JPH11238500A - Roll type cylindrical battery - Google Patents

Roll type cylindrical battery

Info

Publication number
JPH11238500A
JPH11238500A JP10040241A JP4024198A JPH11238500A JP H11238500 A JPH11238500 A JP H11238500A JP 10040241 A JP10040241 A JP 10040241A JP 4024198 A JP4024198 A JP 4024198A JP H11238500 A JPH11238500 A JP H11238500A
Authority
JP
Japan
Prior art keywords
side edge
electrode plate
lead
battery
cylindrical battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10040241A
Other languages
Japanese (ja)
Inventor
Kotaro Kobayashi
康太郎 小林
Mitsunori Oda
光徳 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10040241A priority Critical patent/JPH11238500A/en
Publication of JPH11238500A publication Critical patent/JPH11238500A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a heavy current discharge characteristic by setting the total width of root parts of lead pieces in an electrode side edge to a specified % or more of the total length of the electrode side edge part, and providing a round part extending from the electrode side edge to the lead piece side edge in the root part of the lead piece. SOLUTION: A lead piece 1 is formed by providing an active material non- applied part on the side edge of an electrode and slitting this part, at prescribed intervals in the direction orthogonal to the rolling direction. The total width of the root parts of the lead pieces 1 in the electrode side edge is set to 70% or more of the total length of the electrode side edge part. In the root part of the lead piece 1, a round part 3 is provided extending from the electrode side edge to the lead piece 1 side edge or between the root parts of the adjacent lead pieces 1 having the same polarity. The round part 3 functions to prevent the collection of a stress to a specified position. According to this, the cut of the connecting part of the lead piece 1 with the electrode side edge and the root parts of the adjacent lead pieces having the same polarity can be suppressed, and the current collecting property of the electrode can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、捲回式円筒形電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wound cylindrical battery.

【0002】[0002]

【従来の技術】従来、再充電が可能な二次電池の分野で
は、鉛蓄電池、ニッケル−カドミウム電池、ニッケル−
水素電池等の水溶液系電池が主流であった。しかしなが
ら、近年、携帯電話やノート型パソコンの急激な普及に
伴い、より小型で高容量な電池が求められるようになっ
てきた。このような要求に対して、正極にコバルト酸リ
チウム等のリチウム遷移金属複合酸化物、負極に炭素材
を用いた非水電解液系のリチウムイオン電池が開発され
た。負極に炭素材を用いたリチウムイオン電池は、負極
に金属リチウムを用いた二次電池に比べると単位体積当
たりのエネルギー密度は低下するが、安全で且つ従来の
水溶液系電池よりも高エネルギー密度であるという長所
を有し、急激に普及している。
2. Description of the Related Art Conventionally, in the field of rechargeable secondary batteries, lead-acid batteries, nickel-cadmium batteries, nickel-
Aqueous solution batteries such as hydrogen batteries were the mainstream. However, in recent years, with the rapid spread of mobile phones and notebook personal computers, smaller and higher-capacity batteries have been required. In response to such demands, non-aqueous electrolyte-based lithium ion batteries using a lithium transition metal composite oxide such as lithium cobalt oxide for the positive electrode and a carbon material for the negative electrode have been developed. A lithium ion battery using a carbon material for the negative electrode has a lower energy density per unit volume than a secondary battery using metallic lithium for the negative electrode, but is safer and has a higher energy density than conventional aqueous batteries. It has the advantage of being, and is spreading rapidly.

