JP2008262825A - Coin-shaped nonaqueous electrolytic solution secondary battery - Google Patents

Coin-shaped nonaqueous electrolytic solution secondary battery Download PDF

Info

Publication number
JP2008262825A
JP2008262825A JP2007105148A JP2007105148A JP2008262825A JP 2008262825 A JP2008262825 A JP 2008262825A JP 2007105148 A JP2007105148 A JP 2007105148A JP 2007105148 A JP2007105148 A JP 2007105148A JP 2008262825 A JP2008262825 A JP 2008262825A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
coin
negative electrode
wound body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007105148A
Other languages
Japanese (ja)
Inventor
Isato Higuchi
勇人 樋口
Kazuyuki Nakazawa
一幸 中澤
Kenichi Sano
健一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007105148A priority Critical patent/JP2008262825A/en
Priority to KR1020080025755A priority patent/KR20080092842A/en
Priority to CNA2008100921646A priority patent/CN101286572A/en
Publication of JP2008262825A publication Critical patent/JP2008262825A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coin-shaped nonaqueous electrolytic solution secondary battery high in discharge load characteristics and free of deformation of the battery accompanied with charge and discharge. <P>SOLUTION: As for the coin-shaped nonaqueous electrolytic solution secondary battery, a cylindrical wound-around body 10 is constituted by means that a belt form positive electrode 1 and a belt form negative electrode 2 are wounded via a belt form separator 3, a wound-around shaft direction of the wound-around body 10 is the same as the height direction of a battery can 13, the ratio D/H between the outer diameter D (mm) of the wound body 10 and the height H (mm) of the wound-around shaft direction of the wound body 10 is 1-25, and the ratio R/A between the area A (mm<SP>2</SP>) of the upper face part of the wound body 10 and the reaction effective area R (mm<SP>2</SP>) where the positive electrode 1 and the negative electrode 2 are opposed is 9-25. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放電負荷特性が高いコイン形非水電解液二次電池に関する。   The present invention relates to a coin-type non-aqueous electrolyte secondary battery having high discharge load characteristics.

コイン形リチウムイオン二次電池に代表されるコイン形非水電解液二次電池は、ボタン形又は扁平形非水電解液二次電池とも呼ばれ、ヘッドホンセット、時計型通信機器、身体取付型医療機器等の人が身につけて使用するいわゆるウェアラブル機器等に用いる重負荷対応の小型電池として注目されている。   Coin-type non-aqueous electrolyte secondary batteries, typified by coin-type lithium ion secondary batteries, are also called button-type or flat-type non-aqueous electrolyte secondary batteries. Headphone sets, clock-type communication devices, body-mounted medical care It is attracting attention as a small battery for heavy loads used in so-called wearable devices worn by people such as devices.

従来のコイン形リチウムイオン二次電池としては、例えば、円形に打ち抜いた正極と負極とを1枚づつセパレータを介して積層した電極体を用いたものがある。しかし、このタイプの電池では、電極が厚くなるため、電極の厚さ方向に対するリチウムイオンの拡散抵抗が増加して、放電負荷特性が低下する欠点があり、低出力の用途にしか使用できないという問題がある。   As a conventional coin-type lithium ion secondary battery, for example, there is a battery using an electrode body in which a positive electrode and a negative electrode punched in a circle are stacked one by one via a separator. However, in this type of battery, since the electrode becomes thick, the diffusion resistance of lithium ions in the thickness direction of the electrode increases, and there is a disadvantage that the discharge load characteristic is deteriorated, which can be used only for low-power applications. There is.

上記問題を解決するために、帯状の正極と、帯状の負極とを、帯状のセパレータを介して捲回した電極体を用いることにより、電極を薄くする方法が提案されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。
特開2003−77543号公報 特開2005−310578号公報 特開平11−345626号公報 特開平11−354150号公報
In order to solve the above problem, a method of thinning an electrode by using an electrode body obtained by winding a belt-like positive electrode and a belt-like negative electrode through a belt-like separator has been proposed (for example, Patent Documents). 1, see Patent Literature 2, Patent Literature 3, and Patent Literature 4.)
JP 2003-77543 A JP 2005-310578 A JP-A-11-345626 JP 11-354150 A

特許文献1及び特許文献2に提案されている電池では、帯状の正極と、帯状の負極とを、帯状のセパレータを介して捲回して電極体を形成し、その電極体を扁平状に成形した後、電極体の捲回軸方向と電池缶の高さ方向(厚さ方向)とが直交した状態で、電極体を電池缶に挿入している。この場合、電池缶内の電極体は、電池の高さ方向から見て四角状に形成されているため、電極体と電池缶との間に隙間が生じ、容積ロスが生じる問題がある。また、この電極構造では、電池の充放電に伴う電極の膨張・収縮方向が電池缶の高さ方向と一致するため、充放電を繰り返すと電池が高さ方向に変形するおそれもある。   In the batteries proposed in Patent Document 1 and Patent Document 2, a belt-like positive electrode and a belt-like negative electrode are wound through a belt-like separator to form an electrode body, and the electrode body is formed into a flat shape. Thereafter, the electrode body is inserted into the battery can in a state where the winding axis direction of the electrode body and the height direction (thickness direction) of the battery can are orthogonal to each other. In this case, since the electrode body in the battery can is formed in a square shape when viewed from the height direction of the battery, there is a problem that a gap is generated between the electrode body and the battery can, resulting in a volume loss. Moreover, in this electrode structure, since the expansion / contraction direction of the electrode accompanying charging / discharging of the battery coincides with the height direction of the battery can, the battery may be deformed in the height direction when charging / discharging is repeated.

一方、特許文献3及び特許文献4に提案されている電池では、電極体の捲回軸方向と、電池缶の高さ方向とが同一であるため、電極体と電池缶との間に隙間が生ぜず、また、電池の充放電に伴う電極の膨張・収縮方向が電池缶の径方向と一致するため、充放電を繰り返しても電池が変形するおそれもない。   On the other hand, in the batteries proposed in Patent Document 3 and Patent Document 4, since the winding axis direction of the electrode body and the height direction of the battery can are the same, there is a gap between the electrode body and the battery can. In addition, since the expansion / contraction direction of the electrode accompanying charging / discharging of the battery coincides with the radial direction of the battery can, there is no possibility that the battery will be deformed even if charging / discharging is repeated.

しかし、特許文献3及び特許文献4では、単に電極構造が開示されているのみであり、重負荷特性の向上のための具体的構成が一切開示されていない。もちろん、特許文献1及び特許文献2にも重負荷特性の向上のための具体的構成は一切開示されていない。   However, Patent Document 3 and Patent Document 4 merely disclose an electrode structure, and do not disclose any specific configuration for improving heavy load characteristics. Of course, neither Patent Document 1 nor Patent Document 2 discloses any specific configuration for improving heavy load characteristics.

本発明は上記問題を解決したもので、放電負荷特性が高いコイン形非水電解液二次電池を提供するものである。   The present invention solves the above problems and provides a coin-type non-aqueous electrolyte secondary battery having high discharge load characteristics.

