion can pass therethrough. It piles up through a separator and winds. At this time, the ends of the positive and negative hoops except for the positive electrode tab terminal 8 and the negative electrode tab terminal 9 do not protrude from the outer dimensions of the separator in the length and width directions so that the positive and negative electrodes do not contact. Wind up. The required length of the electrode plate is wound, and the positive and negative electrode hoops are cut to form a wound group. In addition, a polyethylene microporous sheet can be used for the separator.

【0016】図1に示すように、捲回群の上下に位置す
る正極タブ端子8、負極タブ端子9をそれぞれ円環状導
体である正極集電リング11、負極集電リング12に溶
接し、正極集電リング11を、安全弁を内蔵し外部端子
となる電池蓋7に、負極集電リング12を、外部端子と
なる円筒状の有底電池缶6にそれぞれ導体リードを介し
て溶接する。次に、レベリング剤を含有する非水電解液
(以下、レベリング剤含有電解液という。)を電池缶6
に注入した後、電池缶6の開口部を、ガスケット10を
介して電池蓋7で封口して、リチウムイオン二次電池2
0を組み立てる。そして、所定電圧及び電流で初充電を
行うことにより、リチウムイオン二次電池20に電池と
しての機能を付与する。
As shown in FIG. 1, the positive electrode tab terminal 8 and the negative electrode tab terminal 9 located above and below the winding group are welded to the positive electrode current collecting ring 11 and the negative electrode current collecting ring 12 which are annular conductors, respectively. The current collecting ring 11 is welded to the battery lid 7 having an internal safety valve and serving as an external terminal, and the negative electrode current collecting ring 12 is welded to the cylindrical bottomed battery can 6 serving as an external terminal via conductor leads. Next, a non-aqueous electrolyte containing a leveling agent (hereinafter, referred to as a leveling agent-containing electrolyte) is supplied to the battery can 6.
After that, the opening of the battery can 6 is sealed with a battery lid 7 via a gasket 10 to thereby form the lithium ion secondary battery 2.
Assemble 0. Then, by performing initial charging at a predetermined voltage and current, the lithium ion secondary battery 20 is given a function as a battery.

【0017】<電解液の作製>上述したレベリング剤含
有電解液には、リチウム塩を電解質とし、これを有機溶
媒に溶解した非水電解液に、極板での金属イオンの集中
析出を抑制するレベリング剤を微量(例えば、0.00
1モル)含有(添加)させたものが用いられる。ここ
に、レベリング剤とは、電解メッキにおいてメッキされ
る金属を局部的に集中析出させないようにするもので、
均一に分散析出させることによってメッキ面を平滑にす
るために電解液中に混入分散させる物質をいい、平滑
剤、ブライトナー剤、レベラー剤、スムージング剤、光
沢剤とも呼ばれる。極板での金属イオンの集中析出を抑
制するレベリング剤(以下、レベリング剤という。)に
は、例えば、ポリエーテル基若しくは有機スルホン基を
有する物質、又は、リン化合物若しくはいおう化合物を
用いることができる。
<Preparation of Electrolyte Solution> In the above-described electrolyte solution containing a leveling agent, a lithium salt is used as an electrolyte, and concentration of metal ions on an electrode plate is suppressed in a nonaqueous electrolyte solution obtained by dissolving the lithium salt in an organic solvent. Add a trace amount of a leveling agent (for example, 0.00
1 mol) is used (added). Here, the leveling agent is to prevent the metal to be plated in electrolytic plating from being locally concentrated and precipitated.
A substance which is mixed and dispersed in an electrolytic solution in order to smooth a plating surface by uniformly dispersing and depositing, and is also called a smoothing agent, a brightener, a leveler, a smoothing agent, and a brightener. As a leveling agent (hereinafter, referred to as a leveling agent) that suppresses concentrated precipitation of metal ions on the electrode plate, for example, a substance having a polyether group or an organic sulfone group, or a phosphorus compound or a sulfur compound can be used. .