【0003】イオン導伝率が水溶液系よりも劣る非水電
解液系のリチウムイオン電池では、極板厚みを極力薄く
することで極板面積を広げ、また極板間距離を小さくす
ることで電池内部抵抗を減少させて、単位体積当たりの
エネルギ−密度を損なうことなく高出力特性を維持して
いる。極板厚みを極力薄くするには、集電体を金属箔と
し、その両面に活物質合剤を均一に配する技術が一般的
に適用されている。極板面積が大きくなると、集電体か
ら電池外部端子への集電性を確保するのが困難となる。
例えば特開平6−310142号公報のように1本のリ
ード片で前記電流経路を形成しようとすると、リード片
から最も離れた極板位置からの集電性は、リード片近辺
の極板位置からの集電性に比して劣る。このような欠点
は、例えばノート型パソコンや携帯電話用電源として用
いられる定格容量1000mAhまでの小型電池ではさ
ほど問題視されないが、電気自動車用電源として用いら
れるような高容量の大型電池では問題がある。そこで、
例えば特開平9−92335号公報では、帯状の正・負
極板の長寸方向側縁部に活物質合剤未塗布部(金属箔集
電体の露出部)を設け、該未塗布部に切り欠きを入れる
ことにより、複数の幅10mmの短冊状リード片を15
mm間隔おきに形成して上記集電性を極板全体に亘り均
一に良好にすることを提案している。この時の極板側縁
部におけるリード片付け根部の幅の合計は、極板側縁部
全長の67%である。
In a non-aqueous electrolyte-based lithium ion battery having an ion conductivity that is inferior to that of an aqueous solution, the thickness of the electrode plate is reduced as much as possible to increase the area of the electrode plate, and the distance between the electrode plates is reduced to reduce the battery. The internal resistance is reduced to maintain high output characteristics without impairing the energy density per unit volume. In order to reduce the thickness of the electrode plate as much as possible, a technique in which a current collector is made of metal foil and an active material mixture is uniformly distributed on both surfaces thereof is generally applied. When the electrode area is increased, it becomes difficult to secure current collection from the current collector to the battery external terminal.
For example, when the current path is formed by one lead piece as disclosed in Japanese Patent Application Laid-Open No. Hei 6-310142, the current collecting property from the electrode plate position farthest from the lead piece is increased from the electrode plate position near the lead piece. Is inferior to the current collecting ability of Such a drawback is not so much a problem with a small battery having a rated capacity of up to 1000 mAh used as a power source for a notebook personal computer or a mobile phone, but has a problem with a large-capacity large battery used as a power source for an electric vehicle. . Therefore,
For example, in Japanese Unexamined Patent Publication No. 9-92335, an uncoated portion of an active material mixture (exposed portion of a metal foil current collector) is provided at a long side edge of a strip-shaped positive / negative electrode plate, and the uncoated portion is cut. By notching, a plurality of strip-shaped lead pieces having a width of 10 mm
It has been proposed that the current collecting property is formed uniformly at intervals of mm so that the current collecting property is uniformly improved over the entire electrode plate. At this time, the sum of the widths of the lead attachment roots at the electrode plate side edge is 67% of the total length of the electrode plate side edge.

【0004】[0004]

【発明が解決しようとする課題】しかし上記特開平9−
92335号公報の技術を適用しようとすると、等間隔
に設けた複数個の短冊状リードの電極全長に対する接合
割合が比較的小さく、電気自動車用等の大電流充放電で
は所望の特性が得られない。本発明が解決しようとする
課題は、電池の大電流放電特性を向上させることであ
る。
However, the above-mentioned Japanese Patent Application Laid-Open No.
If the technique of Japanese Patent No. 92335 is applied, the bonding ratio of a plurality of strip-shaped leads provided at equal intervals to the entire length of the electrode is relatively small, and desired characteristics cannot be obtained by high-current charging and discharging for electric vehicles and the like. . The problem to be solved by the present invention is to improve the large current discharge characteristics of a battery.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明の捲回式円筒形電池は、帯状の正極板と負極板
とをセパレータを介して捲回した極板群を備え、正極板
及び/又は負極板の側縁部から、捲回方向と直行する方
向に、リード片1が極板1枚につき複数枚導出され、リ
ード片1が電池外部端子と電気的に接続され、極板側縁
部におけるリード片1付け根部の幅の合計が極板側縁部
全長の70%以上であることを特徴とする。上記構成に
おいて、極板側縁部におけるリード片付け根部の幅の合
計が極板側縁部全長の100%であることが最も好まし
い。この構成は、極板側縁部に活物質未塗布部分を設
け、当該部分に捲回方向と直行する方向に所定間隔で切
り込み2を入れる等の手法でリード片1を形成すること
により得られるものである。この構成では同極性の隣り
合うリード片1間隔が無いため、極板の集電性が最も良
好になる。上記構成において、リード片1付け根部にお
いて、極板側縁部からリード片1側縁部にわたって、又
は隣り合う同極性のリード片付け根部間に、R部3を有
していることが好ましい。この理由は、リード片1と極
板側縁部との接続部、及び隣り合う同極性のリード片付
け根部における切れを抑制するに効果的だからである。
ここでは便宜上R部と表現しているが、これはリード片
1付け根部において、リード片1を取り扱う際特定の場
所に応力が集中しないよう機能する曲線のことを示す。
Means for Solving the Problems To achieve the above object, a wound cylindrical battery according to the present invention comprises an electrode plate group in which a strip-shaped positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween. A plurality of lead pieces 1 are led out from one side edge of the plate and / or the negative electrode plate in a direction perpendicular to the winding direction for each electrode plate, and the lead pieces 1 are electrically connected to the battery external terminals. The total width of the roots of the lead pieces 1 at the plate side edge is 70% or more of the total length of the electrode plate side edge. In the above configuration, it is most preferable that the sum of the widths of the lead fixing roots at the electrode plate side edge is 100% of the total length of the electrode plate side edge. This configuration can be obtained by forming a lead piece 1 by a method in which an active material non-applied portion is provided on the side edge of the electrode plate, and cuts 2 are formed in the portion at predetermined intervals in a direction perpendicular to the winding direction. Things. In this configuration, since there is no space between adjacent lead pieces 1 of the same polarity, the current collecting property of the electrode plate is the best. In the above configuration, it is preferable that the R portion 3 is provided at the root portion of the lead piece 1 from the side edge of the electrode plate to the side edge portion of the lead piece 1 or between adjacent root portions of the same polarity. The reason for this is that it is effective in suppressing the cut at the connection between the lead piece 1 and the side edge of the electrode plate and at the adjacent root of the same polarity.
Here, for convenience, it is expressed as an R portion, which indicates a curve at the base of the lead piece 1 that functions so that stress is not concentrated on a specific place when the lead piece 1 is handled.