本発明のコイン形非水電解液二次電池は、帯状の正極と、帯状の負極と、帯状のセパレータと、コイン形の電池缶とを含むコイン形非水電解液二次電池であって、前記正極と前記負極とは、前記セパレータを介して捲回されて円筒状の捲回体を構成し、前記捲回体の捲回軸方向が、前記電池缶の高さ方向と同一であり、前記捲回体の外径Dと、前記捲回体の捲回軸方向の高さHとの比D/Hが、1〜25であり、前記捲回体の上面部の面積Aと、前記正極と前記負極とが対向している反応有効面積Rとの比R/Aが、9〜25であることを特徴とする。   The coin-type non-aqueous electrolyte secondary battery of the present invention is a coin-type non-aqueous electrolyte secondary battery including a strip-shaped positive electrode, a strip-shaped negative electrode, a strip-shaped separator, and a coin-shaped battery can, The positive electrode and the negative electrode are wound through the separator to form a cylindrical wound body, and the winding axis direction of the wound body is the same as the height direction of the battery can, The ratio D / H between the outer diameter D of the wound body and the height H in the winding axis direction of the wound body is 1 to 25, and the area A of the upper surface portion of the wound body, The ratio R / A of the reaction effective area R in which the positive electrode and the negative electrode face each other is 9 to 25.

本発明によると、放電負荷特性が高く、充放電に伴う電池の変形もないコイン形非水電解液二次電池を提供できる。   According to the present invention, it is possible to provide a coin-type non-aqueous electrolyte secondary battery that has high discharge load characteristics and does not deform the battery due to charge / discharge.

以下、本発明のコイン形非水電解液二次電池の実施形態を説明する。   Hereinafter, embodiments of the coin-type non-aqueous electrolyte secondary battery of the present invention will be described.

本発明のコイン形非水電解液二次電池は、帯状の正極と、帯状の負極と、帯状のセパレータと、コイン形の電池缶とを備え、正極と負極とは、セパレータを介して捲回されて円筒状の捲回体を構成している。この構造により、電極を薄くでき、放電負荷特性をある程度向上できる。   A coin-shaped non-aqueous electrolyte secondary battery of the present invention includes a strip-shaped positive electrode, a strip-shaped negative electrode, a strip-shaped separator, and a coin-shaped battery can, and the positive electrode and the negative electrode are wound through the separator. Thus, a cylindrical wound body is formed. With this structure, the electrode can be made thin and the discharge load characteristics can be improved to some extent.

また、上記捲回体の捲回軸方向は、電池缶の高さ方向と同一とされている。この構造により、電極の膨張・収縮方向と、強度的に強固な電池缶の径方向とが一致し、充放電を繰り返しても電池の変形を防止できる。   Further, the winding axis direction of the wound body is the same as the height direction of the battery can. With this structure, the expansion / contraction direction of the electrode coincides with the radial direction of the battery can that is strong in strength, and deformation of the battery can be prevented even when charging and discharging are repeated.

また、上記捲回体の外径Dと、捲回体の捲回軸方向の高さHとの比D/H(扁平度)は、1〜25に設定されている。D/Hが1未満では、コイン形電池とはいえず、薄型小型で高容量が要求されるウェアラブル機器用のコイン形非水電解液二次電池には適さない。   The ratio D / H (flatness) between the outer diameter D of the wound body and the height H of the wound body in the winding axis direction is set to 1 to 25. If D / H is less than 1, it cannot be said to be a coin-type battery, and is not suitable for a coin-type non-aqueous electrolyte secondary battery for a wearable device that is thin and small and requires a high capacity.

また、D/Hが25を超えると、通常の電池設計の許容範囲を逸脱する。即ち、電極を捲回する製造工程に耐え得る電極幅は最低でも約2mmは必要であるため、捲回体の捲回軸方向の高さHの最小値は2mmである。また、電池を搭載する機器の大きさから、捲回体の外径Dの最大値は50mmと考えられる。このため、D/Hの最大値は25となる。さらに、電池を搭載する機器に必要な電池容量を考慮するとD/Hは1.5〜23がより好ましい。   Moreover, when D / H exceeds 25, it deviates from the tolerance | permissible_range of a normal battery design. That is, since the electrode width that can withstand the manufacturing process of winding the electrode needs to be at least about 2 mm, the minimum value of the height H in the winding axis direction of the wound body is 2 mm. In addition, the maximum value of the outer diameter D of the wound body is considered to be 50 mm from the size of the device on which the battery is mounted. For this reason, the maximum value of D / H is 25. Furthermore, in view of the battery capacity required for the device on which the battery is mounted, the D / H is more preferably 1.5 to 23.

また、本発明のコイン形非水電解液二次電池では、上記捲回体の上面部の面積Aと、上記正極と上記負極とが対向している反応有効面積Rとの比R/Aは、9〜25に設定され、より好ましくは15〜20に設定される。これにより、放電負荷特性をさらに向上でき、重負荷特性が要求される各種機器用の電池として最適となる。ここで、反応有効面積Rは、捲回された正極と負極の活物質層同士が対向している面積をいい、通常リチウムイオン二次電池では、充電時にリチウムデンドライトが生じないように、負極活物質層の面積を正極活物質層の面積よりも大きくし、正極活物質層の全面が負極活物質層に対向しているため、反応有効面積は、実質的には正極活物質層が設けられている部分の面積となる。   In the coin type non-aqueous electrolyte secondary battery of the present invention, the ratio R / A between the area A of the upper surface portion of the wound body and the reaction effective area R where the positive electrode and the negative electrode face each other is , 9-25, more preferably 15-20. As a result, the discharge load characteristics can be further improved, and the battery is optimal as a battery for various devices that require heavy load characteristics. Here, the reaction effective area R is an area where the wound active material layers of the positive electrode and the negative electrode are opposed to each other, and in a normal lithium ion secondary battery, a negative electrode active material R is prevented so that lithium dendrite does not occur during charging. Since the area of the material layer is larger than the area of the positive electrode active material layer, and the entire surface of the positive electrode active material layer faces the negative electrode active material layer, the effective reaction area is substantially provided with the positive electrode active material layer. It becomes the area of the part which is.

また、本発明のコイン形非水電解液二次電池の体積は、1cm3以上7cm3以下であることが好ましい。この範囲内であれば、薄型小型で高容量が要求されるウェアラブル機器用のコイン形非水電解液二次電池として最適となる。 The volume of the coin-type non-aqueous electrolyte secondary battery of the present invention is preferably 1 cm 3 or more and 7 cm 3 or less. Within this range, it is optimal as a coin-type non-aqueous electrolyte secondary battery for wearable devices that are thin and small and require high capacity.

さらに、本発明のコイン形非水電解液二次電池は、電池缶の外径が、20mm以上50mm以下であることが好ましい。この範囲内であれば、上記と同様に薄型小型で高容量が要求されるウェアラブル機器用のコイン形非水電解液二次電池として最適となる。   Furthermore, in the coin-type non-aqueous electrolyte secondary battery of the present invention, the outer diameter of the battery can is preferably 20 mm or more and 50 mm or less. Within this range, it is optimal as a coin-type non-aqueous electrolyte secondary battery for a wearable device that is thin and small and requires a high capacity as described above.

次に、本発明のコイン形非水電解液二次電池の一例を図面に基づき説明する。但し、図1〜図10では、同一部分には同一の符号を付し、重複した説明は省略する場合がある。   Next, an example of the coin type non-aqueous electrolyte secondary battery of the present invention will be described with reference to the drawings. However, in FIGS. 1-10, the same code | symbol is attached | subjected to the same part and the overlapping description may be abbreviate | omitted.

図1は、本発明に用いる捲回体の斜視図である。図1において、捲回体10は、帯状の正極と帯状の負極とを、帯状のセパレータを介して捲回して作製されている。   FIG. 1 is a perspective view of a wound body used in the present invention. In FIG. 1, a wound body 10 is produced by winding a belt-like positive electrode and a belt-like negative electrode through a belt-like separator.