【0018】[0018]

【実施例】次に、上記実施形態に従って、エチレンカー
ボネート(EC)とジメチルカーボネート(DMC)と
を体積比で1:2の割合で混合した混合溶液に6フッ化
リン酸リチウム(LiPF)を1モル/リットル溶解
した非水電解液中に、種々のレベリング剤を0.001
モル添加したレベリング剤含有電解液を用いて作製した
実施例のリチウムイオン二次電池について説明する。な
お、比較のために作製した比較例のリチウムイオン二次
電池についても併記する。ただし、各実施例の電池で
は、極板での金属イオンの集中析出を促進させるため
に、意図的に正極活物質層2内に10〜15μm付近の
銅粉を7ppm含有させた点で上記実施形態のリチウム
イオン電池20とは異なっている。
EXAMPLE Next, according to the above embodiment, lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solution obtained by mixing ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1: 2. Various leveling agents were added to the non-aqueous electrolyte dissolved in 1 mol / liter in an amount of 0.001.
A lithium ion secondary battery of an example manufactured using a leveling agent-containing electrolyte solution added in a molar amount will be described. Note that a lithium ion secondary battery of a comparative example manufactured for comparison is also described. However, in the batteries of the respective examples, in order to promote the concentrated precipitation of metal ions on the electrode plates, the positive electrode active material layer 2 was intentionally made to contain 7 ppm of copper powder of about 10 to 15 μm, and thus the above-described procedure was carried out. It is different from the lithium ion battery 20 in the form.

【0019】(実施例1)下表1に示すように、実施例
1の電池では、上述した非水電解液にレベリング剤とし
て1,5−ナフタリン−ジスルホン酸ナトリウムを0.
001モル含有させたレベリング剤含有電解液を注液し
て電池を組み立てた。なお、レベリング剤を注入する前
の非水電解液中の金属不純物含有量が1ppm以下とな
るようにした。
Example 1 As shown in Table 1 below, in the battery of Example 1, 0.1% of sodium 1,5-naphthalene-disulfonate was added to the above-mentioned nonaqueous electrolyte as a leveling agent.
001 mol of the leveling agent-containing electrolyte was injected to assemble the battery. The metal impurity content in the non-aqueous electrolyte before injecting the leveling agent was adjusted to 1 ppm or less.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)表1に示すように、実施例2
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えて1,3,6ナフタリン−トリス
ルホン酸ナトリウムを添加したレベリング剤含有電解液
を注液した以外は、実施例1の電池と同様に組み立て
た。
(Embodiment 2) As shown in Table 1, Embodiment 2
In the battery of Example 1, except that an electrolyte containing a leveling agent to which 1,3,6 naphthalene-sodium trisulfonate was added instead of the sodium 1,5-naphthalene-disulfonate of Example 1 was injected. Assembled in the same manner as the battery.

【0022】(実施例3)表1に示すように、実施例3
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えてサッカリンを添加したレベリン
グ剤含有電解液を注液した以外は、実施例1の電池と同
様に組み立てた。
(Embodiment 3) As shown in Table 1, Embodiment 3
The battery of Example 1 was assembled in the same manner as the battery of Example 1 except that an electrolyte containing a leveling agent to which saccharin was added instead of the sodium 1,5-naphthalene-disulfonate of Example 1 was injected.

【0023】(実施例4)表1に示すように、実施例4
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えてアルデヒドを添加したレベリン
グ剤含有電解液を注液した以外は、実施例1の電池と同
様に組み立てた。
(Embodiment 4) As shown in Table 1, Embodiment 4
The battery of Example 1 was assembled in the same manner as the battery of Example 1 except that an electrolyte containing a leveling agent to which aldehyde was added instead of sodium 1,5-naphthalene-disulfonate of Example 1 was injected.

【0024】(実施例5)表1に示すように、実施例5
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えてゼラチンを添加したレベリング
剤含有電解液を注液した以外は、実施例1の電池と同様
に組み立てた。
(Embodiment 5) As shown in Table 1, Embodiment 5
The battery of Example 1 was assembled in the same manner as the battery of Example 1, except that an electrolyte containing a leveling agent to which gelatin was added instead of sodium 1,5-naphthalene-disulfonate of Example 1 was injected.