【0006】[0006]

【発明の実施の形態】以下、図面を参照しながら円筒形
リチウムイオン電池を例に本発明を詳細に説明する。 (正極板の作製)活物質であるマンガン酸リチウム(L
iMn24)粉末100重量部に、導電剤として10重
量部の鱗片状黒鉛(平均粒径:20μm)と結着剤とし
て10重量部のポリフッ化ビニリデンを添加し、これに
分散溶媒のN−メチルピロリドンを添加、混練したスラ
リを厚み20μmのアルミニウム箔の両面に塗布した。
この時極板長寸方向の一方の側縁に幅30mmの未塗布
部を残した。その後乾燥、プレス、裁断して幅130m
m、長さ2000mm、活物質塗布部厚み200μmの
正極板を得た。上記未塗布部に図1に示すように25m
m間隔で切り込み2を入れる。本例では更に隣り合う同
極性のリード片1付け根部間にR部3(φ2)を設けて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail by taking a cylindrical lithium ion battery as an example with reference to the drawings. (Preparation of positive electrode plate) Lithium manganate (L
iMn 2 O 4 ) To 100 parts by weight of powder, 10 parts by weight of flaky graphite (average particle size: 20 μm) as a conductive agent and 10 parts by weight of polyvinylidene fluoride as a binder were added, and N was added as a dispersion solvent. The slurry obtained by adding and kneading methylpyrrolidone was applied to both sides of an aluminum foil having a thickness of 20 μm.
At this time, an uncoated portion having a width of 30 mm was left on one side edge in the electrode plate length direction. After drying, pressing and cutting, the width is 130m.
m, a length of 2000 mm, and a positive electrode plate having a thickness of 200 μm of the active material applied portion. 25 m on the uncoated part as shown in FIG.
Cuts 2 are made at m intervals. In this example, an R portion (φ2) is further provided between adjacent root portions of the lead pieces 1 of the same polarity.

【0007】(負極板の作製)グラファイト粉末100
重量部に結着剤として10重量部のポリフッ化ビニリデ
ンを添加し、これに分散溶媒のN−メチルピロリドンを
添加、混練したスラリを厚み10μmの圧延銅箔の両面
に塗布した。この時極板長寸方向の一方の側縁に幅30
mmの未塗布部を残した。その後乾燥、プレス、裁断し
て幅135mm、長さ2200mm、活物質塗布部厚み
130μmの負極板を得た。上記未塗布部に図1に示す
ように25mm間隔で切り込み2を入れる。本例では更
に隣り合う同極性のリード片1付け根部間にR部3(φ
2)を設けている。
(Preparation of negative electrode plate) Graphite powder 100
10 parts by weight of polyvinylidene fluoride as a binder was added to parts by weight, N-methylpyrrolidone as a dispersion solvent was added thereto, and a kneaded slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm. At this time, a width of 30
mm was left uncoated. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode plate having a width of 135 mm, a length of 2200 mm, and a thickness of the active material application portion of 130 μm. As shown in FIG. 1, cuts 2 are made in the uncoated portion at intervals of 25 mm. In this example, the R portion 3 (φ
2) is provided.