上記正極は、正極活物質、正極用導電助剤、正極用バインダ等を含む混合物に、溶剤を加えて十分に混練して得た正極合剤ペーストを、正極集電体の両面に塗布して乾燥した後に、その正極合剤層を所定の厚さ及び所定の電極密度に制御することにより形成できる。   The positive electrode is obtained by applying a positive electrode mixture paste obtained by sufficiently kneading a mixture containing a positive electrode active material, a positive electrode conductive additive, a positive electrode binder, and the like onto both surfaces of the positive electrode current collector. After drying, the positive electrode mixture layer can be formed by controlling to a predetermined thickness and a predetermined electrode density.

上記正極活物質としては、例えば、LiCoO2等のリチウムコバルト酸化物、LiMn24等のリチウムマンガン酸化物、LiNiO2等のリチウムニッケル酸化物等が使用できるが、リチウムイオンを吸蔵・放出可能であればこれらに限定はされない。 Examples of the positive electrode active material include lithium cobalt oxides such as LiCoO 2 , lithium manganese oxides such as LiMn 2 O 4 , lithium nickel oxides such as LiNiO 2, etc., and can absorb and release lithium ions. If it is, it will not be limited to these.

上記正極集電体としては、構成された電池において実質的に化学的に安定な電子伝導体であれば特に限定されない。正極集電体としては、例えば、アルミニウム箔等が用いられる。   The positive electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the battery. As the positive electrode current collector, for example, an aluminum foil or the like is used.

正極集電体の一端部には正極合剤ペーストを塗布していない集電体露出部が設けられ、集電体露出部を折り返すことにより、正極リード11が形成されている。また、集電体露出部は、集電体の両端部に設けてもよく、正極リードも集電体の両端部に設けてもよい。さらに、集電体露出部を折り返して形成する上記正極リードに代えて、正極集電体の一端部又は両端部に別部品としてのタブを溶接して正極リードとしてもよい。   One end of the positive electrode current collector is provided with a current collector exposed portion not coated with the positive electrode mixture paste, and the positive electrode lead 11 is formed by folding back the current collector exposed portion. The current collector exposed portions may be provided at both end portions of the current collector, and the positive electrode lead may be provided at both end portions of the current collector. Further, instead of the positive electrode lead formed by folding the current collector exposed portion, a tab as a separate part may be welded to one end portion or both end portions of the positive electrode current collector to form a positive electrode lead.

上記負極は、負極活物質、負極用導電助剤、負極用バインダ等を含む混合物に、溶剤を加えて十分に混練して得た負極合剤ペーストを、負極集電体の両面に塗布して乾燥した後に、その負極合剤層を所定の厚さ及び所定の電極密度に制御することにより形成できる。   The negative electrode is obtained by applying a negative electrode mixture paste obtained by sufficiently adding a solvent to a mixture containing a negative electrode active material, a negative electrode conductive additive, a negative electrode binder, and the like on both surfaces of a negative electrode current collector. After drying, the negative electrode mixture layer can be formed by controlling to a predetermined thickness and a predetermined electrode density.

上記負極活物質としては、例えば、天然黒鉛又は塊状黒鉛、鱗片状黒鉛、土状黒鉛等の人造黒鉛等の炭素材料が用いられるが、リチウムイオンを吸蔵・放出可能であればこれらに限定はされない。   Examples of the negative electrode active material include carbon materials such as natural graphite or artificial graphite such as massive graphite, flaky graphite, and earthy graphite, but are not limited thereto as long as lithium ions can be occluded / released. .

上記負極集電体としては、構成された電池において実質的に化学的に安定な電子伝導体であれば特に限定されない。負極集電体としては、例えば、銅箔等が用いられる。   The negative electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the constituted battery. For example, a copper foil or the like is used as the negative electrode current collector.

負極集電体の一端部には負極合剤ペーストを塗布していない集電体露出部が設けられ、集電体露出部を折り返すことにより、負極リード12が形成されている。また、集電体露出部は、集電体の両端部に設けてもよく、負極リードも集電体の両端部に設けてもよい。さらに、集電体露出部を折り返して形成する上記負極リードに代えて、負極集電体の一端部又は両端部に別部品としてのタブを溶接して負極リードとしてもよい。   A current collector exposed portion not coated with the negative electrode mixture paste is provided at one end portion of the negative electrode current collector, and the negative electrode lead 12 is formed by folding the current collector exposed portion. The current collector exposed portions may be provided at both end portions of the current collector, and the negative electrode lead may be provided at both end portions of the current collector. Furthermore, instead of the negative electrode lead formed by folding back the exposed portion of the current collector, a tab as a separate part may be welded to one or both ends of the negative electrode current collector to form a negative electrode lead.

図1では、正極リード11を捲回体10の外周側に設け、負極リード12を捲回体10の内周側に設けたが、正極リード11を捲回体10の内周側に設け、負極リード12を捲回体10の外周側に設けてもよく、また、正極リード11及び負極リード12をともに捲回体10の外周側に設けてもよい。   In FIG. 1, the positive electrode lead 11 is provided on the outer peripheral side of the wound body 10, and the negative electrode lead 12 is provided on the inner peripheral side of the wound body 10, but the positive electrode lead 11 is provided on the inner peripheral side of the wound body 10, The negative electrode lead 12 may be provided on the outer peripheral side of the wound body 10, and both the positive electrode lead 11 and the negative electrode lead 12 may be provided on the outer peripheral side of the wound body 10.

上記セパレータとしては、大きなイオン透過度及び所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、一定温度以上(100〜140℃)で微孔を閉塞し、抵抗を上げる機能を有するものが、電池の安全性向上の点から好ましい。具体的には、上記セパレータとしては、耐有機溶剤性及び疎水性を有するポリプロピレン、ポリエチレン等のオレフィン系ポリマー又はガラス繊維からなるシート、不織布、織布、又はオレフィン系の粒子を接着剤で固着した多孔質体層等が用いられる。   As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, what has the function to block | close a micropore and to raise resistance above a fixed temperature (100-140 degreeC) is preferable from the point of the safety | security improvement of a battery. Specifically, as the separator, a sheet, a nonwoven fabric, a woven fabric, or an olefin-based particle made of an olefin-based polymer or glass fiber such as polypropylene and polyethylene having organic solvent resistance and hydrophobicity is fixed with an adhesive. A porous body layer or the like is used.

図2は、捲回体10を円筒状の電池缶13に挿入している工程を示す斜視図である。捲回体10は、その捲回軸方向Nが電池缶13の高さ方向Mと同一となるように、電池缶13に挿入される。電池缶13の材質は、アルミニウム等が用いられる。また、電池缶13の底部には、下部絶縁板(図示せず。)が配置されている。下部絶縁板の材質は特に限定されず、ポリフェニレンサルファイド(PPS)等の高分子材料を用いることができる。   FIG. 2 is a perspective view showing a process of inserting the wound body 10 into the cylindrical battery can 13. The wound body 10 is inserted into the battery can 13 such that the winding axis direction N is the same as the height direction M of the battery can 13. The battery can 13 is made of aluminum or the like. A lower insulating plate (not shown) is disposed at the bottom of the battery can 13. The material of the lower insulating plate is not particularly limited, and a polymer material such as polyphenylene sulfide (PPS) can be used.

図3は、捲回体10を電池缶13に挿入した後に、捲回体10の上に上部絶縁板14を配置している工程を示す斜視図である。上部絶縁板14の材質は、上記下部絶縁板と同様の材質が使用できる。   FIG. 3 is a perspective view illustrating a process in which the upper insulating plate 14 is disposed on the wound body 10 after the wound body 10 is inserted into the battery can 13. The material of the upper insulating plate 14 can be the same material as the lower insulating plate.