【0025】(実施例6)表1に示すように、実施例6
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えて2ブチン−1,4ジオールを添
加したレベリング剤含有電解液を注液した以外は、実施
例1の電池と同様に組み立てた。
(Embodiment 6) As shown in Table 1, Embodiment 6
The battery of Example 1 was the same as the battery of Example 1 except that an electrolyte containing a leveling agent to which 2-butyne-1,4 diol was added instead of the sodium 1,5-naphthalene-disulfonate of Example 1 was injected. Assembled.

【0026】(実施例7)表1に示すように、実施例7
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えてキナルジンを添加したレベリン
グ剤含有電解液を注液した以外は、実施例1の電池と同
様に組み立てた。
(Embodiment 7) As shown in Table 1, the embodiment 7
The battery of Example 1 was assembled in the same manner as the battery of Example 1 except that an electrolyte containing a leveling agent to which quinaldine was added instead of sodium 1,5-naphthalene-disulfonate of Example 1 was injected.

【0027】(実施例8)表1に示すように、実施例8
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えてピリジウム化合物を添加したレ
ベリング剤含有電解液を注液した以外は、実施例1の電
池と同様に組み立てた。
Example 8 As shown in Table 1, Example 8
The battery of Example 1 was assembled in the same manner as the battery of Example 1, except that an electrolyte containing a leveling agent to which a pyridium compound was added instead of sodium 1,5-naphthalene-disulfonate of Example 1 was injected.

【0028】(実施例9)表1に示すように、実施例9
の電池では、実施例1の1,5−ナフタリン−ジスルホ
ン酸ナトリウムに代えてエチレンシアンヒドリンを添加
したレベリング剤含有電解液を注液した以外は、実施例
1の電池と同様に組み立てた。
(Example 9) As shown in Table 1, Example 9
The battery of Example 1 was assembled in the same manner as the battery of Example 1, except that an electrolyte solution containing a leveling agent to which ethylene cyanohydrin was added instead of sodium 1,5-naphthalene-disulfonate of Example 1 was injected.

【0029】(実施例10)表1に示すように、実施例
10の電池では、実施例1の1,5−ナフタリン−ジス
ルホン酸ナトリウムに代えてアゾ染料を添加したレベリ
ング剤含有電解液を注液した以外は、実施例1の電池と
同様に組み立てた。
Example 10 As shown in Table 1, in the battery of Example 10, an electrolyte containing a leveling agent to which an azo dye was added instead of the sodium 1,5-naphthalene-disulfonate of Example 1 was injected. A battery was assembled in the same manner as in the battery of Example 1 except that the battery was drained.

【0030】(実施例11)表1に示すように、実施例
11の電池では、実施例1の1,5−ナフタリン−ジス
ルホン酸ナトリウムに代えてチオシアン酸カリウムを添
加したレベリング剤含有電解液を注液した以外は、実施
例1の電池と同様に組み立てた。
(Example 11) As shown in Table 1, in the battery of Example 11, an electrolyte containing a leveling agent containing potassium thiocyanate instead of sodium 1,5-naphthalene-disulfonate of Example 1 was used. A battery was assembled in the same manner as the battery of Example 1 except that the liquid was injected.

【0031】(実施例12)表1に示すように、実施例
12の電池では、実施例1の1,5−ナフタリン−ジス
ルホン酸ナトリウムに代えてピロ燐酸カリウムを添加し
たレベリング剤含有電解液を注液した以外は、実施例1
の電池と同様に組み立てた。
Example 12 As shown in Table 1, in the battery of Example 12, a leveling agent-containing electrolytic solution obtained by adding potassium pyrophosphate in place of sodium 1,5-naphthalene-disulfonate of Example 1 was used. Example 1 except that the liquid was injected.
The battery was assembled in the same manner as the battery.

【0032】(比較例)表1に示すように、比較例の電
池では、非水電解液中に全くレベリング剤を添加させな
いこと以外は、実施例1の電池と同様に組み立てた。
Comparative Example As shown in Table 1, the battery of the comparative example was assembled in the same manner as the battery of Example 1 except that no leveling agent was added to the non-aqueous electrolyte.