【0008】(電池の作製)上記作製した正極板と負極
板を、厚み40μmのポリエチレン製セパレータととも
に捲回する。正極板のリード片1と負極板のリード片1
は、それぞれ捲回群の両端に位置するように捲回してい
る。その後捲回群を円筒形の電池容器に挿入する。図2
に示すように、正極板から導出されているリード片1全
てを、正極外部端子を兼ねる上蓋4側周面と金具との間
に挟み込み、その上で上蓋4、リード片1、金具をレー
ザー溶接により一体化させ、それぞれの導通を得る。負
極外部端子と負極板から導出されているリード片1の接
続操作も、図2に示す正極外部端子と正極板から導出さ
れているリード片1の接続操作と同様に実施した。
(Production of Battery) The positive electrode plate and the negative electrode plate produced above are wound together with a polyethylene separator having a thickness of 40 μm. Lead piece 1 of positive electrode plate and lead piece 1 of negative electrode plate
Are wound so as to be located at both ends of the winding group. Thereafter, the winding group is inserted into a cylindrical battery container. FIG.
As shown in (1), all the lead pieces 1 led out from the positive electrode plate are sandwiched between the peripheral surface of the upper lid 4 also serving as a positive electrode external terminal and the metal fitting, and the upper lid 4, the lead piece 1, and the metal fitting are then laser-welded. To obtain the respective continuity. The operation of connecting the negative electrode external terminal and the lead piece 1 derived from the negative electrode plate was also performed in the same manner as the connection operation of the positive external terminal and the lead piece 1 derived from the positive electrode plate shown in FIG.

【0009】その後上蓋4、金具で電池容器(図示せ
ず)を封口し、上蓋4にある注液口(図示せず)より電
解液を所定量電池容器内に注入、注液口を封口すること
により円筒形リチウムイオン電池を作製した。電解液に
はエチレンカーボネートとジメチルカーボネートの混合
溶液中へ6フッ化リン酸リチウム(LiPF6)を1モ
ル/リットル溶解したものを用いた。この電池の定格容
量は10Ahである。
Thereafter, a battery container (not shown) is sealed with the upper lid 4 and a metal fitting, a predetermined amount of electrolyte is injected into the battery container from a liquid inlet (not shown) in the upper lid 4, and the liquid inlet is sealed. Thus, a cylindrical lithium ion battery was manufactured. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) at 1 mol / liter in a mixed solution of ethylene carbonate and dimethyl carbonate was used. The rated capacity of this battery is 10 Ah.

【0010】本例では双方の極性の極板のリード片に本
発明を適用したが、例えば円筒形電池容器が負極外部端
子を兼ね、捲回群の最外周が負極面であり、電池容器側
内壁と該負極面が圧接によって電気的接続を得ている構
造のような電池については、一方の極性の極板のリード
片のみに本発明を適用する。また本例ではリチウムイオ
ン電池を例示したが、電池系は限定されない。但しリチ
ウムイオン電池は前述したように電極面積を大きくする
必要があり、そのためリード片を極板1枚に複数個設け
て集電性を良好にする必要性が高いため本発明の適用は
特に有効である。
In this embodiment, the present invention is applied to the lead pieces of the polar plates of both polarities. For example, a cylindrical battery container also serves as the negative electrode external terminal, the outermost periphery of the winding group is the negative electrode surface, For a battery having a structure in which the inner wall and the negative electrode surface are electrically connected by pressure contact, the present invention is applied only to the lead piece of the electrode plate having one polarity. In this example, a lithium ion battery is illustrated, but the battery system is not limited. However, the application of the present invention is particularly effective for a lithium ion battery because it is necessary to increase the electrode area as described above, and it is highly necessary to provide a plurality of lead pieces on one electrode plate to improve the current collecting property. It is.