図4は、上部絶縁板14を捲回体10の上に載置し、蓋15の中央部に配置された負極端子16の裏部と負極リード12とを溶接した状態の斜視図である。蓋15と負極端子16とは、絶縁パッキング17によって絶縁されている。蓋15の材質は、電池缶13と同様にアルミニウム等が用いられる。負極端子16の材質は、ニッケル等が用いられる。絶縁パッキング17の材質は、ポリプロピレン(PP)等の高分子材料を用いることができる。   FIG. 4 is a perspective view of a state in which the upper insulating plate 14 is placed on the wound body 10 and the back of the negative terminal 16 disposed at the center of the lid 15 and the negative lead 12 are welded. The lid 15 and the negative electrode terminal 16 are insulated by an insulating packing 17. As the material of the lid 15, aluminum or the like is used similarly to the battery can 13. The material of the negative electrode terminal 16 is nickel or the like. The insulating packing 17 can be made of a polymer material such as polypropylene (PP).

図5Aは、電池缶13と蓋15とをレーザー溶接等により接合した状態の斜視図である。図5Bは、図5AのB−B線の断面図である。図5Bにおいて、蓋15と電池缶13とで形成された密閉容器内に捲回体10が収納され、電池缶13の底部には下部絶縁板19が配置されている。但し、図5Bでは、捲回体10の内周側の部分は断面にしていない。捲回体10は、前述のとおり、帯状の正極1と帯状の負極2とを、帯状のセパレータ3を介して渦巻状に捲回した構造を有している。また、正極リード11は、電池缶13と蓋15との間に挟まれた状態で接合されている。これにより、電池缶13及び蓋15が正極端子として機能する。但し、電池缶13の材質によっては、電池缶13及び蓋15が負極となる場合もある。最後に、注液口18から、電解液を注液し、注液口18を封口体(図示せず。)によって封口すればコイン形非水電解液二次電池が完成する。   FIG. 5A is a perspective view of a state in which the battery can 13 and the lid 15 are joined by laser welding or the like. 5B is a cross-sectional view taken along line BB in FIG. 5A. In FIG. 5B, the wound body 10 is housed in a sealed container formed by a lid 15 and a battery can 13, and a lower insulating plate 19 is disposed at the bottom of the battery can 13. However, in FIG. 5B, the inner peripheral side portion of the wound body 10 is not cross-sectional. As described above, the wound body 10 has a structure in which the strip-shaped positive electrode 1 and the strip-shaped negative electrode 2 are wound in a spiral shape with the strip-shaped separator 3 interposed therebetween. The positive electrode lead 11 is joined in a state of being sandwiched between the battery can 13 and the lid 15. Thereby, the battery can 13 and the lid | cover 15 function as a positive electrode terminal. However, depending on the material of the battery can 13, the battery can 13 and the lid 15 may be a negative electrode. Finally, an electrolytic solution is injected from the injection port 18, and the injection port 18 is sealed by a sealing body (not shown), thereby completing a coin-type non-aqueous electrolyte secondary battery.

上記電解液は、例えば、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン等の有機溶媒を1種類又は2種類以上混合した溶媒に、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3等から選ばれる少なくとも1種類のリチウム塩を溶解させた電解液を用いればよい。この電解液中のLiイオンの濃度は、0.5〜1.5mol/Lとすればよい。 Examples of the electrolyte include vinylene carbonate (VC), propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), the organic solvent of γ- butyrolactone to one or more kinds mixed solvent, for example, at least one lithium salt selected from LiClO 4, LiPF 6, LiBF 4 , LiAsF 6, LiSbF 6, LiCF 3 SO 3 , etc. An electrolytic solution in which is dissolved may be used. The concentration of Li ions in the electrolytic solution may be 0.5 to 1.5 mol / L.

図6は、捲回体10の模式図である。図6では、正極リード及び負極リードの図示を省略している。捲回体10の外径D(mm)と、捲回体10の捲回軸方向の高さH(mm)との比D/Hは、1〜25に設定されている。また、捲回体10の上面部の面積A(mm2)と、正極と負極とが対向している反応有効面積R(mm2)との比R/Aは、9〜25に設定されている。 FIG. 6 is a schematic diagram of the wound body 10. In FIG. 6, illustration of the positive electrode lead and the negative electrode lead is omitted. The ratio D / H between the outer diameter D (mm) of the wound body 10 and the height H (mm) in the winding axis direction of the wound body 10 is set to 1 to 25. The ratio R / A between the area A (mm 2 ) of the upper surface portion of the wound body 10 and the effective reaction area R (mm 2 ) where the positive electrode and the negative electrode face each other is set to 9 to 25. Yes.

図7は、本発明のパラメータを説明するための正極の模式図である。図7において、帯状の正極20の正極集電体21の両面には、第1正極活物質層22と、第1正極活物質層22より短く形成された第2正極活物質層23とが形成されている。正極活物質層が形成されていない正極集電体21の端部は折り曲げられて正極リード24を形成している。ここで、第1正極活物質層22の長さをL(mm)、第2正極活物質層23の長さをJ(mm)、正極集電体21の幅をW(mm)とすると、反応有効面積R(mm2)は、R=(L+J)×Wとなる。 FIG. 7 is a schematic diagram of a positive electrode for explaining parameters of the present invention. In FIG. 7, the first positive electrode active material layer 22 and the second positive electrode active material layer 23 formed shorter than the first positive electrode active material layer 22 are formed on both surfaces of the positive electrode current collector 21 of the belt-like positive electrode 20. Has been. The end portion of the positive electrode current collector 21 where the positive electrode active material layer is not formed is bent to form a positive electrode lead 24. Here, when the length of the first positive electrode active material layer 22 is L (mm), the length of the second positive electrode active material layer 23 is J (mm), and the width of the positive electrode current collector 21 is W (mm), The effective reaction area R (mm 2 ) is R = (L + J) × W.

また、正極集電体21、第1正極活物質層22、第2正極活物質層23を含む正極20の断面積をB(mm2)、正極リードの数をnとすると、これらの比L/(B×n)は2000〜8000が好ましい。 Further, assuming that the cross-sectional area of the positive electrode 20 including the positive electrode current collector 21, the first positive electrode active material layer 22, and the second positive electrode active material layer 23 is B (mm 2 ) and the number of positive electrode leads is n, the ratio L / (B × n) is preferably 2000 to 8000.

図8は、図7のI−I線の断面図である。また、図9は、図7のII−II線の断面図である。ここで、正極リード24の断面積をC(mm2)、正極リードの数をn、正極集電体21の断面積をS(mm2)とすると、これらの比(C×n)/Sは1以上であることが好ましい。 8 is a cross-sectional view taken along the line II of FIG. FIG. 9 is a sectional view taken along line II-II in FIG. Here, assuming that the cross-sectional area of the positive electrode lead 24 is C (mm 2 ), the number of positive electrode leads is n, and the cross-sectional area of the positive electrode current collector 21 is S (mm 2 ), these ratios (C × n) / S Is preferably 1 or more.

図10は、図7の正極リードの他の形態を示す斜視図である。図10では、正極集電体21の端部にタブを溶接することにより正極リード25を形成している。図10の形態であっても、上記した比L/(B×n)、比(C×n)/Sの好適範囲は同様である。   FIG. 10 is a perspective view showing another form of the positive electrode lead of FIG. In FIG. 10, the positive electrode lead 25 is formed by welding a tab to the end of the positive electrode current collector 21. Even in the embodiment of FIG. 10, the preferred ranges of the ratio L / (B × n) and ratio (C × n) / S are the same.

以下、実施例に基づき本発明を説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to a following example.