【0033】<初充電及び試験>次に、以上のように組
み立てた実施例及び比較例の各電池について、下記の条
件で初充電を行い、電圧低下率を測定する電圧低下率測
定試験を実施した。
<Initial charge and test> Next, for each of the batteries of Examples and Comparative Examples assembled as described above, initial charge was performed under the following conditions, and a voltage drop rate measurement test for measuring the voltage drop rate was performed. did.

【0034】1.初充放電条件 (1)充電:定電圧充電4.1V、制限電流2000m
A、4h、25°C (2)放電:定電流放電3000mA、終止電圧2.7
V、25°C (3)充電:定電圧充電4.1V、制限電流4000m
A、3h、25°C (4)放電:定電流放電4000mA、終止電圧2.7
V、25°C (5)充電:定電圧充電3.7V、制限電流4000m
A、3h、25°C
1. Initial charge / discharge conditions (1) Charging: constant voltage charging 4.1 V, limiting current 2000 m
A, 4h, 25 ° C (2) Discharge: constant current discharge 3000 mA, end voltage 2.7
V, 25 ° C (3) Charging: constant voltage charging 4.1V, limiting current 4000m
A, 3 h, 25 ° C (4) Discharge: constant current discharge 4000 mA, cutoff voltage 2.7
V, 25 ° C (5) Charging: constant voltage charging 3.7V, limiting current 4000m
A, 3h, 25 ° C

【0035】2.電圧低下率測定試験 各電池を初充電後に放置し、放置二週間目から三週間目
までに低下した電圧を7で割り、一日あたりの電圧低下
率(mV/day)を算出した。
2. Voltage drop rate measurement test Each battery was left after the first charge, and the voltage dropped between the second and third weeks of the battery was divided by 7 to calculate the voltage drop rate per day (mV / day).

【0036】下表2に電圧低下率測定試験の試験結果を
示す。
Table 2 below shows the test results of the voltage drop rate measurement test.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示すように、非水電解液にレベリン
グ剤を添加した実施例の電池の電圧低下率は最大でも4
mV/dayであり、比較例の電池の15mV/day
に比べ、著しく電圧降下が小さくなる。これは、非水電
解液へのレベリング剤の添加により、銅が極板上にデン
ドライトして集中析出しないため、微小短絡が抑制され
ることによる。
As shown in Table 2, the voltage drop rate of the battery of the embodiment in which the leveling agent was added to the non-aqueous electrolyte was at most 4%.
mV / day, which is 15 mV / day of the battery of the comparative example.
The voltage drop is significantly smaller than that of This is because the addition of the leveling agent to the non-aqueous electrolyte causes the copper to dendrite on the electrode plate and does not precipitate in a concentrated manner, thereby suppressing a minute short circuit.

【0039】以上のように、本実施形態のリチウムイオ
ン二次電池では、金属イオンが極板に集中析出すること
が抑制されるので、微少短絡による電圧低下を抑制する
ことができる。微少短絡が抑制された電池は、経時によ
る電圧低下も小さいので、長寿命となり、信頼性を確保
することができる。このようなリチウムイオン二次電池
は、電圧低下が小さく、かつ、電池間のバラツキが小さ
いので、電池モジュールを構成する電池に好適である。
As described above, in the lithium ion secondary battery according to the present embodiment, the concentration of metal ions on the electrode plate is suppressed, so that the voltage drop due to a minute short circuit can be suppressed. The battery in which the minute short circuit is suppressed has a small voltage drop with the passage of time, and therefore has a long life and can ensure reliability. Such a lithium ion secondary battery has a small voltage drop and a small variation between batteries, and thus is suitable for a battery constituting a battery module.