【0011】また本例では、正極にマンガン酸リチウ
ム、負極にグラファイト、電解液にエチレンカーボネー
トとジメチルカーボネートの混合溶液中へ6フッ化リン
酸リチウムを1モル/リットル溶解したものを用いた
が、本発明の電池の製造方法には特に制限はなく、また
結着剤、正負極活物質、非水電解液も通常用いられてい
るいずれのものも使用可能である。但し正極活物質とし
て、コバルト酸リチウムよりも低コストのマンガン酸リ
チウムを使用する場合、特に本発明はその効力を発揮す
ると考えられる(他元素による部分置換材料も含む)。
その理由は、一般にマンガン酸リチウムはコバルト酸リ
チウムやニッケル酸リチウム等に比して電子伝導性が低
く、それを含む極板の導電性を向上させることが期待さ
れているためである。また本例では定格容量が1000
mAhを越える、定格容量10Ahもの大型非水電解液
電池について記載しているが、本発明の構成は定格容量
が1000mAh以下の小形非水電解液電池にも適用で
き、そのような電池においても集電効率向上効果が得ら
れる。
In this embodiment, lithium manganate is used for the positive electrode, graphite is used for the negative electrode, and lithium hexafluorophosphate dissolved at 1 mol / l in a mixed solution of ethylene carbonate and dimethyl carbonate is used for the electrolyte. The method for producing the battery of the present invention is not particularly limited, and any of binders, positive and negative electrode active materials, and non-aqueous electrolytes which are commonly used can be used. However, when lithium manganate, which is lower in cost than lithium cobaltate, is used as the positive electrode active material, the present invention is particularly considered to be effective (including partially substituted materials with other elements).
This is because lithium manganate generally has lower electron conductivity than lithium cobalt oxide, lithium nickelate, or the like, and is expected to improve the conductivity of an electrode plate containing the same. In this example, the rated capacity is 1000
Although a large non-aqueous electrolyte battery having a rated capacity of 10 Ah exceeding mAh is described, the configuration of the present invention can be applied to a small non-aqueous electrolyte battery having a rated capacity of 1000 mAh or less. The effect of improving power efficiency is obtained.

【0012】また本例以外で用いることのできる結着剤
としては、テフロン、ポリエチレン、ポリスチレン、ポ
リブタジエン、ブチルゴム、ニトリルゴム、スチレン/
ブタジエンゴム、多硫化ゴム、ニトロセルロース、シア
ノエチルセルロース、各種ラテックス、アクリロニトリ
ル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレ
ン、フッ化クロロプレン等の重合体及びこれらの混合体
などがある。また本例以外で用いることのできる正極活
物質としては、リチウムを挿入・脱離可能な材料であ
り、予め十分な量のリチウムを挿入した材料が好まし
い。例えば、リチウム遷移金属複合酸化物であり、リチ
ウム・コバルト複合酸化物、リチウム・ニッケル複合酸
化物、リチウム・マンガン複合酸化物、リチウム・バナ
ジウム複合酸化物等がある。また、これらのリチウム遷
移金属複合酸化物の一部にそれ以外の元素を置換させた
ようなものでも良い。また本例以外で用いることのでき
る負極活物質も特に制限はない。例えば、リチウム金
属、リチウム合金や各種黒鉛材、コークスなどの炭素質
材料、ポリアセチレンなどの導電性ポリマー等が好適で
ある。
The binders that can be used in other than this example include Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene /
Examples include butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene, and mixtures thereof. The positive electrode active material that can be used in other than this example is a material into which lithium can be inserted and desorbed, and a material into which a sufficient amount of lithium has been inserted in advance is preferable. For example, a lithium transition metal composite oxide, such as a lithium-cobalt composite oxide, a lithium-nickel composite oxide, a lithium-manganese composite oxide, or a lithium-vanadium composite oxide. Further, a material in which a part of these lithium transition metal composite oxides is substituted with another element may be used. There is no particular limitation on the negative electrode active material that can be used other than in this example. For example, lithium metals, lithium alloys, various graphite materials, carbonaceous materials such as coke, and conductive polymers such as polyacetylene are suitable.