(実施例1)
<正極の作製>
正極活物質であるLiCoO2:80重量部と、導電助剤であるアセチレンブラック:10重量部と、バインダであるポリフッ化ビニリデン(PVDF):5重量部とに、N−メチル−2−ピロリドン(NMP)を溶剤として加えて、均一になるように混合して正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、正極集電体となる厚さ20μmのアルミニウム箔の両面に、表面側の活物質塗布長が1221mm、裏面側の活物質塗布長が1155mmになるように塗布し、乾燥した。その後、カレンダー処理を行って、全厚が134μmになるように電極の厚さを調整し、幅3.0mmになるように切断して、帯状の正極を作製した。作製した帯状の正極の両端部には、活物質未塗布部が形成されている。
Example 1
<Preparation of positive electrode>
LiCoO 2 as a positive electrode active material: 80 parts by weight, acetylene black as a conductive auxiliary agent: 10 parts by weight, polyvinylidene fluoride (PVDF) as a binder: 5 parts by weight, N-methyl-2-pyrrolidone ( NMP) was added as a solvent and mixed uniformly to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste was applied to both surfaces of an aluminum foil having a thickness of 20 μm serving as a positive electrode current collector so that the active material application length on the front surface side was 1221 mm and the active material application length on the back surface side was 1155 mm. Dried. Thereafter, calendering was performed, the thickness of the electrode was adjusted so that the total thickness was 134 μm, and the electrode was cut so as to have a width of 3.0 mm to produce a strip-like positive electrode. Active material uncoated portions are formed at both ends of the produced belt-like positive electrode.

ここで、上記正極集電体の表面側とは、捲回体を形成した場合の外周側をいい、その裏面側とは、捲回体を形成した場合の内周側をいい、後述する負極集電体の場合も同様である。   Here, the surface side of the positive electrode current collector refers to the outer peripheral side when the wound body is formed, and the back surface side refers to the inner peripheral side when the wound body is formed. The same applies to the current collector.

<負極の作製>
負極活物質である黒鉛:90重量部と、バインダであるPVDF:5重量部とに、NMPを溶剤として加えて、均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、負極集電体となる厚さ12μmの銅箔の両面に、表面側の活物質塗布長が1207mm、裏面側の活物質塗布長が1207mmになるように塗布し、乾燥した。その後、カレンダー処理を行って、全厚が142μmになるように電極の厚さを調整し、幅3.5mmになるように切断して、帯状の負極を作製した。作製した帯状の負極の両端部には、活物質未塗布部が形成されている。
<Production of negative electrode>
A negative electrode mixture-containing paste was prepared by adding NMP as a solvent to graphite: 90 parts by weight of negative electrode active material and PVDF: 5 parts by weight of binder and mixing uniformly. This negative electrode mixture-containing paste was applied to both sides of a 12 μm thick copper foil serving as a negative electrode current collector so that the active material application length on the front surface side was 1207 mm and the active material application length on the back surface side was 1207 mm. Dried. Thereafter, calendering was performed, the thickness of the electrode was adjusted so that the total thickness was 142 μm, and the electrode was cut so as to have a width of 3.5 mm to produce a strip-shaped negative electrode. Active material uncoated portions are formed at both ends of the produced strip-shaped negative electrode.

<捲回体の作製>
上記のように作製した帯状の正極と負極との間に、厚さ20μm、幅4.3mmのポリエチレン製の微多孔性フィルムよりなるセパレータを配置して捲回して、捲回体を作製した。捲回体は、正極の両面の正極活物質塗布部が全て負極活物質塗布部と対向するように形成した。次に、正極の活物質未塗布部のアルミニウム箔を、捲回体の外周部側の端部より折り返して取り出し、正極リードを1本形成した。また、負極の活物質未塗布部の銅箔を、捲回体の内周部側(中心側)の端部より折り返して取り出し、負極リードを1本形成した。
<Production of wound body>
A separator made of a polyethylene microporous film having a thickness of 20 μm and a width of 4.3 mm was placed between the belt-like positive electrode and the negative electrode prepared as described above, and wound to prepare a wound body. The wound body was formed so that all the positive electrode active material application portions on both sides of the positive electrode were opposed to the negative electrode active material application portions. Next, the aluminum foil in the positive electrode active material uncoated portion was folded back from the end on the outer peripheral side of the wound body, and one positive electrode lead was formed. Further, the copper foil in the negative electrode active material uncoated portion was folded back from the end on the inner peripheral side (center side) of the wound body to form one negative electrode lead.

作製した捲回体の外径Dは、23.5mm、捲回体の高さHは3.7mm、これらの比D/Hは6.4であった。また、捲回体の上面部の面積Aは398mm2、反応有効面積Rは7128mm2、これらの比R/Aは17.9であった。 The wound body produced had an outer diameter D of 23.5 mm, a wound body height H of 3.7 mm, and a ratio D / H thereof of 6.4. Also, the area A of the upper surface portion of the wound body 398 mm 2, the effective reaction area R is 7128Mm 2, the ratios R / A was 17.9.

<電解液の調製>
エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(EC:DECの混合体積比は1:2)中にLiPF6を1.2mol/L溶解させた電解液を調製した。
<Preparation of electrolyte>
An electrolyte solution was prepared by dissolving LiPF 6 in an amount of 1.2 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC mixed volume ratio is 1: 2).

<電池の作製>
外径24mm、高さ5.0mm、側面厚さ0.25mm、底面厚さ0.3mmのアルミニウム製の電池缶と、直径24mm、厚さ0.4mmのアルミニウム製の蓋を準備した。蓋の中央には、直径6mmのニッケル製の負極端子がポリプロピレン製のパッキングを介して嵌合されている。次に、上記電池缶の底部に、厚さ0.05mmのPPS製の下部絶縁板を配置した後、捲回体の捲回軸方向が電池缶の高さ方向と同一となるように、上記捲回体を電池缶内に挿入した。次に、捲回体の上部に厚さ0.05mmのPPS製の上部絶縁板を配置した後、負極リードを負極端子の裏側に溶接した。その後、正極リードを電池缶と蓋との間に挟んだまま電池缶と蓋とをレーザー溶接により接合した。
<Production of battery>
An aluminum battery can having an outer diameter of 24 mm, a height of 5.0 mm, a side surface thickness of 0.25 mm, and a bottom surface thickness of 0.3 mm, and an aluminum lid having a diameter of 24 mm and a thickness of 0.4 mm were prepared. In the center of the lid, a nickel negative electrode terminal having a diameter of 6 mm is fitted through a polypropylene packing. Next, a PPS lower insulating plate having a thickness of 0.05 mm is disposed at the bottom of the battery can, and then the winding axis direction of the winding body is the same as the height direction of the battery can. The wound body was inserted into the battery can. Next, after placing an upper insulating plate made of PPS having a thickness of 0.05 mm on the upper part of the wound body, the negative electrode lead was welded to the back side of the negative electrode terminal. Thereafter, the battery can and the lid were joined by laser welding while the positive electrode lead was sandwiched between the battery can and the lid.

最後に、蓋に設けられた直径1.5mmの注液口から上記電解液を注液し、電極体に電解液を十分に浸透させた後、封止ピンを注液口に挿入してレーザー溶接することにより封口して、電池体積が2.3cm3のコイン形リチウムイオン二次電池を作製した。 Finally, the electrolyte solution is injected from a 1.5 mm diameter injection port provided on the lid, and after the electrolyte solution is sufficiently infiltrated into the electrode body, a sealing pin is inserted into the injection port and the laser is inserted. Sealing was performed by welding to produce a coin-type lithium ion secondary battery having a battery volume of 2.3 cm 3 .