【0040】なお、上記実施例では、非水電解液の電解
質としてLiPFを用いた例を示したが、LiClO
、LiAsF、LiBF、LiB(C
、CHSOLi、CFSOLi等や
これらの混合物を用いることができ、また、有機溶媒と
してエチレンカーボネートとジメチルカーボネートとを
体積比で1:2の割合で混合した混合溶液を用いた例を
示したが、これら以外にプロピレンカーボネート、ジエ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、γ−ブチロラクトン、テトラヒド
ロフラン、1,3−ジオキソラン、4−メチル−1,3
−ジオキソラン、ジエチルエーテル、スルホラン、メチ
ルスルホラン、アセトニトリル、プロピオニトリル等又
はこれら2種類以上の混合溶媒を用いることができ、更
に、混合配合比についても限定されるものではない。
In the above embodiment, an example was shown in which LiPF 6 was used as the electrolyte of the non-aqueous electrolyte.
4 , LiAsF 6 , LiBF 4 , LiB (C
6 H 5) 4, CH 3 SO 3 Li, can be used CF 3 SO 3 Li and the like, and mixtures thereof, and in a volume ratio of ethylene carbonate and dimethyl carbonate as an organic solvent 1: mixture in a ratio of 2 Examples in which the mixed solution was used were shown, but in addition to these, propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2
-Diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3
-Dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like or a mixed solvent of two or more thereof can be used, and the mixing ratio is not limited.

【0041】また、上記実施例では、複数のレベリング
剤について例示したが、極板での金属イオンの集中析出
を抑制するこれら以外のレベリング剤、レベリング作用
のある材料ならレベリング剤として使用することができ
る。
In the above embodiment, a plurality of leveling agents have been exemplified. However, other leveling agents which suppress the concentrated precipitation of metal ions on the electrode plate, and materials having a leveling action, may be used as the leveling agent. it can.

【0042】更に、本実施形態では、正極活物質にマン
ガン酸リチウム、負極活物質に黒鉛質炭素を用いた例を
示したが、正極活物質にリチウム・コバルト複合酸化物
やリチウム・ニッケル複合酸化物、負極活物質に天然黒
鉛や、人造の各種黒鉛材、コークスなどの炭素材料等を
使用してもよく、その粒子形状においても、鱗片状、球
状、繊維状、塊状等、特に制限されるものではない。な
お、結晶構造にスピネル構造を有するマンガン酸リチウ
ムは、コバルト酸リチウムやニッケル酸リチウムと比べ
て熱的安定性に優れるという特徴があるので、電力貯蔵
用や電気自動車用等の、大形のリチウムイオン二次電池
にはマンガン酸リチウムを正極用活物質に用いることが
好ましい。
Furthermore, in this embodiment, an example was shown in which lithium manganate was used as the positive electrode active material and graphitic carbon was used as the negative electrode active material. However, lithium-cobalt composite oxide or lithium-nickel composite oxide was used as the positive electrode active material. Natural graphite, artificial graphite materials, carbon materials such as coke and the like may be used as the material and the negative electrode active material, and the particle shape thereof is also particularly limited, such as flaky, spherical, fibrous, and massive shapes. Not something. Note that lithium manganate having a spinel crystal structure has a feature of being superior in thermal stability to lithium cobaltate and lithium nickelate. Therefore, large-sized lithium manganate for power storage and electric vehicles is used. It is preferable to use lithium manganate as a positive electrode active material for an ion secondary battery.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
レベリング剤の含有により極板での金属イオンの集中析
出を抑制することができるので、微少短絡による電圧低
下を抑制することができると共に、極板の劣化を抑制す
ることができるので、寿命特性に優れ信頼性の高い非水
電解液二次電池を得ることができる、という効果を得る
ことができる。
As described above, according to the present invention,
The concentration of metal ions on the electrode plate can be suppressed by the inclusion of the leveling agent, so that a voltage drop due to a minute short circuit can be suppressed, and the deterioration of the electrode plate can be suppressed. The effect that an excellent and highly reliable non-aqueous electrolyte secondary battery can be obtained can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施形態の密閉円筒形リチ
ウムイオン二次電池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a sealed cylindrical lithium ion secondary battery according to an embodiment to which the present invention can be applied.