【0013】電解液としては、一般的なリチウム塩を電
解質とし、これを有機溶媒に溶解した電解液が用いられ
る。しかし、用いられるリチウム塩や有機溶媒は特に制
限されない。例えば、電解質としては、LiClO4
LiAsF6、LiPF6、LiBF4、LiB(C
654、CH3SO3Li、CF3SO3Li等やこれら
の混合物が用いられる。また、有機溶媒としては、プロ
ピレンカーボネート、エチレンカーボネート、1,2−
ジメトキシエタン、1,2−ジエトキシエタン、γ−ブ
チロラクトン、テトラヒドロフラン、1,3−ジオキソ
ラン、4−メチル−1,3−ジオキソラン、ジエチルエ
ーテル、スルホラン、メチルスルホラン、アセトニトリ
ル、プロピオニトニル等またはこれら2種類以上の混合
溶媒が用いられる。
As the electrolytic solution, an electrolytic solution obtained by dissolving a general lithium salt as an electrolyte in an organic solvent is used. However, the lithium salt or organic solvent used is not particularly limited. For example, as the electrolyte, LiClO 4 ,
LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li and the like or a mixture thereof is used. As the organic solvent, propylene carbonate, ethylene carbonate, 1,2-
Dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethylether, sulfolane, methylsulfolane, acetonitrile, propionitonyl and the like, or two or more thereof Is used.

【0014】[0014]

【実施例】上記発明の実施の形態に記載した製法による
リチウムイオン電池(実施例1)とし、それと以下に示
す製法による各電池(実施例2〜4、比較例1〜3)と
を比較検討した。 (実施例2〜4の電池の作製)正・負極板側縁部全長に
対する、正・負極板側縁部におけるリード片1付け根部
の幅の合計の割合(Aと略記)を表1に示すように変化
させて、それ以外は実施例1と同条件で実施例2〜4の
電池を作製した。つまり実施例2〜4の電池に用いた極
板のリード片を作製する際には、実施例1のように切り
込み2を入れるのではなく切り欠きを入れて隣り合うリ
ード片1の間に一定の距離をおいた。リード片1の付け
根部において、極板側縁部からリード辺側縁部にわたっ
て、R部(φ2)を設けた。
EXAMPLE A lithium ion battery (Example 1) manufactured by the method described in the above embodiment of the present invention was compared with each battery (Examples 2 to 4 and Comparative Examples 1 to 3) manufactured by the following method. did. (Preparation of Batteries of Examples 2 to 4) Table 1 shows the total ratio (abbreviated as A) of the width of the base of the lead piece 1 at the positive / negative electrode plate side edges to the total length of the positive / negative electrode side edges. The batteries of Examples 2 to 4 were manufactured under the same conditions as in Example 1 except for the above changes. In other words, when producing the lead pieces of the electrode plates used in the batteries of Examples 2 to 4, notches 2 were made as in Example 1 but a notch was made and a certain distance was set between adjacent lead pieces 1. The distance. At the base of the lead piece 1, an R portion (φ2) was provided from the electrode plate side edge to the lead side edge.

【0015】(比較例1〜3の電池の作製)Aの値を表
1に示すように変化させて、それ以外は実施例2〜4の
電池と同条件で作製した。
(Preparation of batteries of Comparative Examples 1 to 3) The batteries of Examples 2 to 4 were prepared under the same conditions as those of Examples 2 to 4 except that the value of A was changed as shown in Table 1.

【0016】以上の電池に対し、直流電流法による内部
抵抗及び放電率特性についての比較をした。直流電流法
による内部抵抗測定は、以下のように行った。定電流、
2時間率(1/2C)で100%充電した後、1時間率
(1C)及び20分率(3C)で10秒間放電した時点
の電池電圧の差と、オームの法則(R=V/I)から内
部抵抗を求めた。放電率特性試験では、定電流8時間率
で充電し、8時間率(1/8C)、1時間率(1C)及
び10分率(6C)で終止電圧を3.2Vまでそれぞれ
放電した際の放電容量を測定した。表1に直流電流法に
おける内部抵抗と放電率特性試験の結果を示す。放電率
特性は、1/8C放電に対する6C放電容量比率((C6
/(C1/8))×100)で示した。
The above batteries were compared with respect to internal resistance and discharge rate characteristics by a direct current method. The internal resistance measurement by the direct current method was performed as follows. Constant current,
After 100% charging at a 2-hour rate (1 / 2C), the battery voltage difference at the time of discharging for 10 seconds at a 1-hour rate (1C) and a 20-minute rate (3C), and Ohm's law (R = V / I ) Was used to determine the internal resistance. In the discharge rate characteristic test, the battery was charged at a constant current of 8 hours and discharged at a final voltage of 3.2 V at 8 hours (1/8 C), 1 hour (1 C), and 10 minutes (6 C). The discharge capacity was measured. Table 1 shows the results of the internal resistance and discharge rate characteristic tests in the direct current method. The discharge rate characteristic is a ratio of 6C discharge capacity to 1 / 8C discharge ((C6
/ (C1 / 8)) × 100).

【0017】 [0017]

【0018】集電体未塗布部に切り込みや切り欠きを入
れてAが70%以上である本発明の実施例1〜4の電池
は、Aが70%未満である比較例1〜3の電池と比べる
と内部抵抗が低下し、高率での大電流放電特性に優れて
いることがわかる。
The batteries of Examples 1 to 4 of the present invention in which A is 70% or more by making cuts or cuts in the uncoated portion of the current collector are the batteries of Comparative Examples 1 to 3 in which A is less than 70%. It can be seen that the internal resistance is reduced as compared with that of Example 1, and the high current discharge characteristics at a high rate are excellent.

【0019】[0019]

【発明の効果】本発明により、電池の大電流放電特性を
向上させることができた。
According to the present invention, the high-current discharge characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る極板の正面概略図である。FIG. 1 is a schematic front view of an electrode plate according to the present invention.

【図2】本発明の捲回式円筒形電池の要部縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of a main part of the wound cylindrical battery of the present invention.

【符号の説明】[Explanation of symbols]

1.リード片 2.切り込み 3.R部 4.上蓋 1. Lead piece 2. Notch 3. R part 4. Top lid

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】帯状の正極板と負極板とをセパレータを介
して捲回した極板群を備え、正極板及び/又は負極板の
側縁部から、捲回方向と直行する方向に、リード片が極
板1枚につき複数枚導出されており、 該リード片が電池外部端子と電気的に接続されてなる捲
回式円筒形電池において、 極板側縁部におけるリード片付け根部の幅の合計が極板
側縁部全長の70%以上であることを特徴とする捲回式
円筒形電池。
An electrode group comprising a strip-shaped positive electrode plate and a negative electrode plate wound with a separator interposed therebetween, and a lead extending from a side edge of the positive electrode plate and / or the negative electrode plate in a direction perpendicular to the winding direction. In a wound cylindrical battery in which a plurality of pieces are led out for each electrode plate, and the lead pieces are electrically connected to battery external terminals, the total width of the roots of the lead pieces at the side edges of the electrode plate Is 70% or more of the entire length of the side edge of the electrode plate.
【請求項2】極板側縁部におけるリード片付け根部の幅
の合計が極板側縁部全長の100%であることを特徴と
する請求項1記載の捲回式円筒形電池。
2. The wound cylindrical battery according to claim 1, wherein the sum of the widths of the roots of the lead at the edge of the electrode plate is 100% of the total length of the edge of the electrode plate.
【請求項3】リード片付け根部において、極板側縁部か
らリード片側縁部にわたってR部を有している請求項1
記載の捲回式円筒形電池。
3. The lead-removing root portion has an R portion from the side edge of the electrode plate to the side edge of one side of the lead.
The wound cylindrical battery according to the above.
【請求項4】隣り合う同極性のリード片付け根部間に、
R部を有している請求項2記載の捲回式円筒形電池。
4. The method according to claim 1, further comprising the step of:
The wound cylindrical battery according to claim 2, which has an R portion.
【請求項5】電池がリチウムイオン電池である請求項1
〜4のいずれかに記載の捲回式円筒形電池。
5. The battery according to claim 1, wherein the battery is a lithium ion battery.
A wound cylindrical battery according to any one of claims 1 to 4.
【請求項6】少なくとも正極板側縁部全長に対して、正
極リード片下端が正極側縁部に直接接続されている長さ
の合計の割合が70%以上であり、且つ正極活物質がマ
ンガン酸リチウムを主体としていることを特徴とする請
求項5記載の捲回式円筒形電池。
6. The total length of the lower end of the positive electrode lead directly connected to the positive electrode side edge is at least 70% of the total length of the positive electrode side edge, and the positive electrode active material is manganese. The wound cylindrical battery according to claim 5, wherein the battery is mainly composed of lithium oxide.
【請求項7】電池の定格容量が1000mAhを上回る
ものである請求項1〜6のいずれかに記載の捲回式円筒
形電池。
7. The wound cylindrical battery according to claim 1, wherein the rated capacity of the battery is more than 1000 mAh.
JP10040241A 1998-02-23 1998-02-23 Roll type cylindrical battery Pending JPH11238500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10040241A JPH11238500A (en) 1998-02-23 1998-02-23 Roll type cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040241A JPH11238500A (en) 1998-02-23 1998-02-23 Roll type cylindrical battery

Publications (1)

Publication Number Publication Date
JPH11238500A true JPH11238500A (en) 1999-08-31

Family

ID=12575229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040241A Pending JPH11238500A (en) 1998-02-23 1998-02-23 Roll type cylindrical battery

Country Status (1)

Country Link
JP (1) JPH11238500A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024206A1 (en) * 1999-09-30 2001-04-05 Asahi Glass Company, Limited Capacitor element
JP2001102033A (en) * 1999-09-30 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary battery
EP1137088A1 (en) * 2000-03-22 2001-09-26 Sony Corporation Battery electrode and non-aqueous electrolyte battery equipped therewith
JP2001297745A (en) * 2000-03-16 2001-10-26 Alcatel Method of connecting electrode plate with battery terminal and battery thus obtained
JP2004006406A (en) * 2003-07-29 2004-01-08 Matsushita Electric Ind Co Ltd Battery
JP2005174602A (en) * 2003-12-08 2005-06-30 Japan Storage Battery Co Ltd Battery
JP2013105623A (en) * 2011-11-14 2013-05-30 Toyota Industries Corp Electrode for secondary battery, secondary battery and vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024206A1 (en) * 1999-09-30 2001-04-05 Asahi Glass Company, Limited Capacitor element
JP2001102033A (en) * 1999-09-30 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary battery
US6896993B2 (en) 1999-09-30 2005-05-24 Asahi Glass Company, Limited Electrochemical device comprising a pair of electrodes and an electrolyte
JP4681181B2 (en) * 1999-09-30 2011-05-11 旭硝子株式会社 Electricity storage element
JP2001297745A (en) * 2000-03-16 2001-10-26 Alcatel Method of connecting electrode plate with battery terminal and battery thus obtained
EP1137088A1 (en) * 2000-03-22 2001-09-26 Sony Corporation Battery electrode and non-aqueous electrolyte battery equipped therewith
US6664005B2 (en) 2000-03-22 2003-12-16 Sony Corporation Battery electrode and non-aqueous electrolyte battery equipped therewith
KR100756203B1 (en) * 2000-03-22 2007-09-07 소니 가부시끼 가이샤 Battery electrode and non-aqueous electrolyte battery equipped therewith
JP2004006406A (en) * 2003-07-29 2004-01-08 Matsushita Electric Ind Co Ltd Battery
JP2005174602A (en) * 2003-12-08 2005-06-30 Japan Storage Battery Co Ltd Battery
JP2013105623A (en) * 2011-11-14 2013-05-30 Toyota Industries Corp Electrode for secondary battery, secondary battery and vehicle

Similar Documents

Publication Publication Date Title
US6706447B2 (en) Lithium metal dispersion in secondary battery anodes
US7276314B2 (en) Lithium metal dispersion in secondary battery anodes
EP1126538B1 (en) Non-aqueous electrolyte secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
JP2000311676A (en) Cylindrical lithium ion battery
CA2384494C (en) Lithium metal dispersion in secondary battery anodes
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JPH11219694A (en) Winding type cylindrical battery
JP5300274B2 (en) Lithium secondary battery
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP4106856B2 (en) Non-aqueous electrolyte secondary battery
JP2000090932A (en) Lithium secondary battery
JPH11238500A (en) Roll type cylindrical battery
JP2007172879A (en) Battery and its manufacturing method
JP2003168427A (en) Nonaqueous electrolyte battery
JP2000133316A (en) Lithium secondary battery and fabricating method for electrode plate
JP2002075460A (en) Lithium secondary cell
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP4688527B2 (en) Lithium secondary battery
JP2004234994A (en) Lithium secondary battery, battery pack of same, and electrode of same
JP3624793B2 (en) Lithium ion battery
JP2001015168A (en) Lithium secondary battery