(実施例2)
<正極の作製>
正極集電体の厚さを25μm、活物質塗布長を表面側678mm、裏面側624mm、カレンダー処理後の全厚を162μm、幅を2.0mmとした以外は、実施例1と同様にして正極を作製した。
(Example 2)
<Preparation of positive electrode>
The positive electrode current collector was the same as in Example 1 except that the thickness of the positive electrode current collector was 25 μm, the active material coating length was 678 mm on the front surface side, 624 mm on the back surface side, the total thickness after calendar treatment was 162 μm, and the width was 2.0 mm. Was made.

<負極の作製>
負極集電体の厚さを20μm、活物質塗布長を表面側667mm、裏面側667mm、カレンダー処理後の全厚を177μm、幅を2.5mmとした以外は、実施例1と同様にして負極を作製した。
<Production of negative electrode>
A negative electrode current collector as in Example 1, except that the thickness of the negative electrode current collector was 20 μm, the active material coating length was 667 mm on the front surface side, 667 mm on the back surface side, the total thickness after calendering was 177 μm, and the width was 2.5 mm. Was made.

上記正極及び上記負極を用い、セパレータの幅を3.3mmとし、外径20mm、高さ4.0mmの電池缶を用いた以外は、実施例1と同様にして、電池体積が1.3cm3のコイン形非水電解液二次電池を作製した。 The battery volume was 1.3 cm 3 in the same manner as in Example 1 except that the positive electrode and the negative electrode were used, the separator width was 3.3 mm, and a battery can with an outer diameter of 20 mm and a height of 4.0 mm was used. A coin type non-aqueous electrolyte secondary battery was prepared.

本実施例の捲回体の外径Dは、19.5mm、捲回体の高さHは2.7mm、これらの比D/Hは7.2であった。また、捲回体の上面部の面積Aは269mm2、反応有効面積Rは2604mm2、これらの比R/Aは9.7であった。 The outer diameter D of the wound body of this example was 19.5 mm, the height H of the wound body was 2.7 mm, and the ratio D / H thereof was 7.2. The area A of the upper surface of the wound body was 269 mm 2 , the reaction effective area R was 2604 mm 2 , and the ratio R / A thereof was 9.7.

(実施例3)
<正極の作製>
活物質塗布長を表面側3146mm、裏面側3047mm、カレンダー処理後の全厚を115μm、幅を3.5mmとした以外は、実施例1と同様にして正極を作製した。
(Example 3)
<Preparation of positive electrode>
A positive electrode was produced in the same manner as in Example 1 except that the active material coating length was 3146 mm on the front surface side, 3047 mm on the back surface side, the total thickness after the calendar treatment was 115 μm, and the width was 3.5 mm.

<負極の作製>
活物質塗布長を表面側3121mm、裏面側3121mm、カレンダー処理後の全厚を122μm、幅を4.0mmとした以外は、実施例1と同様にして、負極を作製した。
<Production of negative electrode>
A negative electrode was produced in the same manner as in Example 1, except that the active material coating length was 3121 mm on the front surface side, 3121 mm on the back surface side, the total thickness after calendar treatment was 122 μm, and the width was 4.0 mm.

上記正極及び上記負極を用い、セパレータの幅を4.8mmとし、外径35mm、高さ5.5mmの電池缶を用いた以外は、実施例1と同様にして、電池体積が5.3cm3のコイン形非水電解液二次電池を作製した。 The battery volume was 5.3 cm 3 in the same manner as in Example 1 except that the positive electrode and the negative electrode were used, the battery width was 4.8 mm, the outer diameter was 35 mm, and the height was 5.5 mm. A coin type non-aqueous electrolyte secondary battery was prepared.

本実施例の捲回体の外径Dは、34.5mm、捲回体の高さHは4.2mm、これらの比D/Hは8.2であった。また、捲回体の上面部の面積Aは881mm2、反応有効面積Rは21676mm2、これらの比R/Aは24.6であった。 The outer diameter D of the wound body of this example was 34.5 mm, the height H of the wound body was 4.2 mm, and the ratio D / H thereof was 8.2. The area A of the upper surface portion of the wound body was 881 mm 2 , the reaction effective area R was 21676 mm 2 , and the ratio R / A thereof was 24.6.

(比較例1)
<正極の作製>
活物質塗布長を表面側1750mm、裏面側1685mm、カレンダー処理後の全厚を89μmとした以外は、実施例1と同様にして正極を作製した。
(Comparative Example 1)
<Preparation of positive electrode>
A positive electrode was produced in the same manner as in Example 1 except that the active material coating length was 1750 mm on the front surface side, 1685 mm on the back surface side, and the total thickness after the calendar treatment was 89 μm.

<負極の作製>
活物質塗布長を表面側1735mm、裏面側1735mm、カレンダー処理後の全厚を91μmとした以外は、実施例1と同様にして負極を作製した。
<Production of negative electrode>
A negative electrode was produced in the same manner as in Example 1 except that the active material coating length was 1735 mm on the front surface side, 1735 mm on the back surface side, and the total thickness after the calendar treatment was 91 μm.

上記正極及び上記負極を用いた以外は、実施例1と同様にして、電池体積が2.3cm3のコイン形非水電解液二次電池を作製した。 A coin-type non-aqueous electrolyte secondary battery having a battery volume of 2.3 cm 3 was produced in the same manner as in Example 1 except that the positive electrode and the negative electrode were used.

本比較例の捲回体の外径Dは、23.5mm、捲回体の高さHは3.7mm、これらの比D/Hは6.4であった。また、捲回体の上面部の面積Aは398mm2、反応有効面積Rは10305mm2、これらの比R/Aは25.9であった。 The outer diameter D of the wound body of this comparative example was 23.5 mm, the height H of the wound body was 3.7 mm, and the ratio D / H thereof was 6.4. Also, the area A of the upper surface portion of the wound body 398 mm 2, the effective reaction area R is 10305Mm 2, the ratios R / A was 25.9.

(比較例2)
<正極の作製>
正極集電体の厚さを25μm、活物質塗布長を表面側603mm、裏面側548mm、カレンダー処理後の全厚を185μm、幅を2.0mmとした以外は、実施例1と同様にして正極を作製した。
(Comparative Example 2)
<Preparation of positive electrode>
The positive electrode current collector was the same as in Example 1 except that the thickness of the positive electrode current collector was 25 μm, the active material coating length was 603 mm on the front surface side, 548 mm on the back surface side, the total thickness after calendering was 185 μm, and the width was 2.0 mm. Was made.

<負極の作製>
負極集電体の厚さを20μm、活物質塗布長を表面側592mm、裏面側592mm、カレンダー処理後の全厚を203μm、幅を2.5mmとした以外は、実施例1と同様にして負極を作製した。
<Production of negative electrode>
The negative electrode current collector was 20 μm, the active material coating length was 592 mm on the front surface side, 592 mm on the back surface side, the total thickness after calendar treatment was 203 μm, and the width was 2.5 mm. Was made.

上記正極及び上記負極を用い、セパレータの幅を3.3mmとし、外径20mm、高さ4.0mmの電池缶を用いた以外は、実施例1と同様にして、電池体積が1.3cm3のコイン形非水電解液二次電池を作製した。 The battery volume was 1.3 cm 3 in the same manner as in Example 1 except that the positive electrode and the negative electrode were used, the separator width was 3.3 mm, and a battery can with an outer diameter of 20 mm and a height of 4.0 mm was used. A coin type non-aqueous electrolyte secondary battery was prepared.

本比較例の捲回体の外径Dは、19.5mm、捲回体の高さHは2.7mm、これらの比D/Hは7.2であった。また、捲回体の上面部の面積Aは269mm2、反応有効面積Rは2302mm2、これらの比R/Aは8.6であった。 The outer diameter D of the wound body of this comparative example was 19.5 mm, the height H of the wound body was 2.7 mm, and the ratio D / H thereof was 7.2. The area A of the upper surface of the wound body was 269 mm 2 , the reaction effective area R was 2302 mm 2 , and the ratio R / A thereof was 8.6.