【図2】実施形態の正極及び負極の帯状フープを示す平
面図であり、(A)はスラリ塗工後の状態を示し、
(B)はタブ端子形成後の状態を示す。
FIG. 2 is a plan view showing a belt-shaped hoop of a positive electrode and a negative electrode of the embodiment, (A) showing a state after slurry coating,
(B) shows a state after the tab terminals are formed.

【符号の説明】[Explanation of symbols]

1 正極集電体 2 正極活物質層 3 負極集電体 4 負極活物質層 5 セパレータ 6 電池缶 7 電池蓋 8 正極タブ端子 9 負極タブ端子 10 ガスケット 11 正極集電リング 12 負極集電リング 20 リチウムイオン二次電池 DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material layer 3 Negative electrode collector 4 Negative electrode active material layer 5 Separator 6 Battery can 7 Battery lid 8 Positive tab terminal 9 Negative tab terminal 10 Gasket 11 Positive current collecting ring 12 Negative current collecting ring 20 Lithium Ion secondary battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 智博 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ05 AK03 AL08 AM03 AM05 AM07 BJ02 BJ14 DJ08 DJ09 EJ03 EJ11  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohiro Iguchi 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo F term in Shin-Kobe Electric Co., Ltd. (reference) 5H029 AJ05 AK03 AL08 AM03 AM05 AM07 BJ02 BJ14 DJ08 DJ09 EJ03 EJ11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 充放電によりリチウムイオンの放出・吸
蔵が可能な正極と、充放電によりリチウムイオンの吸蔵
・放出が可能な負極と、を非水電解液に浸潤させた非水
電解液二次電池において、前記非水電解液中に前記正極
及び/又は負極での金属イオンの集中析出を抑制するレ
ベリング剤を含有させたことを特徴とする非水電解液二
次電池。
1. A non-aqueous electrolyte secondary battery in which a positive electrode capable of releasing and occluding lithium ions by charging and discharging and a negative electrode capable of occluding and releasing lithium ions by charging and discharging are impregnated in the non-aqueous electrolyte. In a battery, a non-aqueous electrolyte secondary battery is characterized in that the non-aqueous electrolyte contains a leveling agent that suppresses concentrated precipitation of metal ions at the positive electrode and / or the negative electrode.
【請求項2】 前記レベリング剤は、ポリエーテル基若
しくは有機スルホン基を有する物質、又は、リン化合物
若しくはいおう化合物であることを特徴とする請求項1
に記載の非水電解液二次電池。
2. The method according to claim 1, wherein the leveling agent is a substance having a polyether group or an organic sulfone group, or a phosphorus compound or a sulfur compound.
3. The non-aqueous electrolyte secondary battery according to 1.
【請求項3】 前記レベリング剤は、1,5−ナフタリ
ン−ジスルホン酸ナトリウム、1,3,6ナフタリン−
トリスルホン酸ナトリウム、サッカリン、アルデヒド、
ゼラチン、2ブチン−1,4ジオール、キナルジン、ピ
リジウム化合物、エチレンシアンヒドリン、アゾ染料、
チオシアン酸カリウム及びピロ燐酸カリウムからなる群
の少なくともいずれか1種であることを特徴とする請求
項1又は請求項2に記載の非水電解液二次電池。
3. The leveling agent comprises sodium 1,5-naphthalene-disulfonate, 1,3,6 naphthalene-
Sodium trisulfonate, saccharin, aldehyde,
Gelatin, 2-butyne-1,4 diol, quinaldine, pyridium compound, ethylene cyanohydrin, azo dye,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is at least one of a group consisting of potassium thiocyanate and potassium pyrophosphate.
JP2000176281A 2000-06-13 2000-06-13 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4106856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176281A JP4106856B2 (en) 2000-06-13 2000-06-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176281A JP4106856B2 (en) 2000-06-13 2000-06-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001357874A true JP2001357874A (en) 2001-12-26
JP4106856B2 JP4106856B2 (en) 2008-06-25