実施例1〜3及び比較例1、2の正極及び負極の各寸法を表1及び表2にまとめて示す。   Tables 1 and 2 collectively show the dimensions of the positive and negative electrodes of Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 2008262825
Figure 2008262825

Figure 2008262825
Figure 2008262825

また、実施例1〜3及び比較例1、2の電池パラメータ及び捲回体パラメータを表3及び表4に示す。   Table 3 and Table 4 show battery parameters and wound body parameters of Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 2008262825
Figure 2008262825

Figure 2008262825
Figure 2008262825

<電池特性の評価>
実施例1〜3及び比較例1、2の各電池について、0.2Cで4.3Vまで定電流充電を行い、その後、電流値が0.02Cとなるまで定電圧充電を行った。次に、0.2Cで3.0Vまで定電流放電を行って初期容量(a)を求めた。なお、「C」とは、電池の設計容量を1時間で放電する場合の電流値を意味する。
<Evaluation of battery characteristics>
About each battery of Examples 1-3 and Comparative Examples 1 and 2, the constant current charge was performed to 4.3V at 0.2C, and the constant voltage charge was performed until the electric current value was set to 0.02C after that. Next, constant current discharge was performed to 0.2V at 0.2 C, and the initial capacity (a) was obtained. Note that “C” means a current value when the design capacity of the battery is discharged in one hour.

続いて、各電池を0.2Cで4.3Vまで定電流充電を行い、その後、電流値が0.02Cとなるまで定電圧充電を行った。次に、2Cで3.0Vまで定電流放電を行って重負荷容量(b)を求めた。   Subsequently, each battery was subjected to constant current charging at 0.2 C to 4.3 V, and thereafter, constant voltage charging was performed until the current value reached 0.02 C. Next, a constant current discharge was performed at 2C up to 3.0 V to obtain a heavy load capacity (b).

上記結果から容量維持率Z(%)を下記式から求め、放電負荷特性として評価した。   From the above results, the capacity retention ratio Z (%) was obtained from the following formula and evaluated as discharge load characteristics.

Z=(b/a)×100   Z = (b / a) × 100

上記電池特性を、パラメータD/H及びパラメータR/Aとともに表5に示す。   The battery characteristics are shown in Table 5 together with parameter D / H and parameter R / A.

<サイクル特性の評価>
充放電サイクル試験を次にように行った。充電は各電池について、0.5Cで4.3Vまで定電流充電を行い、その後、電流値が0.02Cとなるまで定電圧充電を行った。放電は、1Cで3.0Vまで定電流放電を行った。この充放電を1サイクルとして200サイクルまで繰り返した。次に、電池の外観を目視により観察し、電池の変形の有無を確認した。その結果を表5に示す。
<Evaluation of cycle characteristics>
The charge / discharge cycle test was conducted as follows. For each battery, constant current charging was performed at 0.5 C to 4.3 V, and then constant voltage charging was performed until the current value reached 0.02 C. Discharge performed constant current discharge to 3.0V at 1C. This charging / discharging was repeated up to 200 cycles as one cycle. Next, the appearance of the battery was visually observed to confirm whether the battery was deformed. The results are shown in Table 5.

Figure 2008262825
Figure 2008262825

表5から、パラメータR/Aが9〜25の範囲内にある実施例1〜3は、その範囲外にある比較例1、2に比べて容量維持率Z(重負荷特性)が高いことが分かる。また、実施例1〜3及び比較例1、2の各電池では充放電を200回繰り返しても電池の変形は一切認められなかった。   From Table 5, Examples 1 to 3 in which the parameter R / A is within the range of 9 to 25 have a higher capacity retention ratio Z (heavy load characteristic) than Comparative Examples 1 and 2 outside the range. I understand. Further, in each of the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, no deformation of the battery was observed even when charging / discharging was repeated 200 times.

以上説明したように、本発明は、放電負荷特性が高く、充放電に伴う電池の変形もないコイン形非水電解液二次電池を提供できる。このコイン形非水電解液二次電池は、ウェアラブル機器用の電源だけでなく、様々な機器の電源として広く利用できる。   As described above, the present invention can provide a coin-type non-aqueous electrolyte secondary battery having high discharge load characteristics and no battery deformation due to charge / discharge. This coin-type non-aqueous electrolyte secondary battery can be widely used not only as a power source for wearable devices but also as a power source for various devices.

本発明に用いる捲回体の斜視図である。It is a perspective view of the winding body used for this invention. 捲回体を円筒状の電池缶に挿入している工程を示す斜視図である。It is a perspective view which shows the process of inserting the winding body in the cylindrical battery can. 捲回体を電池缶に挿入した後に、捲回体の上に上部絶縁板を配置している工程を示す斜視図である。It is a perspective view which shows the process of arrange | positioning an upper insulating board on a winding body, after inserting a winding body in a battery can. 上部絶縁板を捲回体の上に載置し、蓋の中央部に配置された負極端子の裏部と負極リードとを溶接した状態の斜視図である。It is a perspective view in the state where the upper insulating plate was placed on the winding body and the back of the negative electrode terminal arranged at the center of the lid and the negative electrode lead were welded. 図5Aは、電池缶と蓋とをレーザー溶接等により接合した状態の斜視図であり、図5Bは、図5AのB−B線の断面図である。FIG. 5A is a perspective view of a state in which a battery can and a lid are joined by laser welding or the like, and FIG. 5B is a cross-sectional view taken along line BB of FIG. 5A. 捲回体の模式図である。It is a schematic diagram of a wound body. 本発明のパラメータを説明するための正極の模式図である。It is a schematic diagram of the positive electrode for demonstrating the parameter of this invention. 図7のI−I線の断面図である。It is sectional drawing of the II line | wire of FIG. 図7のII−II線の断面図である。It is sectional drawing of the II-II line | wire of FIG. 図7の正極リードの他の形態を示す斜視図である。It is a perspective view which shows the other form of the positive electrode lead of FIG.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
10 捲回体
11 正極リード
12 負極リード
13 電池缶
14 上部絶縁板
15 蓋
16 負極端子
17 絶縁パッキング
18 注液口
19 下部絶縁板
20 正極
21 正極集電体
22 第1正極活物質層
23 第2正極活物質層
24 正極リード
25 正極リード
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 10 Winding body 11 Positive electrode lead 12 Negative electrode lead 13 Battery can 14 Upper insulating plate 15 Lid 16 Negative electrode terminal 17 Insulating packing 18 Injection port 19 Lower insulating plate 20 Positive electrode 21 Positive electrode collector 22 First positive electrode Active material layer 23 Second positive electrode active material layer 24 Positive electrode lead 25 Positive electrode lead

Claims (5)

帯状の正極と、帯状の負極と、帯状のセパレータと、コイン形の電池缶とを含むコイン形非水電解液二次電池であって、
前記正極と前記負極とは、前記セパレータを介して捲回されて円筒状の捲回体を構成し、
前記捲回体の捲回軸方向が、前記電池缶の高さ方向と同一であり、
前記捲回体の外径D(mm)と、前記捲回体の捲回軸方向の高さH(mm)との比D/Hが、1〜25であり、
前記捲回体の上面部の面積A(mm2)と、前記正極と前記負極とが対向している反応有効面積R(mm2)との比R/Aが、9〜25であることを特徴とするコイン形非水電解液二次電池。
A coin-shaped non-aqueous electrolyte secondary battery including a strip-shaped positive electrode, a strip-shaped negative electrode, a strip-shaped separator, and a coin-shaped battery can,
The positive electrode and the negative electrode are wound through the separator to form a cylindrical wound body,
The winding axis direction of the wound body is the same as the height direction of the battery can,
The ratio D / H between the outer diameter D (mm) of the wound body and the height H (mm) in the winding axis direction of the wound body is 1 to 25,
The ratio R / A of the area A (mm 2 ) of the upper surface portion of the wound body and the reaction effective area R (mm 2 ) where the positive electrode and the negative electrode face each other is 9 to 25. A coin-type non-aqueous electrolyte secondary battery.
前記比D/Hが、1.5〜23である請求項1に記載のコイン形非水電解液二次電池。   The coin-type nonaqueous electrolyte secondary battery according to claim 1, wherein the ratio D / H is 1.5 to 23. 前記コイン形非水電解液二次電池の体積が、1cm3以上7cm3以下である請求項1に記載のコイン形非水電解液二次電池。 The coin-type non-aqueous electrolyte secondary battery according to claim 1, wherein a volume of the coin-type non-aqueous electrolyte secondary battery is 1 cm 3 or more and 7 cm 3 or less. 前記電池缶の外径が、20mm以上50mm以下である請求項1に記載のコイン形非水電解液二次電池。   The coin-type non-aqueous electrolyte secondary battery according to claim 1, wherein an outer diameter of the battery can is 20 mm or more and 50 mm or less. 前記正極及び前記負極は、リチウムイオンを吸蔵・放出可能である請求項1に記載のコイン形非水電解液二次電池。   The coin-type non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode and the negative electrode are capable of inserting and extracting lithium ions.
JP2007105148A 2007-04-12 2007-04-12 Coin-shaped nonaqueous electrolytic solution secondary battery Withdrawn JP2008262825A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007105148A JP2008262825A (en) 2007-04-12 2007-04-12 Coin-shaped nonaqueous electrolytic solution secondary battery
KR1020080025755A KR20080092842A (en) 2007-04-12 2008-03-20 Coin type nonaqueous electrolyte secondary battery
CNA2008100921646A CN101286572A (en) 2007-04-12 2008-04-10 Nummular non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105148A JP2008262825A (en) 2007-04-12 2007-04-12 Coin-shaped nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2008262825A true JP2008262825A (en) 2008-10-30

Family

ID=39985131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105148A Withdrawn JP2008262825A (en) 2007-04-12 2007-04-12 Coin-shaped nonaqueous electrolytic solution secondary battery

Country Status (3)

Country Link
JP (1) JP2008262825A (en)
KR (1) KR20080092842A (en)
CN (1) CN101286572A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146154A3 (en) * 2009-06-18 2011-04-28 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
DE102010033577A1 (en) * 2010-08-03 2012-02-09 Varta Microbattery Gmbh Button cell with winding electrode with thermal fuse
US9153835B2 (en) 2009-02-09 2015-10-06 Varta Microbattery Gmbh Button cells and method for producing same
CN110061254A (en) * 2019-03-04 2019-07-26 惠州亿纬锂能股份有限公司 The linkage transmission structure of button cell manufacturing equipment
WO2022264526A1 (en) * 2021-06-14 2022-12-22 株式会社村田製作所 Secondary battery
WO2023210590A1 (en) * 2022-04-28 2023-11-02 パナソニックエナジー株式会社 Cylindrical battery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283544B2 (en) * 2009-03-10 2013-09-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN103346356B (en) * 2013-07-09 2015-07-08 田秀君 Lithium ion battery as well as preparation method thereof and lithium-ion battery pack
CN104659289B (en) * 2013-11-22 2017-03-15 北京好风光储能技术有限公司 A kind of torus power battery pack
US20150200384A1 (en) * 2014-01-14 2015-07-16 Ford Global Technologies, Llc Electric vehicle battery cell having conductive case
JP6811003B2 (en) * 2014-11-19 2021-01-13 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of electrochemical cell
CN106025366A (en) * 2016-07-13 2016-10-12 深圳市秸川材料科技有限公司 Lithium ion button battery
WO2018218019A1 (en) * 2017-05-24 2018-11-29 Pellion Technologies Low-aspect-ratio battery cells
CN107134596A (en) * 2017-07-06 2017-09-05 深圳市力电电池有限公司 Button cell and button cell preparation method
KR102637937B1 (en) * 2018-07-13 2024-02-16 주식회사 엘지에너지솔루션 Secondary battery and method for manufacturing the battery
KR102435496B1 (en) * 2019-06-12 2022-08-23 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
KR102456873B1 (en) * 2019-06-13 2022-10-20 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
KR20210126962A (en) 2020-04-13 2021-10-21 삼성에스디아이 주식회사 Rechargeable battery
CN112952180B (en) * 2021-01-13 2022-10-04 中银(宁波)电池有限公司 Winding button cell with diaphragm as electrode substrate and manufacturing method
ES2973526T3 (en) 2021-01-19 2024-06-20 Lg Energy Solution Ltd Electrode terminal, cylindrical battery cell, battery pack and vehicle

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US9496581B2 (en) 2009-02-09 2016-11-15 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US9799913B2 (en) 2009-02-09 2017-10-24 Varta Microbattery Gmbh Button cells and method of producing same
US9153835B2 (en) 2009-02-09 2015-10-06 Varta Microbattery Gmbh Button cells and method for producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US20180013101A1 (en) * 2009-06-18 2018-01-11 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US20170187008A1 (en) * 2009-06-18 2017-06-29 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US9799858B2 (en) * 2009-06-18 2017-10-24 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) * 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) * 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US20120100406A1 (en) * 2009-06-18 2012-04-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
WO2010146154A3 (en) * 2009-06-18 2011-04-28 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US9231281B2 (en) 2010-08-03 2016-01-05 Varta Microbattery Gmbh Button cell comprising a coil electrode with a thermal fuse
DE102010033577A1 (en) * 2010-08-03 2012-02-09 Varta Microbattery Gmbh Button cell with winding electrode with thermal fuse
EP3252843A1 (en) * 2010-08-03 2017-12-06 VARTA Microbattery GmbH Button cell with coil electroide with thermal securing
CN110061254A (en) * 2019-03-04 2019-07-26 惠州亿纬锂能股份有限公司 The linkage transmission structure of button cell manufacturing equipment
CN110061254B (en) * 2019-03-04 2021-01-26 惠州亿纬锂能股份有限公司 Linkage transmission structure of button cell manufacturing equipment
WO2022264526A1 (en) * 2021-06-14 2022-12-22 株式会社村田製作所 Secondary battery
WO2023210590A1 (en) * 2022-04-28 2023-11-02 パナソニックエナジー株式会社 Cylindrical battery

Also Published As

Publication number Publication date
KR20080092842A (en) 2008-10-16
CN101286572A (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP2008262825A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP6192146B2 (en) Lithium electrode and lithium secondary battery including the same
JP2008262827A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP2007188869A (en) Lithium ion secondary battery
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP2008198596A (en) Positive electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
CN107112584B (en) Nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP2007188861A (en) Battery
JP2007048662A (en) Auxiliary power source device
JP4988169B2 (en) Lithium secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
JP2005158302A (en) Lithium ion secondary battery
KR20090080909A (en) Battery
CN109417167A (en) Cladding lithium titanate for lithium ion battery
US10431846B2 (en) Energy storage device
JP2003187799A (en) Non-aqueous electrolyte battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP6610692B2 (en) Electrode and storage element
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2009054469A (en) Nonaqueous secondary battery
JP2019164965A (en) Lithium ion secondary battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP2012252951A (en) Nonaqueous electrolyte secondary battery
CN106063021A (en) Rolled electrode set and nonaqueous-electrolyte battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706