Family

ID=18678019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176281A Expired - Fee Related JP4106856B2 (en) 2000-06-13 2000-06-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4106856B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151144A (en) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc Lithium secondary battery
KR100413734B1 (en) * 2002-03-16 2004-01-13 한국과학기술연구원 Gel type polymer electrolyte including leveling agent, lithium metal polymer battery with it, and fabrication method thereof
WO2012066663A1 (en) * 2010-11-18 2012-05-24 日立ビークルエナジー株式会社 Organic electrolyte secondary battery
US8628885B2 (en) 2008-07-04 2014-01-14 Sony Corporation Secondary battery and electronic device
JP2014192160A (en) * 2013-03-26 2014-10-06 Sk Innovation Co Ltd Current collector for secondary battery, and secondary battery comprising the same
KR101584850B1 (en) 2013-02-04 2016-01-13 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
CN108075188A (en) * 2016-11-14 2018-05-25 珠海市赛纬电子材料股份有限公司 A kind of nonaqueous lithium ion battery electrolyte and lithium ion battery
JP2019220294A (en) * 2018-06-18 2019-12-26 トヨタ自動車株式会社 Aqueous electrolyte solution and aqueous potassium ion battery
CN112448031A (en) * 2019-08-30 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 Electrolyte and lithium metal battery
CN114361592A (en) * 2021-12-28 2022-04-15 大连中比动力电池有限公司 Additive and application thereof in sodium ion battery electrolyte

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151144A (en) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc Lithium secondary battery
KR100413734B1 (en) * 2002-03-16 2004-01-13 한국과학기술연구원 Gel type polymer electrolyte including leveling agent, lithium metal polymer battery with it, and fabrication method thereof
US8628885B2 (en) 2008-07-04 2014-01-14 Sony Corporation Secondary battery and electronic device
WO2012066663A1 (en) * 2010-11-18 2012-05-24 日立ビークルエナジー株式会社 Organic electrolyte secondary battery
CN103222101A (en) * 2010-11-18 2013-07-24 日立车辆能源株式会社 Organic electrolyte secondary battery
JP5538563B2 (en) * 2010-11-18 2014-07-02 日立ビークルエナジー株式会社 Organic electrolyte secondary battery
CN103222101B (en) * 2010-11-18 2015-08-19 日立汽车系统株式会社 Organic electrolyte secondary battery
KR101584850B1 (en) 2013-02-04 2016-01-13 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP2014192160A (en) * 2013-03-26 2014-10-06 Sk Innovation Co Ltd Current collector for secondary battery, and secondary battery comprising the same
CN108075188A (en) * 2016-11-14 2018-05-25 珠海市赛纬电子材料股份有限公司 A kind of nonaqueous lithium ion battery electrolyte and lithium ion battery
JP2019220294A (en) * 2018-06-18 2019-12-26 トヨタ自動車株式会社 Aqueous electrolyte solution and aqueous potassium ion battery
CN112448031A (en) * 2019-08-30 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 Electrolyte and lithium metal battery
CN112448031B (en) * 2019-08-30 2022-04-08 中国科学院苏州纳米技术与纳米仿生研究所 Electrolyte and lithium metal battery
CN114361592A (en) * 2021-12-28 2022-04-15 大连中比动力电池有限公司 Additive and application thereof in sodium ion battery electrolyte
CN114361592B (en) * 2021-12-28 2023-08-01 大连中比动力电池有限公司 Additive and application thereof in sodium ion battery electrolyte

Also Published As

Publication number Publication date
JP4106856B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4626105B2 (en) Lithium ion secondary battery
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP2008262825A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2000077061A (en) Lithium ion battery
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP4097443B2 (en) Lithium secondary battery
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP4106856B2 (en) Non-aqueous electrolyte secondary battery
JP2002170567A (en) Nonaqueous electrolyte cell
JPH11219694A (en) Winding type cylindrical battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP3332781B2 (en) Lithium ion battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2006318839A (en) Nonaqueous secondary battery
JP2002075460A (en) Lithium secondary cell
JP2007172878A (en) Battery and its manufacturing method
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JPH11238500A (en) Roll type cylindrical battery
JP4594591B2 (en) Electrochemical element
JP3624793B2 (en) Lithium ion battery
JP2004253348A (en) Electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees