WO2022264526A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2022264526A1
WO2022264526A1 PCT/JP2022/007293 JP2022007293W WO2022264526A1 WO 2022264526 A1 WO2022264526 A1 WO 2022264526A1 JP 2022007293 W JP2022007293 W JP 2022007293W WO 2022264526 A1 WO2022264526 A1 WO 2022264526A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
hole
folded
negative electrode
Prior art date
Application number
PCT/JP2022/007293
Other languages
French (fr)
Japanese (ja)
Inventor
敏 高橋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022264526A1 publication Critical patent/WO2022264526A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to secondary batteries.
  • This secondary battery has battery elements (a positive electrode, a negative electrode, and an electrolyte) inside an exterior member, and various studies have been made on the configuration of the secondary battery.
  • an electrode body is housed inside an exterior case, a flat electrode terminal member is arranged outside the exterior case via a sealing member, and a lead body connected to the electrode body is It is connected to the flat electrode terminal member via an insertion hole provided in the exterior case (see, for example, Patent Document 1).
  • a wound electrode body is housed inside an exterior body having a crimped sealing structure, a lead connected to the wound electrode body is connected to a safety valve, and the lead is folded back in the middle (for example, see Patent Document 2.).
  • An electrode group is housed inside a battery can having a crimped sealing structure, a lead connected to the electrode group is connected to an explosion-proof valve body, and the surface of the lead is covered with an insulating tape. (For example, see Patent Document 3.).
  • a secondary battery includes a conductive exterior member having a through hole, a battery element housed inside the exterior member and including a first electrode and a second electrode, and the exterior member.
  • An electrode terminal disposed outside and shielding the through-hole; an insulating sealing member disposed between the exterior member and the electrode terminal; and a first electrode and the electrode terminal via the through-hole.
  • It is provided with wiring members connected to each other and an insulating covering member covering the surface of the wiring members.
  • the wiring member includes a folded portion in which the wiring member is folded back in the inner diameter direction of the through hole inside the through hole, and the covering member covers at least the outer surface of the folded portion.
  • the “outer surface” of the folded portion means that when the wiring member is folded inside the through hole provided in the exterior member, the folded wiring members face each other (or approach each other). It is the surface on the side opposite to the surface on the side that touches. More specifically, the outer surface is the surface on the side facing the inner wall surface of the exterior member inside the through hole and the exposed surface of the electrode terminal in the through hole. Details of the "outer surface” will be described later.
  • the battery element including the first electrode and the second electrode is housed inside the exterior member having the through hole, and the electrode is arranged outside the exterior member.
  • a terminal shields the through-hole, a wiring member is connected to the first electrode and the electrode terminal via the through-hole, and an insulating covering member covers the surface of the wiring member.
  • the wiring member includes a folded portion, the wiring member is folded back in the inner diameter direction of the through hole inside the through hole at the folded portion, and the covering member covers at least the outer surface of the folded portion, Excellent battery capacity characteristics, excellent physical durability and excellent operational reliability can be obtained.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration of the secondary battery shown in FIG. 1;
  • FIG. 3 is an enlarged sectional view showing the configuration of the battery element shown in FIG. 2;
  • FIG. 3 is an enlarged cross-sectional view showing the configuration of the positive electrode lead shown in FIG. 2;
  • FIG. 3 is an enlarged cross-sectional view showing the structure of the sealant shown in FIG. 2;
  • FIG. 4 is a cross-sectional view for explaining the operation of the secondary battery; It is a perspective view for explaining a manufacturing process of a secondary battery.
  • FIG. 8 is a cross-sectional view for explaining the manufacturing process of the secondary battery continued from FIG.
  • FIG. 7; 3 is a cross-sectional view showing the configuration of a secondary battery in Modification 1.
  • FIG. 10 is a cross-sectional view showing another configuration of the secondary battery in Modification 1.
  • FIG. 10 is a cross-sectional view showing another configuration of the secondary battery in Modification 1.
  • the secondary battery described here has a flat and columnar three-dimensional shape, and is a so-called coin-shaped or button-shaped secondary battery. As will be described later, this secondary battery has a pair of bottom portions facing each other and side wall portions connected to each of the pair of bottom portions. Also, the secondary battery has an outer diameter and a height, and the height is smaller than the outer diameter.
  • the "outer diameter” is the diameter (maximum diameter) of each of the pair of bottoms, and the “height” is the distance (maximum distance) from one bottom to the other bottom.
  • the secondary battery includes a positive electrode, a negative electrode, and an electrolyte, and the charge capacity of the negative electrode is greater than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • alkali metals are lithium, sodium and potassium
  • alkaline earth metals are beryllium, magnesium and calcium.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • FIG. 1 shows a perspective configuration of a secondary battery.
  • FIG. 2 shows an enlarged cross-sectional configuration of the secondary battery shown in FIG.
  • FIG. 3 shows an enlarged cross-sectional configuration of the battery element 40 shown in FIG.
  • each of the positive lead 51 and the negative lead 52 is shaded.
  • FIG. 3 only part of the battery element 40 is shown.
  • the upper, lower, right, and left sides in FIG. 2 are the upper, lower, right, and left sides of the secondary battery.
  • the secondary battery shown in FIGS. 1 and 2 is a button type secondary battery and has an outer diameter D and a height H.
  • This secondary battery has a three-dimensional shape in which the height H is smaller than the outer diameter D, that is, a flat and columnar three-dimensional shape.
  • the three-dimensional shape of the secondary battery is flat and cylindrical (columnar), and the ratio D/H of the outer diameter D to the height H is greater than one.
  • the outer diameter D is 3 mm to 30 mm and the height H is 0.5 mm to 70 mm.
  • the ratio D/H is preferably 25 or less.
  • the secondary battery includes an outer can 10, an external terminal 20, a gasket 30, a battery element 40, a positive electrode lead 51, a negative electrode lead 52, and a sealant 60. and an insulating film 70 .
  • the exterior can 10 is a hollow exterior member that houses the battery element 40 and the like, and has a through hole 10K.
  • the outer can 10 has a three-dimensional shape similar to the three-dimensional shape of the secondary battery, that is, it has a flat and columnar (cylindrical) three-dimensional shape.
  • the outer can 10 has an upper bottom portion M1 and a lower bottom portion M2 facing each other, and a side wall portion M3.
  • the side wall portion M3 is arranged between the upper base portion M1 and the lower base portion M2, and is connected to the upper base portion M1 and the lower base portion M2, respectively.
  • the planar shape of each of the upper base portion M1 and the lower base portion M2 is circular, and the surface of the side wall portion M3 is an outwardly convex curved surface.
  • the outer can 10 includes a storage portion 11 and a lid portion 12, and the storage portion 11 and the lid portion 12 are joined together.
  • the storage portion 11 and the lid portion 12 are welded together, the storage portion 11 is sealed by the lid portion 12 .
  • the housing portion 11 is a substantially cylindrical member (lower bottom portion M2 and side wall portion M3) for housing the battery element 40 and the like therein.
  • the storage portion 11 has a structure in which the lower bottom portion M2 and the side wall portion M3 are integrated with each other. Since the housing portion 11 has a hollow structure with an open upper end and a closed lower end, it has an opening 11K at its upper end.
  • the lid portion 12 is a substantially disc-shaped member (upper bottom portion M1) that closes the opening portion 11K, and has the above-described through hole 10K.
  • the through hole 10K is used as a connection path for electrically connecting the battery element 40 and the external terminal 20 to each other, as will be described later.
  • the lid portion 12 is already joined to the housing portion 11 as described above, so that the opening portion 11K is closed by the lid portion 12 . For this reason, even if the external appearance of the secondary battery is observed, it may not be possible to confirm after the fact whether or not the storage portion 11 has the opening portion 11K.
  • the surface of the outer can 10 more specifically, Ideally, there should be a weld mark left on the boundary between the storage portion 11 and the lid portion 12 . Therefore, based on the presence or absence of welding marks, it can be confirmed after the fact whether or not the storage portion 11 has the opening portion 11K.
  • the lid portion 12 has a recessed portion 12U, and the through hole 10K is provided in the recessed portion 12U.
  • the lid portion 12 is bent so as to be partially recessed toward the inside of the storage portion 11, so that a portion of the lid portion 12 is bent so as to form a downward step.
  • the shape of the recessed portion 12U that is, the shape defined by the outer edge of the recessed portion 12U when the secondary battery is viewed from above is not particularly limited.
  • the shape of the recessed portion 12U is circular.
  • the inner diameter and depth of the recessed portion 12U are not particularly limited, they can be set arbitrarily.
  • the outer can 10 is a can in which two members (the storage portion 11 and the lid portion 12) that are physically separated from each other are joined to each other, a so-called joined can. More specifically, the outer can 10 in which the storage portion 11 and the lid portion 12 are welded together is a so-called welded can. As a result, since the outer can 10 after bonding is physically one member as a whole, it cannot be separated into two members (the storage portion 11 and the lid portion 12) afterwards.
  • the outer can 10, which is a bonded can, is a so-called crimpless can, which is different from a crimped can formed using caulking. This is because the volumetric energy density increases because the element space volume increases inside the outer can 10 .
  • This “element space volume” is the volume (effective volume) of the internal space of the outer can 10 that can be used to house the battery element 40 .
  • the outer can 10 which is a joint can, does not have a portion where two or more members overlap each other, and does not have a portion where two or more members overlap each other.
  • Does not have a portion folded over means that the outer can 10 is not processed (bent) so that a part of the outer can 10 is folded over. Further, “not having a portion where two or more members overlap each other” means that the outer can 10 is physically one member after the completion of the secondary battery. It literally means that it cannot be separated into two or more members. That is, the state of the outer can 10 in the secondary battery after completion is not a state in which two or more members are combined while overlapping each other so that they can be separated later.
  • each of the storage portion 11 and the lid portion 12 is electrically conductive.
  • the outer can 10 is connected to the battery element 40 (negative electrode 42 to be described later) through the negative electrode lead 52 , and thus is electrically connected to the negative electrode 42 . Therefore, the outer can 10 functions as an external connection terminal for the negative electrode 42 . Since the secondary battery does not need to be provided with an external connection terminal for the negative electrode 42 separately from the outer can 10, the decrease in the element space volume due to the presence of the external connection terminal for the negative electrode 42 is suppressed. is. As a result, the element space volume increases, so the volumetric energy density increases.
  • the outer can 10 contains one or more of conductive materials such as metallic materials and alloy materials.
  • metallic materials and alloy materials include iron, copper, , nickel, stainless steel, iron alloys, copper alloys and nickel alloys.
  • the type of stainless steel is not particularly limited, but specific examples include SUS304 and SUS316.
  • the material for forming the storage portion 11 and the material for forming the lid portion 12 may be the same as or different from each other.
  • the outer can 10 is preferably a so-called metal can. This is because the rigidity of the outer can 10 is improved, so that the outer can 10 is less likely to be deformed.
  • This metal can is a can containing one or more of the metal materials and alloy materials described above.
  • the lid portion 12 is insulated via a gasket 30 from the external terminal 20 functioning as an external connection terminal for the positive electrode 41, as will be described later. This is because contact (short circuit) between the outer can 10 (terminal for external connection of the negative electrode 42) and the external terminal 20 (terminal for external connection of the positive electrode 41) is prevented.
  • the external terminal 20 is an electrode terminal connected to an electronic device when the secondary battery is mounted on the electronic device, as shown in FIGS.
  • the external terminal 20 is arranged outside the outer can 10 and shields the through hole 10K.
  • the external terminal 20 is supported by the outer can 10 via a gasket 30 . More specifically, the external terminal 20 is thermally welded to the lid portion 12 via a gasket 30, as will be described later. Thereby, the external terminal 20 is fixed to the lid portion 12 via the gasket 30 while being insulated from the lid portion 12 via the gasket 30 .
  • the external terminal 20 is electrically connected to the positive electrode 41 because it is connected to the battery element 40 (positive electrode 41 ) through the positive electrode lead 51 . Thereby, the external terminal 20 functions as an external connection terminal for the positive electrode 41 .
  • the secondary battery is connected to the electronic device via the external terminal 20 (terminal for external connection of the positive electrode 41) and the outer can 10 (terminal for external connection of the negative electrode 42). becomes operable using a secondary battery as a power source.
  • the external terminal 20 is a substantially plate-shaped member.
  • the three-dimensional shape of the external terminal 20 is not particularly limited, it is specifically a flat plate shape.
  • the external terminal 20 is arranged inside the recess 12U. That is, the external terminal 20 is housed inside the recessed portion 12U so as not to protrude outward (upward) from the recessed portion 12U. This is because the volume energy density is increased because the height H of the secondary battery is smaller than when the external terminal 20 protrudes outward beyond the recessed portion 12U.
  • the external terminal 20 Since the outer diameter of the external terminal 20 is smaller than the inner diameter of the recessed portion 12U, the external terminal 20 is separated from the lid portion 12 on the periphery. Thereby, the gasket 30 is arranged in at least part of the space between the lid portion 12 and the external terminal 20 inside the recess portion 12U. The lid portion 12 and the external terminal 20 are arranged at locations where they can come into contact with each other.
  • the external terminal 20 includes one or more of conductive materials such as metal materials and alloy materials, and specific examples of the metal materials and alloy materials are aluminum and aluminum alloys. be.
  • the external terminal 20 may contain a clad material.
  • This clad material includes an aluminum layer and a nickel layer in order from the side closer to the gasket 30, and the aluminum layer and the nickel layer are roll-bonded to each other.
  • the clad material may contain a nickel alloy layer instead of the nickel layer.
  • the external terminal 20 functions as an external connection terminal for the positive electrode 41, and also functions as a release valve for releasing the internal pressure of the outer can 10 when the internal pressure rises excessively, as will be described later.
  • the cause of this increase in internal pressure is the generation of gas due to the decomposition reaction of the electrolyte during charging and discharging, and the cause of promoting the decomposition reaction of the electrolyte is internal short circuit of the secondary battery, secondary battery heating and discharge of a secondary battery due to high current conditions.
  • the gasket 30 is an insulating sealing member arranged between the outer can 10 and the external terminal 20, as shown in FIG.
  • the gasket 30 is arranged between the lid portion 12 and the external terminal 20, and has a through hole 30K at a position overlapping the through hole 10K. Thereby, the gasket 30 is arranged so as not to block the through hole 10K.
  • the external terminal 20 is connected to the lid portion via the gasket 30 as described above. 12 is heat-sealed.
  • the type of polymer compound is not particularly limited, but specific examples include polypropylene and polyethylene.
  • the installation range of the gasket 30 is not particularly limited and can be set arbitrarily.
  • the gasket 30 is arranged in the space between the upper surface of the lid portion 12 and the lower surface of the external terminal 20 inside the recess portion 12U.
  • the installation range of the gasket 30 may extend outside the space between the upper surface of the lid portion 12 and the lower surface of the external terminal 20 .
  • the battery element 40 is a power generation element that advances charge/discharge reactions, and is housed inside the outer can 10. As shown in FIG.
  • the battery element 40 includes a positive electrode 41 as a first electrode, a negative electrode 42 as a second electrode, a separator 43, and an electrolytic solution (not shown) as a liquid electrolyte.
  • the battery element 40 is a so-called wound electrode body
  • the element structure of the battery element 40 is a so-called wound type.
  • the positive electrode 41 and the negative electrode 42 are laminated with the separator 43 interposed therebetween, and the positive electrode 41, the negative electrode 42 and the separator 43 are wound.
  • the positive electrode 41 and the negative electrode 42 are wound while facing each other with the separator 43 interposed therebetween, so that the battery element 40 has a winding center space 40K as a winding core.
  • the battery element 40 Since the battery element 40 has a three-dimensional shape similar to that of the outer can 10, it has a flat and cylindrical three-dimensional shape. Compared to the case where the battery element 40 has a three-dimensional shape different from the three-dimensional shape of the outer can 10, when the battery element 40 is accommodated inside the outer can 10, dead space (the outer can 10 and the battery element 40), the internal space of the outer can 10 is effectively utilized. As a result, the element space volume increases, so the volumetric energy density increases.
  • the positive electrode 41 includes a positive electrode current collector 41A and a positive electrode active material layer 41B, as shown in FIGS.
  • the positive electrode current collector 41A is a conductive support that supports the positive electrode active material layer 41B, and has a pair of surfaces on which the positive electrode active material layer 41B is provided.
  • the positive electrode current collector 41A contains a conductive material such as a metal material, and a specific example of the metal material is aluminum.
  • the positive electrode active material layer 41B is provided on both sides of the positive electrode current collector 41A and contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium.
  • the positive electrode active material layer 41B may be provided only on one side of the positive electrode current collector 41A on the side where the positive electrode 41 faces the negative electrode 42 .
  • the positive electrode active material layer 41B may further contain one or more of materials such as a positive electrode binder and a positive electrode conductive agent.
  • a method for forming the positive electrode active material layer 41B is not particularly limited, but a specific example is a coating method.
  • the positive electrode active material contains a lithium compound. This is because a high energy density can be obtained.
  • This lithium compound is a compound containing lithium as a constituent element, and more specifically, a compound containing lithium and one or more transition metal elements as constituent elements.
  • the lithium compound may further contain one or more of other elements (elements other than lithium and transition metal elements).
  • the type of lithium compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds. Specific examples of oxides include LiNiO 2 , LiCoO 2 and LiMn 2 O 4 . Specific examples of phosphoric acid compounds include LiFePO4 and LiMnPO4 .
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • a specific example of the synthetic rubber is styrene-butadiene rubber, and a specific example of the polymer compound is polyvinylidene fluoride.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and specific examples of the carbon materials include graphite, carbon black, acetylene black, and ketjen black. .
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 42 includes a negative electrode current collector 42A and a negative electrode active material layer 42B, as shown in FIGS.
  • the negative electrode current collector 42A is a conductive support that supports the negative electrode active material layer 42B, and has a pair of surfaces on which the negative electrode active material layer 42B is provided.
  • the negative electrode current collector 42A contains a conductive material such as a metal material, and a specific example of the metal material is copper.
  • the negative electrode active material layer 42B is provided on both sides of the negative electrode current collector 42A, and contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium.
  • the negative electrode active material layer 42B may be provided only on one side of the negative electrode current collector 42A on the side where the negative electrode 42 faces the positive electrode 41 .
  • the negative electrode active material layer 42B may further contain one or more of materials such as a negative electrode binder and a negative electrode conductor. The details of the negative electrode binder and the negative electrode electrical conductor are the same as the details of the positive electrode binder and the positive electrode electrical conductor.
  • the method of forming the negative electrode active material layer 42B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), and the like, or Two or more types.
  • the negative electrode active material contains one or more of a carbon material, a metal-based material, and the like. This is because a high energy density can be obtained.
  • carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • a metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , silicon and tin.
  • the metallic material may be a single substance, an alloy, a compound, a mixture of two or more thereof, or a material containing two or more phases thereof.
  • Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2 or 0.2 ⁇ x ⁇ 1.4).
  • the separator 43 is an insulating porous film interposed between the positive electrode 41 and the negative electrode 42, as shown in FIGS. Allows lithium ions to pass through.
  • This separator 43 contains a polymer compound such as polyethylene.
  • the electrolyte is impregnated in each of the positive electrode 41, the negative electrode 42 and the separator 43, and contains a solvent and an electrolyte salt.
  • the solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • the non-aqueous solvents are esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
  • the carbonate compounds include cyclic carbonates and chain carbonates.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate
  • specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
  • the carboxylic acid ester compound is a chain carboxylic acid ester or the like.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, ethyl trimethylacetate, methyl butyrate and ethyl butyrate.
  • Lactone-based compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • the ethers may be 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, etc., in addition to the lactone compounds described above.
  • Electrolyte salts are light metal salts such as lithium salts.
  • Specific examples of lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN (FSO2) 2 ), bis(trifluoromethanesulfonyl)imidolithium (LiN( CF3SO2 ) 2 ), lithium tris(trifluoromethanesulfonyl)methide ( LiC ( CF3SO2 ) 3 ) , bis (oxalato)boron lithium oxide (LiB (C2O4)2 ) and lithium difluoro(oxalato)borate ( LiB ( C2O4 )F2).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluo
  • the content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the positive electrode lead 51 is a wiring member for electrically connecting the positive electrode 41 to the external terminal 20, as shown in FIGS. Since the positive electrode lead 51 is connected to the positive electrode current collector 41A of the positive electrode 41 and the external terminal 20 via the through hole 10K, the positive electrode lead 51 is electrically connected to the positive electrode 41 and the external terminal 20, respectively. It is The positive electrode lead 51 is connected to the positive electrode 41 on the side closer to the lid portion 12 .
  • the secondary battery has one positive electrode lead 51 .
  • the secondary battery may have two or more positive electrode leads 51 . This is because the electrical resistance of the battery element 40 decreases as the number of the positive electrode leads 51 increases.
  • the details of the material forming the positive electrode lead 51 are the same as the details of the material forming the positive electrode current collector 41A. However, the material for forming the positive electrode lead 51 and the material for forming the positive electrode current collector 41A may be the same as or different from each other.
  • the positive electrode lead 51 is physically separated from the positive electrode current collector 41A, it is a separate member from the positive electrode current collector 41A. However, since the positive electrode lead 51 is physically continuous with the positive electrode current collector 41A, it may be a member integrated with the positive electrode current collector 41A.
  • the positive electrode lead 51 is connected to the external terminal 20 by folding back halfway between the positive electrode 41 and the external terminal 20 .
  • the details of the configuration of the positive electrode lead 51 will be described later (see FIG. 4).
  • the negative electrode lead 52 is a member for electrically connecting the negative electrode 42 to the outer can 10, as shown in FIG. Since the negative electrode lead 52 is connected to the negative electrode current collector 42A of the negative electrode 42 and the housing portion 11, it is electrically connected to the negative electrode 42 and the outer can 10, respectively. Since the negative electrode lead 52 is connected to the negative electrode 42 on the far side from the lid portion 12, it is connected to the lower bottom portion M2.
  • the details of the material forming the negative electrode lead 52 are the same as the details of the material forming the negative electrode current collector 42A. However, the material for forming the negative electrode lead 52 and the material for forming the negative electrode current collector 42A may be the same as or different from each other.
  • the negative electrode lead 52 is physically separated from the negative electrode current collector 42A, it is a separate member from the negative electrode current collector 42A. However, since the negative electrode lead 52 is physically continuous with the negative electrode current collector 42A, it may be a member integrated with the negative electrode current collector 42A.
  • the sealant 60 is an insulating covering member covering the surface of the positive electrode lead 51, as shown in FIG. Thereby, the positive electrode lead 51 is insulated from each of the outer can 10 and the negative electrode 42 via the sealant 60 .
  • the sealant 60 contains one or more of insulating materials such as insulating polymer compounds, and a specific example of the polymer compound is polyimide.
  • sealant 60 covers the surface of a part of the positive electrode lead 51 that is folded back midway between the positive electrode 41 and the external terminal 20 . Details of the configuration of the sealant 60 will be described later (see FIG. 5).
  • the insulating film 70 is an insulating member arranged between the lid portion 12 and the battery element 40, as shown in FIG. Since this insulating film 70 has a through hole 70K at a position overlapping with the through hole 10K, it is arranged so as not to shield the through hole 10K.
  • the insulating film 70 is an insulating tape including an adhesive layer (not shown), it is adhered to the inner surface (lower surface) of the lid portion 12 via the adhesive layer. More specifically, the insulating film 70 is adhered to the lower surface of the portion of the lid portion 12 where the recess portion 12U is provided. As a result, a portion of the insulating film 70 is arranged between the lid portion 12 and the positive electrode lead 51 .
  • the insulating film 70 contains one or more of insulating materials such as insulating polymer compounds, and a specific example of the insulating material is polyimide.
  • the secondary battery may further include one or more of other components (not shown).
  • the other component is another insulating film or the like arranged between the storage portion 11 (lower bottom portion M2) and the battery element 40.
  • part of the other insulating film is arranged between the housing portion 11 and the negative electrode lead 52 .
  • Materials for forming other insulating films are the same as those for forming the insulating film 70 .
  • FIG. 4 shows an enlarged cross-sectional configuration of the positive electrode lead 51 shown in FIG.
  • FIG. 5 shows an enlarged cross-sectional configuration of the sealant 60 shown in FIG. However, in FIG. 4, only the main part of the positive electrode lead 51 is shown.
  • FIG. 5 shows a state in which an outer sealant portion 61 and an inner sealant portion 62, which will be described later, are separated from each other.
  • the positive electrode lead 51 is connected to the positive electrode 41 on the side closer to the lid portion 12 , and thus is connected to the upper end portion of the positive electrode 41 . Also, since the positive electrode lead 51 is routed from the upper end of the positive electrode 41 to the external terminal 20 via the through hole 10K, the positive electrode lead 51 is connected to the lower surface of the external terminal 20 .
  • a method for connecting the positive electrode lead 51 is not particularly limited, but specifically, one or more of welding methods such as resistance welding and laser welding are used. The details of the welding method described here are the same hereinafter.
  • the connection position of the positive electrode lead 51 to the positive electrode 41 is not particularly limited.
  • the positive electrode lead 51 is connected to the positive electrode 41 in the middle of winding.
  • the positive electrode lead 51 may be connected to the positive electrode 41 on the outermost winding side, or may be connected to the positive electrode 41 on the innermost winding side.
  • the positive electrode lead 51 includes a folded portion 51Z and is connected to the external terminal 20 beyond the folded portion 51Z. More specifically, the positive electrode lead 51 includes two extending portions 51X and 51Y and a folded portion 51Z, and is connected to the external terminal 20 at a portion (tip portion 51YN) of the extending portion 51Y. .
  • the extending portions 51X, 51Y and the folded portion 51Z are connected to each other and integrated with each other.
  • the boundary between the extending portion 51X and the folded portion 51Z is indicated by a broken line
  • the boundary between the extending portion 51Y and the folded portion 51Z is indicated by a broken line.
  • the extending portion 51X is a first extending portion extending in the direction toward the folded portion 51Z (left direction in FIGS. 2 and 4). One end of the extending portion 51X is connected to the positive electrode 41, and the other end of the extending portion 51X is connected to one end of the folded portion 51Z.
  • the extending portion 51X may be bent into a crank shape in the middle.
  • the number of times the extending portion 51X is bent halfway in a crank shape is not particularly limited, and may be one time or two or more times.
  • the extending portion 51Y is a second extending portion that extends in the opposite direction (to the right in FIGS. 2 and 4) to the direction in which the extending portion 51X extends.
  • One end of the extending portion 51Y is connected to the external terminal 20, and the other end of the extending portion 51Y is connected to the other end of the folded portion 51Z.
  • the extension portion 51Y includes a tip portion 51YN whose surface is not covered with the sealant 60, and is connected to the external terminal 20 at the tip portion 51YN.
  • the extension 51Y may be bent into a crank shape in the middle.
  • the folded portion 51Z is a portion where the positive electrode lead 51 is folded, and at the folded portion 51Z, the positive electrode lead 51 is folded inside the through hole 10K in the radial direction of the through hole 10K. 2 and 4, the positive electrode lead 51 extends leftward and then rightward as described above. It is folded back to extend. As a result, the positive electrode lead 51 is not arranged beyond the through hole 10K, but is folded back inside the through hole 10K so as to change direction.
  • This folded portion 51Z is connected to each of the extension portions 51X and 51Y as described above.
  • the positive electrode lead 51 may be folded back so as to be bent, or may be folded back so as to be curved.
  • 2 and 4 show the case where the positive electrode lead 51 is folded back so as to be curved.
  • the angle at which the positive electrode lead 51 is folded back at the folded portion 51Z that is, the angle defined by the extending direction of the extending portion 51X and the extending direction of the extending portion 51Y is not particularly limited.
  • the angle may be slightly increased or decreased from 180°.
  • the positive electrode lead 51 has an outer surface S1 and an inner surface S2.
  • the outer surface S1 is one of the two areas when the surface of the positive electrode lead 51 is classified into two areas, and the inner surface S2 is the other area.
  • the boundary between the outer surface S1 and the inner surface S2 is indicated by a dashed line.
  • the outer surface S1 is formed such that the folded positive electrode leads 51 It is the surface opposite to the surface facing (or approaching each other). More specifically, the outer surface S1 is a surface on the side facing the inner wall surface of the outer can 10 (lid portion 12) inside the through hole 10K and the exposed surface of the external terminal 20 in the through hole 10K.
  • the inner surface S2 is the surface of the positive electrode lead 51 opposite to the outer surface S1. That is, the inner surface S2 is the surface on the side where the folded positive electrode leads 51 face each other. More specifically, the inner surface S2 is opposite to the surface on the side facing the inner wall surface of the outer can 10 (lid portion 12) inside the through hole 10K and the exposed surface of the external terminal 20 in the through hole 10K. side surface.
  • the positive electrode lead 51 includes the folded portion 51Z because the excess length (length margin) of the positive electrode lead 51 can be obtained as compared with the case where the positive electrode lead 51 does not include the folded portion 51Z. because it will be
  • the secondary battery receives an external force such as vibration or impact
  • the external force is mitigated by using the length margin of the positive electrode lead 51, so the positive electrode lead 51 is less likely to be damaged.
  • the breakage includes cutting of the positive electrode lead 51 , detachment of the positive electrode lead 51 from the external terminal 20 , and cracking of the positive electrode lead 51 .
  • the strength of the connection of the positive lead 51 to the external terminal 20 is improved because the positive lead 51 is less likely to be damaged.
  • the length margin of the positive electrode lead 51 is used for the storage portion 11. Since the lid portion 12 can be erected (see FIG. 8), the secondary battery can be easily assembled.
  • the positive electrode lead 51 is folded back inside the through hole 10K to form the folded portion 51Z because the volume energy density is higher than that in the case where the positive electrode lead 51 is folded outside the through hole 10K. This is because the external terminal 20 becomes more likely to function as an on-off valve as it increases.
  • the folded portion 51Z is arranged in the internal space of the through hole 10K.
  • the height of the battery element 40 is increased because the element space volume is increased by the amount that the folded portion 51Z is not arranged in the inner space of the outer can 10 .
  • the volume of the battery element 40 increases by the amount corresponding to the increase in height, so the volumetric energy density increases.
  • the external terminal 20 when the positive electrode lead 51 is folded back inside the through hole 10K, when the external terminal 20 is separated from the lid portion 12 when the internal pressure increases, the folded portion 51Z is prevented from being caught by the lid portion 12. Therefore, the external terminal 20 can be easily separated from the lid portion 12 . This makes it easier for the external terminal 20 to function as an on-off valve.
  • sealant 60 covers at least the outer surface S1 of the folded portion 51Z.
  • the reason why the sealant 60 covers at least the outer surface S1 of the folded portion 51Z is that even if the positive electrode lead 51 is folded back inside the through hole 10K, the positive electrode lead 51 is covered with the sealant 60 through the outer can 10 (the lid of the outer can 10). This is because it is insulated from the portion 12). This prevents the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12 .
  • the positive electrode lead 51 when the positive electrode lead 51 is folded back inside the through hole 10K, if the connection area of the positive electrode lead 51 (tip portion 51YN) to the external terminal 20 is to be sufficiently increased, the cover inside the through hole 10K will The positive electrode lead 51 approaches the inner wall surface of the portion 12 . However, since the outer surface S1 of the folded portion 51Z is covered with the sealant 60, even if the positive electrode lead 51 approaches the inner wall surface of the lid portion 12, the sealant 60 is used to effectively and sufficiently short-circuit the lead. prevented.
  • the sealant 60 may further cover the inner surface S2 of the folded portion 51Z.
  • One or both of them may be covered, or one or both of the outer surface S1 and the inner surface S2 of the extension portion 51Y may be covered.
  • the sealant 60 includes an outer sealant portion 61 and an inner sealant portion 62, as shown in FIG.
  • the outer sealant portion 61 covers at least the outer surface S1 of the folded portion 51Z
  • the inner sealant portion 62 covers at least the inner surface S2 of the folded portion 51Z.
  • the reason why the outer sealant portion 61 not only covers the outer surface S1 of the folded portion 51Z but also the inner sealant portion 62 covers the inner surface S2 of the folded portion 51Z is that the positive electrode lead 51 passes through the sealant 60. This is because it becomes easier to insulate from the lid portion 12, so that the occurrence of a short circuit is further prevented.
  • Each of the outer sealant portion 61 and the inner sealant portion 62 is an adhesive tape including an adhesive layer (not shown).
  • the outer sealant portion 61 and the inner sealant portion 62 are bonded to each other via their adhesive layers while facing each other via the positive electrode lead 51 . That is, the positive electrode lead 51 is sandwiched between the outer sealant portion 61 and the inner sealant portion 62 from above and below.
  • 5 shows a state in which the outer sealant portion 61 and the inner sealant portion 62 are separated from each other, as described above, before the outer sealant portion 61 and the inner sealant portion 62 are attached to each other.
  • the sealant 60 (the outer sealant portion 61 and the inner sealant portion 62) covers the surface (the outer surface S1 and the inner surface S1) of the extension portion 51Y.
  • the extending portion 51Y is covered with the sealant 60. This is because the portion where the contact is made is not welded to the external terminal 20 .
  • the portion of the extension portion 51Y that is covered with the sealant 60 in other words, the portion that is not connected to the external terminal 20 of the extension portion 51Y becomes the length margin of the positive electrode lead 51. It becomes easy to obtain the advantage derived from the length margin of the positive electrode lead 51 .
  • the sealant 60 (the outer sealant portion 61 and the inner sealant portion 62) preferably covers up to the surface (the outer surface S1 and the inner surface S1) of the extension portion 51X. This is because the extended portion 51X is insulated from the lid portion 12 and the negative electrode 42 via the sealant 60, so that the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12 is further prevented.
  • FIG. 6 shows a cross-sectional configuration corresponding to FIG. 2 in order to explain the operation of the secondary battery. The operation during charging and discharging will be described below, and then the operation when an abnormality occurs will be described.
  • the external terminal 20 is arranged outside the lid portion 12 and is thermally welded to the lid portion 12 via the gasket 30 . Accordingly, in a normal state, the external terminal 20 is fixed to the lid portion 12 via the gasket 30, so that the through hole 10K is shielded by the external terminal 20 and the outer can 10 is sealed. A battery element 40 is sealed inside the outer can 10 .
  • the housing portion 11 is joined to the lid portion 12, whereas the external terminals 20 are thermally welded to the lid portion 12 via the gasket 30. It is smaller than the bonding strength of the lid portion 12 to the portion 11 .
  • the external terminal 20 separates from the lid portion 12 before the lid portion 12 separates from the storage portion 11 . Since the external terminal 20 functions as a release valve before the outer can 10 bursts, the outer can 10 is prevented from bursting.
  • FIG. 7 shows a perspective configuration corresponding to FIG. 1 in order to explain the manufacturing process of the secondary battery.
  • FIG. 8 shows a cross-sectional structure corresponding to FIG. 2 in order to explain the manufacturing process of the secondary battery following FIG.
  • FIGS. 7 and 8 shows the state before the lid portion 12 is joined to the storage portion 11 .
  • the lid portion 12 is separated from the storage portion 11 in FIG. 7, and the lid portion 12 is erected with respect to the storage portion 11 in FIG.
  • the positive electrode 41 and the negative electrode 42 are prepared and the electrolytic solution is prepared according to the procedure illustrated below, and then the secondary battery is assembled using the positive electrode 41, the negative electrode 42 and the electrolytic solution. At the same time, the secondary battery after assembly is stabilized.
  • FIGS. 7 and 8 will refer to FIGS. 1 to 5 which have already been described.
  • a housing portion 11 and a lid portion 12 that are physically separated from each other are used to form the outer can 10 .
  • the storage portion 11 has the opening portion 11K
  • the lid portion 12 has the recess portion 12U.
  • the external terminals 20 are thermally welded to the lid portion 12 via the gasket 30 in advance, and the tape-like insulating film 70 is adhered thereto.
  • a paste-like positive electrode mixture slurry is prepared by putting a positive electrode mixture in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent.
  • This solvent may be an aqueous solvent or an organic solvent.
  • the cathode active material layer 41B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 41A.
  • the cathode active material layer 41B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 41B may be heated and the compression molding may be repeated multiple times. As a result, the cathode active material layers 41B are formed on both surfaces of the cathode current collector 41A, so that the cathode 41 is produced.
  • a paste-like negative electrode mixture slurry is prepared by putting a negative electrode mixture in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed together into a solvent.
  • the anode active material layer 42B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 42A.
  • the negative electrode active material layer 42B is compression-molded using a roll press or the like. The details of the compression molding of the negative electrode active material layer 42B are the same as the details of the compression molding of the positive electrode active material layer 41B. As a result, the negative electrode 42 is manufactured because the negative electrode active material layers 42B are formed on both surfaces of the negative electrode current collector 42A.
  • the sealant 60 is used to cover the surface of the positive electrode lead 51 .
  • the sealant 60 is used to cover at least the outer surface S1 of the folded portion 51Z. It covers the side S1 and the inner side S2.
  • the positive electrode lead 51 is connected to the positive electrode current collector 41A of the positive electrode 41 by welding or the like, and the negative electrode lead 52 is connected to the negative electrode current collector 42A of the negative electrode 42 by welding or the like. to connect.
  • the wound body 40Z has the same structure as the battery element 40 except that the positive electrode 41, the negative electrode 42 and the separator 43 are not impregnated with the electrolytic solution. 7, illustration of each of the positive electrode lead 51 and the negative electrode lead 52 is omitted.
  • the wound body 40Z is stored inside the storage section 11 through the opening 11K.
  • a welding method or the like is used to connect the negative electrode lead 52 to the storage portion 11 .
  • the external terminals 20 are thermally welded via the gasket 30 and to which the insulating film 70 is adhered in advance, the external terminals are welded through the through holes 10K using a welding method or the like.
  • a positive lead 51 is connected to 20 .
  • the positive electrode 41 of the wound body 40Z housed inside the housing portion 11 and the external terminal 20 attached to the lid portion 12 are connected to each other via the positive electrode lead 51. Therefore, as shown in FIG. 8, in a state in which the wound body 40Z and the external terminal 20 are connected to each other through the positive electrode lead 51, the lid portion 12 is held by using a holding jig (not shown). is held, the lid portion 12 can be erected with respect to the storage portion 11 .
  • this "standing the lid portion 12 against the storage portion 11" means that the lid portion 12 does not block the opening portion 11K. It means that the lid portion 12 can be arranged so as to be substantially perpendicular to the bottom surface (lower bottom portion M2) of the storage portion 11 in a state where 40Z and the external terminal 20 are connected to each other. In this case, by making the length of the positive electrode lead 51 sufficiently large, the positive electrode lead 51 is not excessively pulled even when the cover portion 12 is erected against the storage portion 11, and the positive electrode lead 51 is not damaged. become difficult.
  • the housing portion 11 is arranged so that the lid portion 12 is arranged inside (the inside side of the housing portion 11) and the positive electrode lead 51 is arranged outside (the side opposite to the inside side of the housing portion 11).
  • the lid portion 12 is erected against it.
  • the electrolytic solution is injected into the storage portion 11 through the opening portion 11K.
  • the lid portion 12 does not obstruct the opening portion 11K. This makes it easier to inject the electrolytic solution into the storage portion 11 .
  • the wound body 40Z (the positive electrode 41, the negative electrode 42, and the separator 43) is impregnated with the electrolytic solution, so that the battery element 40, which is a wound electrode body, is produced.
  • the lid portion 12 is used to shield the opening portion 11K. to join.
  • the portion of the positive electrode lead 51 covered with the sealant 60 is folded inside the through hole 10K.
  • the outer can 10 is formed, and the battery element 40 and the like are housed inside the outer can 10, so that the secondary battery is assembled as shown in FIG.
  • the secondary battery after assembly is charged and discharged.
  • Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set.
  • films are formed on the respective surfaces of the positive electrode 41 and the negative electrode 42 in the battery element 40, so that the state of the secondary battery is electrochemically stabilized.
  • the battery element 40 is housed inside the outer can 10 having the through hole 10K, and the external terminal 20 arranged outside the outer can 10 shields the through hole 10K. .
  • the positive electrode lead 51 is connected to the positive electrode 41 and the external terminal 20 via the through hole 10K, and the sealant 60 covers the surface of the positive electrode lead 51 .
  • the positive electrode lead 51 includes a folded portion 51Z, in which the positive electrode lead 51 is folded back in the inner diameter direction of the through hole 10K inside the through hole 10K at the folded portion 51Z, and the sealant 60 is at least outside the folded portion 51Z. It covers the side surface S1.
  • the positive electrode lead 51 includes the folded portion 51Z, a length margin of the positive electrode lead 51 can be obtained. As a result, when the secondary battery receives an external force, the external force is relieved using the length margin of the positive electrode lead 51, so that the positive electrode lead 51 is less likely to be damaged.
  • the folded portion 51Z is not arranged in the internal space of the outer can 10. As a result, the element space volume increases, so the volumetric energy density increases.
  • the sealant 60 covers at least the outer surface S1 of the folded portion 51Z, even if the positive electrode lead 51 is folded inside the through-hole 10K, the positive electrode lead 51 is inserted through the sealant 60 into the outer can. 10 (lid portion 12). This prevents the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12, thereby facilitating stable operation of the secondary battery.
  • the positive electrode lead 51 is folded back inside the through hole 10K, when the external terminal 20 is separated from the lid portion 12 when the internal pressure of the outer can 10 rises, the folded portion 51Z does not get caught on the lid portion 12. No. As a result, the external terminal 20 can be easily separated from the lid portion 12, so that the external terminal 20 can stably function as an on-off valve.
  • the length margin of the positive electrode lead 51 it is possible to use the length margin of the positive electrode lead 51 to stand the lid portion 12 against the storage portion 11 in the manufacturing process of the secondary battery. Even when the battery element 40 (positive electrode 41) and the external terminal 20 are connected to each other through the positive electrode lead 51, the electrolytic solution is easily injected into the storage portion 11 through the opening 11K. Therefore, since the secondary battery can be easily assembled, the ease of manufacturing the secondary battery can be improved.
  • sealant 60 also covers the inner surface S2 of the folded portion 51Z, short-circuiting between the positive electrode lead 51 and the lid portion 12 can be further prevented, and a higher effect can be obtained.
  • the sealant 60 covers the surface of the extending portion 51Y, the portion of the extending portion 51Y that is covered with the sealant 60 provides a length margin for the positive electrode lead 51. Therefore, since the length margin of the positive electrode lead 51 is sufficiently large, a higher effect can be obtained.
  • the sealant 60 covers the surface of the extension 51X, the extension 51X is insulated from the lid 12 and the negative electrode 42 via the sealant 60. Therefore, the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12 is further suppressed, and a higher effect can be obtained.
  • the outer can 10 includes the storage portion 11 and the lid portion 12, and the storage portion 11 and the lid portion 12 are joined to each other, the outer can 10, which is a so-called crimpless joining can, can be used for the two-piece construction. Since the secondary battery is constructed, the volumetric energy density is further increased. Therefore, since the battery capacity characteristic is further improved, a higher effect can be obtained.
  • the lid portion 12 has the recessed portion 12U and the external terminals 20 are arranged inside the recessed portion 12U, the height H of the secondary battery is reduced, and the volumetric energy density is reduced. further increases. Therefore, since the battery capacity characteristics are further improved, a higher effect can be obtained.
  • the outer can 10 if the outer can 10 is electrically connected to the negative electrode 42 , the outer can 10 functions as an external connection terminal for the negative electrode 42 .
  • the secondary battery does not need to be provided with an external connection terminal for the negative electrode 42 separately from the outer can 10, so that the volumetric energy density is further increased. Therefore, since the battery capacity characteristic is further improved, a higher effect can be obtained.
  • the outer can 10 has a flat and columnar three-dimensional shape, excellent physical durability and excellent operational reliability can be achieved even in a small secondary battery in which the internal pressure of the outer can 10 tends to increase. Therefore, a higher effect can be obtained.
  • the outer can 10 is a metal can, the outer can 10 is less likely to deform. Therefore, physical durability is improved in terms of deformation of the outer can 10, and a higher effect can be obtained.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • sealant 60 (outer sealant portion 61 and inner sealant portion 62) covers respective surfaces (outer surface S1 and inner surface S2) of extension portions 51X and 51Y and folded portion 51Z. ing.
  • the coverage range of the sealant 60 is not particularly limited.
  • the sealant 60 (outer sealant portion 61 and inner sealant portion 62) covers only the surface (outer surface S1 and inner surface S2) of the folded portion 51Z.
  • the sealant 60 (outer sealant portion 61) may cover only the outer surface S1 of the folded portion 51Z.
  • the sealant 60 is used to obtain a high volumetric energy density and to prevent damage to the positive electrode lead 51 due to external force. Since the secondary battery can operate stably more easily from the viewpoint of ensuring the function, the same effect as the case shown in FIG. 2 can be obtained.
  • the positive electrode lead 51 since the positive electrode lead 51 is folded two or more times inside the through hole 10K, the positive electrode lead 51 may include two or more folded portions 51Z. Thereby, the sealant 60 may cover the surface of each of the two or more folded portions 51Z. Note that the two or more folded portions 51Z may or may not overlap each other. Of course, only a part of two or more folded portions 51Z may overlap each other.
  • the sealant 60 includes an outer sealant portion 61 and an inner sealant portion 62 to cover both the outer surface S1 and the inner surface S2 of the positive lead 51, the outer sealant portion 61 and inner sealant portion 62 are attached to each other via positive electrode lead 51 .
  • the configuration of the sealant 60 is not particularly limited.
  • the sealant 60 may have a tubular structure. That is, sealant 60 may be a single piece having a tubular structure.
  • the lid portion 12 has a recessed portion 12U, and the external terminal 20 is arranged inside the recessed portion 12U.
  • the positive electrode 41 as the first electrode is connected to the external terminal 20 via the positive lead 51
  • the negative electrode 42 as the second electrode is connected to the housing portion 11 via the negative lead 52 .
  • the external terminal 20 functions as an external connection terminal for the positive electrode 41
  • the outer can 10 functions as an external connection terminal for the negative electrode 42 .
  • the positive electrode 41 which is the second electrode is connected to the housing portion 11 via the positive electrode lead 51
  • the negative electrode 42 which is the first electrode is connected to the negative electrode lead 52.
  • the outer can 10 may function as an external connection terminal for the positive electrode 41
  • the external terminal 20 may function as an external connection terminal for the negative electrode 42 .
  • the external terminal 20 contains one or more of conductive materials such as a metal material and an alloy material in order to function as a terminal for external connection of the negative electrode 42, and the metal material and alloy materials include iron, copper, nickel, stainless steel, iron alloys, copper alloys and nickel alloys.
  • the outer can 10, that is, the storage portion 11 and the lid portion 12 is made of one or more of conductive materials such as a metal material and an alloy material in order to function as an external connection terminal for the positive electrode 41.
  • Specific examples of metal materials and alloy materials include aluminum, aluminum alloys and stainless steel.
  • the negative lead 52 which is a wiring member connected to the external terminal 20, has the same configuration as the positive lead 51 shown in FIG. Includes a stay section and a folded section.
  • the sealant 60 covers the surface of the negative electrode lead 52, and more specifically covers at least the surface of the folded portion.
  • the secondary battery can be connected to the electronic device via the external terminal 20 (terminal for external connection of the negative electrode 42) and the outer can 10 (terminal for external connection of the positive electrode 41). It is possible to obtain the same effect as in the case of
  • a separator 43 which is a porous membrane, was used. However, although not specifically illustrated here, instead of the separator 43, a laminated separator including a polymer compound layer may be used.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 41 and the negative electrode 42 is improved, so that the winding misalignment of the battery element 40 is suppressed. As a result, even if a decomposition reaction of the electrolytic solution occurs, the secondary battery is less likely to swell.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
  • One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the safety (heat resistance) of the secondary battery is improved because the plurality of insulating particles promote heat dissipation when the secondary battery generates heat.
  • the insulating particles include one or both of inorganic particles and resin particles. Specific examples of inorganic particles are particles such as aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin particles are particles of acrylic resins, styrene resins, and the like.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • the porous membrane may be immersed in the precursor solution.
  • a plurality of insulating particles may be added to the precursor solution.
  • Modification 7 An electrolytic solution, which is a liquid electrolyte, was used. However, although not specifically illustrated here, an electrolyte layer that is a gel electrolyte may be used instead of the electrolyte solution.
  • the positive electrode 41 and the negative electrode 42 are laminated with the separator 43 and the electrolyte layer interposed therebetween, and the positive electrode 41, the negative electrode 42, the separator 43 and the electrolyte layer are wound.
  • This electrolyte layer is interposed between the positive electrode 41 and the separator 43 and interposed between the negative electrode 42 and the separator 43 .
  • the electrolyte layer may be interposed only between the positive electrode 41 and the separator 43 , or may be interposed only between the negative electrode 42 and the separator 43 .
  • the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • the element structure of the battery element is a wound type
  • the element structure is not particularly limited, and may be a laminated type or a folded type.
  • the laminate type positive electrodes and negative electrodes are alternately laminated with separators interposed therebetween, and in the multifold type, positive electrodes and negative electrodes are folded in zigzags with separators interposed therebetween.
  • the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Abstract

This secondary battery is provided with: a conductive outer package member which has a through hole; a battery element which is contained in the outer package member, while comprising a first electrode and a second electrode; an electrode terminal which is arranged outside the outer package member, while blocking the through hole; an insulating sealing member which is arranged between the outer package member and the electrode terminal; a wiring member which is connected to the first electrode and the electrode terminal through the through hole; and an insulating cover member which covers the surface of the wiring member. The wiring member comprises a turn-back part in which the wiring member is turned back within the through hole in the radially inward direction of the through hole; and the cover member covers at least the outer surface of the turn-back part.

Description

二次電池secondary battery
 本技術は、二次電池に関する。 This technology relates to secondary batteries.
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度が得られる電源として二次電池の開発が進められている。この二次電池は、外装部材の内部に電池素子(正極、負極および電解質)を備えており、その二次電池の構成に関しては、様々な検討がなされている。 Due to the widespread use of various electronic devices such as mobile phones, the development of secondary batteries is underway as a power source that is compact, lightweight, and provides high energy density. This secondary battery has battery elements (a positive electrode, a negative electrode, and an electrolyte) inside an exterior member, and various studies have been made on the configuration of the secondary battery.
 具体的には、外装ケースの内部に電極体が収納されており、その外装ケースの外側にシール部材を介して平板状電極端子部材が配置されており、その電極体に接続されたリード体が外装ケースに設けられた挿通孔を経由して平板状電極端子部材に接続されている(例えば、特許文献1参照。)。 Specifically, an electrode body is housed inside an exterior case, a flat electrode terminal member is arranged outside the exterior case via a sealing member, and a lead body connected to the electrode body is It is connected to the flat electrode terminal member via an insertion hole provided in the exterior case (see, for example, Patent Document 1).
 加締め封止構造を有する外装体の内部に巻回電極体が収納されており、その巻回電極体に接続されたリードが安全弁に接続されており、そのリードが途中で折り返されている(例えば、特許文献2参照。)。 A wound electrode body is housed inside an exterior body having a crimped sealing structure, a lead connected to the wound electrode body is connected to a safety valve, and the lead is folded back in the middle ( For example, see Patent Document 2.).
 加締め封止構造を有する電池缶の内部に電極群が収納されており、その電極群に接続されたリードが防爆弁体に接続されており、そのリードの表面が絶縁テープにより被覆されている(例えば、特許文献3参照。)。 An electrode group is housed inside a battery can having a crimped sealing structure, a lead connected to the electrode group is connected to an explosion-proof valve body, and the surface of the lead is covered with an insulating tape. (For example, see Patent Document 3.).
特開2019-046639号公報JP 2019-046639 A 特開2016-001615号公報JP 2016-001615 A 特開平10-302751号公報JP-A-10-302751
 二次電池の構成に関する様々な検討がなされているが、その二次電池の電池容量特性、物理的耐久性および動作信頼性は未だ十分でないため、改善の余地がある。 Various studies have been conducted on the configuration of secondary batteries, but the battery capacity characteristics, physical durability, and operational reliability of the secondary batteries are still insufficient, so there is room for improvement.
 そこで、優れた電池容量特性、優れた物理的耐久性および優れた動作信頼性を得ることが可能である二次電池が望まれている。 Therefore, a secondary battery capable of obtaining excellent battery capacity characteristics, excellent physical durability, and excellent operational reliability is desired.
 本技術の一実施形態の二次電池は、貫通口を有する導電性の外装部材と、その外装部材の内部に収納されると共に第1電極および第2電極を含む電池素子と、その外装部材の外側に配置されると共に貫通口を遮蔽する電極端子と、その外装部材と電極端子との間に配置された絶縁性の封止部材と、その貫通口を経由して第1電極および電極端子のそれぞれに接続された配線部材と、その配線部材の表面を被覆する絶縁性の被覆部材とを備えたものである。配線部材は、貫通口の内部において配線部材が貫通口の内径方向に折り返された折り返し部を含み、被覆部材は、少なくとも折り返し部の外側面を被覆している。 A secondary battery according to an embodiment of the present technology includes a conductive exterior member having a through hole, a battery element housed inside the exterior member and including a first electrode and a second electrode, and the exterior member. An electrode terminal disposed outside and shielding the through-hole; an insulating sealing member disposed between the exterior member and the electrode terminal; and a first electrode and the electrode terminal via the through-hole. It is provided with wiring members connected to each other and an insulating covering member covering the surface of the wiring members. The wiring member includes a folded portion in which the wiring member is folded back in the inner diameter direction of the through hole inside the through hole, and the covering member covers at least the outer surface of the folded portion.
 ここで、折り返し部の「外側面」とは、外装部材に設けられている貫通口の内部において配線部材が折り返されている場合において、その折り返された配線部材同士が互いに対向する(または互いに接近し合う)側の表面とは反対側の表面である。より具体的には、外側面は、貫通口の内部における外装部材の内壁面および貫通口における電極端子の露出面のそれぞれに対向する側の表面である。なお、「外側面」の詳細に関しては、後述する。 Here, the “outer surface” of the folded portion means that when the wiring member is folded inside the through hole provided in the exterior member, the folded wiring members face each other (or approach each other). It is the surface on the side opposite to the surface on the side that touches. More specifically, the outer surface is the surface on the side facing the inner wall surface of the exterior member inside the through hole and the exposed surface of the electrode terminal in the through hole. Details of the "outer surface" will be described later.
 本技術の一実施形態の二次電池によれば、貫通口を有する外装部材の内部に第1電極および第2電極を含む電池素子が収納されており、その外装部材の外側に配置された電極端子が貫通口を遮蔽しており、配線部材が貫通口を経由して第1電極および電極端子のそれぞれに接続されており、絶縁性の被覆部材が配線部材の表面を被覆しており、その配線部材が折り返し部を含んでおり、その折り返し部では貫通口の内部において配線部材が貫通口の内径方向に折り返されており、その被覆部材が少なくとも折り返し部の外側面を被覆しているので、優れた電池容量特性、優れた物理的耐久性および優れた動作信頼性を得ることができる。 According to the secondary battery of one embodiment of the present technology, the battery element including the first electrode and the second electrode is housed inside the exterior member having the through hole, and the electrode is arranged outside the exterior member. A terminal shields the through-hole, a wiring member is connected to the first electrode and the electrode terminal via the through-hole, and an insulating covering member covers the surface of the wiring member. The wiring member includes a folded portion, the wiring member is folded back in the inner diameter direction of the through hole inside the through hole at the folded portion, and the covering member covers at least the outer surface of the folded portion, Excellent battery capacity characteristics, excellent physical durability and excellent operational reliability can be obtained.
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 It should be noted that the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described below.
本技術の一実施形態における二次電池の構成を表す斜視図である。It is a perspective view showing composition of a secondary battery in one embodiment of this art. 図1に示した二次電池の構成を拡大して表す断面図である。2 is an enlarged cross-sectional view showing the configuration of the secondary battery shown in FIG. 1; FIG. 図2に示した電池素子の構成を拡大して表す断面図である。3 is an enlarged sectional view showing the configuration of the battery element shown in FIG. 2; FIG. 図2に示した正極リードの構成を拡大して表す断面図である。3 is an enlarged cross-sectional view showing the configuration of the positive electrode lead shown in FIG. 2; FIG. 図2に示したシーラントの構成を拡大して表す断面図である。FIG. 3 is an enlarged cross-sectional view showing the structure of the sealant shown in FIG. 2; 二次電池の動作を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining the operation of the secondary battery; 二次電池の製造工程を説明するための斜視図である。It is a perspective view for explaining a manufacturing process of a secondary battery. 図7に続く二次電池の製造工程を説明するための断面図である。FIG. 8 is a cross-sectional view for explaining the manufacturing process of the secondary battery continued from FIG. 7; 変形例1における二次電池の構成を表す断面図である。3 is a cross-sectional view showing the configuration of a secondary battery in Modification 1. FIG. 変形例1における二次電池の他の構成を表す断面図である。10 is a cross-sectional view showing another configuration of the secondary battery in Modification 1. FIG. 変形例4における二次電池の構成を表す断面図である。FIG. 12 is a cross-sectional view showing the configuration of a secondary battery in Modification 4; 変形例5における二次電池の構成を表す断面図である。14 is a cross-sectional view showing the configuration of a secondary battery in Modification 5. FIG.
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.構成
  1-2.正極リードおよびシーラントのそれぞれの詳細な構成
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.変形例
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Secondary Battery 1-1. Configuration 1-2. Detailed Configuration of Positive Electrode Lead and Sealant 1-3. Operation 1-4. Manufacturing method 1-5. Action and effect 2 . Modification
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
<1. Secondary battery>
First, a secondary battery according to an embodiment of the present technology will be described.
 ここで説明する二次電池は、扁平かつ柱状の立体的形状を有しており、いわゆるコイン型またはボタン型と呼称される二次電池である。この二次電池は、後述するように、互いに対向する一対の底部と、その一対の底部のそれぞれに連結された側壁部とを有している。また、二次電池は、外径および高さを有しており、その高さは、外径よりも小さくなっている。なお、「外径」とは、一対の底部のそれぞれの直径(最大直径)であると共に、「高さ」とは、一方の底部から他方の底部までの距離(最大距離)である。 The secondary battery described here has a flat and columnar three-dimensional shape, and is a so-called coin-shaped or button-shaped secondary battery. As will be described later, this secondary battery has a pair of bottom portions facing each other and side wall portions connected to each of the pair of bottom portions. Also, the secondary battery has an outer diameter and a height, and the height is smaller than the outer diameter. The "outer diameter" is the diameter (maximum diameter) of each of the pair of bottoms, and the "height" is the distance (maximum distance) from one bottom to the other bottom.
 二次電池の充放電原理は、特に限定されないが、以下では、電極反応物質の吸蔵放出を利用して電池容量が得られる場合に関して説明する。この二次電池は、正極および負極と共に電解質を備えており、その負極の充電容量は、正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。 Although the charging and discharging principle of the secondary battery is not particularly limited, the case where the battery capacity is obtained by utilizing the absorption and release of the electrode reactant will be described below. The secondary battery includes a positive electrode, a negative electrode, and an electrolyte, and the charge capacity of the negative electrode is greater than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属の具体例は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属の具体例は、ベリリウム、マグネシウムおよびカルシウムなどである。 The type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals. Examples of alkali metals are lithium, sodium and potassium, and examples of alkaline earth metals are beryllium, magnesium and calcium.
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。 In the following, the case where the electrode reactant is lithium will be taken as an example. A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery. In this lithium ion secondary battery, lithium is intercalated and deintercalated in an ionic state.
<1-1.構成>
 図1は、二次電池の斜視構成を表している。図2は、図1に示した二次電池の断面構成を拡大して表している。図3は、図2に示した電池素子40の断面構成を拡大して表している。ただし、図2では、正極リード51および負極リード52のそれぞれに網掛けを施している。図3では、電池素子40の一部だけを示している。
<1-1. Configuration>
FIG. 1 shows a perspective configuration of a secondary battery. FIG. 2 shows an enlarged cross-sectional configuration of the secondary battery shown in FIG. FIG. 3 shows an enlarged cross-sectional configuration of the battery element 40 shown in FIG. However, in FIG. 2, each of the positive lead 51 and the negative lead 52 is shaded. In FIG. 3, only part of the battery element 40 is shown.
 以下の説明では、便宜上、図2における上側、下側、右側および左側を二次電池の上側、下側、右側および左側とする。 In the following description, for convenience, the upper, lower, right, and left sides in FIG. 2 are the upper, lower, right, and left sides of the secondary battery.
 図1および図2に示した二次電池は、ボタン型の二次電池であり、外径Dおよび高さHを有している。この二次電池は、外径Dよりも高さHが小さい立体的形状、すなわち扁平かつ柱状の立体的形状を有している。ここでは、二次電池の立体的形状は、扁平かつ円筒(円柱)状であり、高さHに対する外径Dの比D/Hは、1よりも大きくなっている。 The secondary battery shown in FIGS. 1 and 2 is a button type secondary battery and has an outer diameter D and a height H. This secondary battery has a three-dimensional shape in which the height H is smaller than the outer diameter D, that is, a flat and columnar three-dimensional shape. Here, the three-dimensional shape of the secondary battery is flat and cylindrical (columnar), and the ratio D/H of the outer diameter D to the height H is greater than one.
 二次電池の具体的な寸法は、特に限定されないが、一例を挙げると、外径D=3mm~30mmであると共に、高さH=0.5mm~70mmである。なお、比D/Hは、25以下であることが好ましい。 Although the specific dimensions of the secondary battery are not particularly limited, for example, the outer diameter D is 3 mm to 30 mm and the height H is 0.5 mm to 70 mm. The ratio D/H is preferably 25 or less.
 ここでは、二次電池は、図1~図3に示したように、外装缶10と、外部端子20と、ガスケット30と、電池素子40と、正極リード51と、負極リード52と、シーラント60と、絶縁フィルム70とを備えている。 1 to 3, the secondary battery includes an outer can 10, an external terminal 20, a gasket 30, a battery element 40, a positive electrode lead 51, a negative electrode lead 52, and a sealant 60. and an insulating film 70 .
[外装缶]
 外装缶10は、図1および図2に示したように、電池素子40などを収納する中空の外装部材であり、貫通口10Kを有している。
[Outer can]
As shown in FIGS. 1 and 2, the exterior can 10 is a hollow exterior member that houses the battery element 40 and the like, and has a through hole 10K.
 ここでは、外装缶10は、二次電池の立体的形状と同様の立体的形状を有しており、すなわち扁平かつ柱状(円柱状)の立体的形状を有している。これにより、外装缶10は、互いに対向する上底部M1および下底部M2と、側壁部M3とを有している。この側壁部M3は、上底部M1と下底部M2との間に配置されており、その上底部M1および下底部M2のそれぞれに連結されている。ここでは、上底部M1および下底部M2のそれぞれの平面形状は、円形であると共に、側壁部M3の表面は、外側に向かって凸状の湾曲面である。 Here, the outer can 10 has a three-dimensional shape similar to the three-dimensional shape of the secondary battery, that is, it has a flat and columnar (cylindrical) three-dimensional shape. Thus, the outer can 10 has an upper bottom portion M1 and a lower bottom portion M2 facing each other, and a side wall portion M3. The side wall portion M3 is arranged between the upper base portion M1 and the lower base portion M2, and is connected to the upper base portion M1 and the lower base portion M2, respectively. Here, the planar shape of each of the upper base portion M1 and the lower base portion M2 is circular, and the surface of the side wall portion M3 is an outwardly convex curved surface.
 この外装缶10は、収納部11および蓋部12を含んでおり、その収納部11および蓋部12は、互いに接合されている。ここでは、後述するように、収納部11および蓋部12が互いに溶接されているため、その収納部11が蓋部12により封止されている。 The outer can 10 includes a storage portion 11 and a lid portion 12, and the storage portion 11 and the lid portion 12 are joined together. Here, as will be described later, since the storage portion 11 and the lid portion 12 are welded together, the storage portion 11 is sealed by the lid portion 12 .
 収納部11は、電池素子40などを内部に収納する円柱型略器状の部材(下底部M2および側壁部M3)である。ここでは、収納部11は、下底部M2と側壁部M3とが互いに一体化された構造を有している。この収納部11は、上端が開放されると共に下端が閉塞された中空の構造を有しているため、その上端に開口部11Kを有している。 The housing portion 11 is a substantially cylindrical member (lower bottom portion M2 and side wall portion M3) for housing the battery element 40 and the like therein. Here, the storage portion 11 has a structure in which the lower bottom portion M2 and the side wall portion M3 are integrated with each other. Since the housing portion 11 has a hollow structure with an open upper end and a closed lower end, it has an opening 11K at its upper end.
 蓋部12は、開口部11Kを閉塞する略円盤状の部材(上底部M1)であり、上記した貫通口10Kを有している。この貫通口10Kは、後述するように、電池素子40と外部端子20とを互いに電気的に接続させるための接続経路として利用されている。 The lid portion 12 is a substantially disc-shaped member (upper bottom portion M1) that closes the opening portion 11K, and has the above-described through hole 10K. The through hole 10K is used as a connection path for electrically connecting the battery element 40 and the external terminal 20 to each other, as will be described later.
 なお、完成後の二次電池では、上記したように、既に蓋部12が収納部11に接合されているため、開口部11Kが蓋部12により閉塞されている。これにより、二次電池の外観を見ても、収納部11が開口部11Kを有していたかどうかを事後的に確認することができないとも考えられる。 In the secondary battery after completion, the lid portion 12 is already joined to the housing portion 11 as described above, so that the opening portion 11K is closed by the lid portion 12 . For this reason, even if the external appearance of the secondary battery is observed, it may not be possible to confirm after the fact whether or not the storage portion 11 has the opening portion 11K.
 しかしながら、二次電池の製造工程において、収納部11および蓋部12を互いに接合させるために、その収納部11および蓋部12を互いに溶接している場合には、外装缶10の表面、より具体的には収納部11と蓋部12との境界に溶接痕が残っているはずである。よって、溶接痕の有無に基づいて、収納部11が開口部11Kを有していたかどうかを事後的に確認することができる。 However, in the manufacturing process of the secondary battery, when the storage portion 11 and the lid portion 12 are welded together in order to join the storage portion 11 and the lid portion 12 together, the surface of the outer can 10, more specifically, Ideally, there should be a weld mark left on the boundary between the storage portion 11 and the lid portion 12 . Therefore, based on the presence or absence of welding marks, it can be confirmed after the fact whether or not the storage portion 11 has the opening portion 11K.
 すなわち、外装缶10の表面に溶接痕が残っている(溶接痕を視認することができる)場合には、収納部11が開口部11Kを有していたということである。これに対して、外装缶10の表面に溶接痕が残っていない(溶接痕を視認することができない)場合には、収納部11が開口部11Kを有していなかったということである。 That is, when the welding marks remain on the surface of the outer can 10 (the welding marks are visible), it means that the storage portion 11 has the opening 11K. On the other hand, if no welding marks remain on the surface of the outer can 10 (the welding marks cannot be visually recognized), it means that the storage portion 11 did not have the opening 11K.
 ここでは、蓋部12は、窪み部12Uを有しており、貫通口10Kは、窪み部12Uに設けられている。この窪み部12Uでは、蓋部12が収納部11の内部に向かって部分的に窪むように屈曲しているため、その蓋部12の一部は、下向きの段差を形成するように折れ曲がっている。 Here, the lid portion 12 has a recessed portion 12U, and the through hole 10K is provided in the recessed portion 12U. In this recessed portion 12U, the lid portion 12 is bent so as to be partially recessed toward the inside of the storage portion 11, so that a portion of the lid portion 12 is bent so as to form a downward step.
 窪み部12Uの形状、すなわち二次電池を上方から見た場合において窪み部12Uの外縁により画定される形状は、特に限定されない。ここでは、窪み部12Uの形状は、円形である。なお、窪み部12Uの内径および深さは、特に限定されないため、任意に設定可能である。 The shape of the recessed portion 12U, that is, the shape defined by the outer edge of the recessed portion 12U when the secondary battery is viewed from above is not particularly limited. Here, the shape of the recessed portion 12U is circular. In addition, since the inner diameter and depth of the recessed portion 12U are not particularly limited, they can be set arbitrarily.
 上記したように、外装缶10は、互いに物理的に分離されていた2個の部材(収納部11および蓋部12)が互いに接合された缶であり、いわゆる接合缶である。より具体的には、収納部11および蓋部12が互いに溶接されている場合の外装缶10は、いわゆる溶接缶である。これにより、接合後の外装缶10は、全体として物理的に1個の部材であるため、事後的に2個の部材(収納部11および蓋部12)に分離できない状態である。 As described above, the outer can 10 is a can in which two members (the storage portion 11 and the lid portion 12) that are physically separated from each other are joined to each other, a so-called joined can. More specifically, the outer can 10 in which the storage portion 11 and the lid portion 12 are welded together is a so-called welded can. As a result, since the outer can 10 after bonding is physically one member as a whole, it cannot be separated into two members (the storage portion 11 and the lid portion 12) afterwards.
 接合缶である外装缶10は、加締め加工を用いて形成されたクリンプ缶とは異なる缶であり、いわゆるクリンプレス缶である。外装缶10の内部において素子空間体積が増加するため、体積エネルギー密度が増加するからである。この「素子空間体積」とは、電池素子40を収納するために利用可能である外装缶10の内部空間の体積(有効体積)である。 The outer can 10, which is a bonded can, is a so-called crimpless can, which is different from a crimped can formed using caulking. This is because the volumetric energy density increases because the element space volume increases inside the outer can 10 . This “element space volume” is the volume (effective volume) of the internal space of the outer can 10 that can be used to house the battery element 40 .
 また、接合缶である外装缶10は、互いに折り重なった部分を有していないと共に、2個以上の部材が互いに重なった部分を有していない。 In addition, the outer can 10, which is a joint can, does not have a portion where two or more members overlap each other, and does not have a portion where two or more members overlap each other.
 「互いに折り重なった部分を有していない」とは、外装缶10の一部が互いに折り重なるように加工(折り曲げ加工)されていないことを意味している。また、「2個以上の部材が互いに重なった部分を有していない」とは、二次電池の完成後において外装缶10が物理的に1個の部材であるため、その外装缶10が事後的に2個以上の部材に分離できないことを意味している。すなわち、完成後の二次電池における外装缶10の状態は、事後的に分離できるように2個以上の部材が互いに重なりながら組み合わされている状態でない。 "Does not have a portion folded over" means that the outer can 10 is not processed (bent) so that a part of the outer can 10 is folded over. Further, "not having a portion where two or more members overlap each other" means that the outer can 10 is physically one member after the completion of the secondary battery. It literally means that it cannot be separated into two or more members. That is, the state of the outer can 10 in the secondary battery after completion is not a state in which two or more members are combined while overlapping each other so that they can be separated later.
 この外装缶10は、導電性を有する外装部材であるため、収納部11および蓋部12のそれぞれは、導電性を有している。これにより、外装缶10は、負極リード52を介して電池素子40(後述する負極42)に接続されているため、その負極42に電気的に接続されている。よって、外装缶10は、負極42の外部接続用端子として機能する。二次電池が外装缶10とは別個に負極42の外部接続用端子を備えていなくてもよいため、その負極42の外部接続用端子の存在に起因する素子空間体積の減少が抑制されるからである。これにより、素子空間体積が増加するため、体積エネルギー密度が増加する。 Since the outer can 10 is an electrically conductive exterior member, each of the storage portion 11 and the lid portion 12 is electrically conductive. As a result, the outer can 10 is connected to the battery element 40 (negative electrode 42 to be described later) through the negative electrode lead 52 , and thus is electrically connected to the negative electrode 42 . Therefore, the outer can 10 functions as an external connection terminal for the negative electrode 42 . Since the secondary battery does not need to be provided with an external connection terminal for the negative electrode 42 separately from the outer can 10, the decrease in the element space volume due to the presence of the external connection terminal for the negative electrode 42 is suppressed. is. As a result, the element space volume increases, so the volumetric energy density increases.
 具体的には、外装缶10は、金属材料および合金材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その金属材料および合金材料の具体例は、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などである。ステンレスの種類は、特に限定されないが、具体的には、SUS304およびSUS316などである。ただし、収納部11の形成材料と蓋部12の形成材料とは、互いに同じでもよいし、互いに異なってもよい。 Specifically, the outer can 10 contains one or more of conductive materials such as metallic materials and alloy materials. Specific examples of the metallic materials and alloy materials include iron, copper, , nickel, stainless steel, iron alloys, copper alloys and nickel alloys. The type of stainless steel is not particularly limited, but specific examples include SUS304 and SUS316. However, the material for forming the storage portion 11 and the material for forming the lid portion 12 may be the same as or different from each other.
 中でも、外装缶10は、いわゆる金属缶であることが好ましい。外装缶10の剛性が向上するため、その外装缶10が変形しにくくなるからである。この金属缶とは、上記した金属材料および合金材料のうちのいずれか1種類または2種類以上を含んでいる缶である。 Above all, the outer can 10 is preferably a so-called metal can. This is because the rigidity of the outer can 10 is improved, so that the outer can 10 is less likely to be deformed. This metal can is a can containing one or more of the metal materials and alloy materials described above.
 なお、蓋部12は、後述するように、正極41の外部接続用端子として機能する外部端子20からガスケット30を介して絶縁されている。外装缶10(負極42の外部接続用端子)と外部端子20(正極41の外部接続用端子)との接触(短絡)が防止されるからである。 Note that the lid portion 12 is insulated via a gasket 30 from the external terminal 20 functioning as an external connection terminal for the positive electrode 41, as will be described later. This is because contact (short circuit) between the outer can 10 (terminal for external connection of the negative electrode 42) and the external terminal 20 (terminal for external connection of the positive electrode 41) is prevented.
[外部端子]
 外部端子20は、図1および図2に示したように、二次電池が電子機器に搭載される際に、その電子機器に接続される電極端子である。この外部端子20は、外装缶10の外側に配置されていると共に、貫通口10Kを遮蔽している。
[External terminal]
The external terminal 20 is an electrode terminal connected to an electronic device when the secondary battery is mounted on the electronic device, as shown in FIGS. The external terminal 20 is arranged outside the outer can 10 and shields the through hole 10K.
 なお、外部端子20は、ガスケット30を介して外装缶10により支持されている。より具体的には、外部端子20は、後述するように、ガスケット30を介して蓋部12に熱溶着されている。これにより、外部端子20は、ガスケット30を介して蓋部12から絶縁されながら、そのガスケット30を介して蓋部12に固定されている。 Note that the external terminal 20 is supported by the outer can 10 via a gasket 30 . More specifically, the external terminal 20 is thermally welded to the lid portion 12 via a gasket 30, as will be described later. Thereby, the external terminal 20 is fixed to the lid portion 12 via the gasket 30 while being insulated from the lid portion 12 via the gasket 30 .
 この外部端子20は、正極リード51を介して電池素子40(正極41)に接続されているため、その正極41に電気的に接続されている。これにより、外部端子20は、正極41の外部接続用端子として機能する。二次電池の使用時には、外部端子20(正極41の外部接続用端子)および外装缶10(負極42の外部接続用端子)を介して二次電池が電子機器に接続されるため、その電子機器が二次電池を電源として用いて動作可能になる。 The external terminal 20 is electrically connected to the positive electrode 41 because it is connected to the battery element 40 (positive electrode 41 ) through the positive electrode lead 51 . Thereby, the external terminal 20 functions as an external connection terminal for the positive electrode 41 . When the secondary battery is used, the secondary battery is connected to the electronic device via the external terminal 20 (terminal for external connection of the positive electrode 41) and the outer can 10 (terminal for external connection of the negative electrode 42). becomes operable using a secondary battery as a power source.
 また、外部端子20は、略板状の部材である。外部端子20の立体的形状は、特に限定されないが、具体的には、平坦な板状である。 Also, the external terminal 20 is a substantially plate-shaped member. Although the three-dimensional shape of the external terminal 20 is not particularly limited, it is specifically a flat plate shape.
 ここでは、外部端子20は、窪み部12Uの内部に配置されている。すなわち、外部端子20は、窪み部12Uよりも外側(上側)に突出しないように、その窪み部12Uの内部に収納されている。外部端子20が窪み部12Uよりも外側に突出している場合と比較して、二次電池の高さHが小さくなるため、体積エネルギー密度が増加するからである。 Here, the external terminal 20 is arranged inside the recess 12U. That is, the external terminal 20 is housed inside the recessed portion 12U so as not to protrude outward (upward) from the recessed portion 12U. This is because the volume energy density is increased because the height H of the secondary battery is smaller than when the external terminal 20 protrudes outward beyond the recessed portion 12U.
 なお、外部端子20の外径は、窪み部12Uの内径よりも小さいため、その外部端子20は、周囲において蓋部12から離隔されている。これにより、ガスケット30は、窪み部12Uの内部において蓋部12と外部端子20との間の空間のうちの少なくとも一部に配置されており、より具体的には、ガスケット30が存在しなければ蓋部12と外部端子20とが互いに接触し得る場所に配置されている。 Since the outer diameter of the external terminal 20 is smaller than the inner diameter of the recessed portion 12U, the external terminal 20 is separated from the lid portion 12 on the periphery. Thereby, the gasket 30 is arranged in at least part of the space between the lid portion 12 and the external terminal 20 inside the recess portion 12U. The lid portion 12 and the external terminal 20 are arranged at locations where they can come into contact with each other.
 また、外部端子20は、金属材料および合金材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その金属材料および合金材料の具体例は、アルミニウムおよびアルミニウム合金などである。 In addition, the external terminal 20 includes one or more of conductive materials such as metal materials and alloy materials, and specific examples of the metal materials and alloy materials are aluminum and aluminum alloys. be.
 ただし、外部端子20は、クラッド材を含んでいてもよい。このクラッド材は、ガスケット30に近い側から順にアルミニウム層およびニッケル層を含んでおり、そのアルミニウム層およびニッケル層は、互いに圧延接合されている。なお、クラッド材は、ニッケル層の代わりにニッケル合金層を含んでいてもよい。 However, the external terminal 20 may contain a clad material. This clad material includes an aluminum layer and a nickel layer in order from the side closer to the gasket 30, and the aluminum layer and the nickel layer are roll-bonded to each other. The clad material may contain a nickel alloy layer instead of the nickel layer.
 特に、外部端子20は、正極41の外部接続用端子として機能する他、後述するように、外装缶10の内圧が過度に上昇した際に、その内圧を開放するための開放弁として機能する。この内圧が上昇する原因は、充放電時における電解液の分解反応に起因したガスの発生などであると共に、その電解液の分解反応を促進させる原因は、二次電池の内部短絡、二次電池の加熱および大電流条件による二次電池の放電などである。 In particular, the external terminal 20 functions as an external connection terminal for the positive electrode 41, and also functions as a release valve for releasing the internal pressure of the outer can 10 when the internal pressure rises excessively, as will be described later. The cause of this increase in internal pressure is the generation of gas due to the decomposition reaction of the electrolyte during charging and discharging, and the cause of promoting the decomposition reaction of the electrolyte is internal short circuit of the secondary battery, secondary battery heating and discharge of a secondary battery due to high current conditions.
 なお、開放弁として機能する外部端子20の動作の詳細に関しては、後述する(図6参照)。 The details of the operation of the external terminal 20 functioning as an open valve will be described later (see FIG. 6).
[ガスケット]
 ガスケット30は、図2に示したように、外装缶10と外部端子20との間に配置されている絶縁性の封止部材である。ここでは、ガスケット30は、蓋部12と外部端子20との間に配置されており、貫通口10Kと重なる位置に貫通孔30Kを有している。これにより、ガスケット30は、貫通口10Kを遮蔽しないように配置されている。
[gasket]
The gasket 30 is an insulating sealing member arranged between the outer can 10 and the external terminal 20, as shown in FIG. Here, the gasket 30 is arranged between the lid portion 12 and the external terminal 20, and has a through hole 30K at a position overlapping the through hole 10K. Thereby, the gasket 30 is arranged so as not to block the through hole 10K.
 このガスケット30は、絶縁性かつ熱溶融性を有する高分子化合物のうちのいずれか1種類または2種類以上を含んでいるため、外部端子20は、上記したように、ガスケット30を介して蓋部12に熱溶着されている。高分子化合物の種類は、特に限定されないが、具体的には、ポリプロピレンおよびポリエチレンなどである。 Since the gasket 30 contains one or more of insulating and thermally fusible polymer compounds, the external terminal 20 is connected to the lid portion via the gasket 30 as described above. 12 is heat-sealed. The type of polymer compound is not particularly limited, but specific examples include polypropylene and polyethylene.
 なお、ガスケット30の設置範囲は、特に限定されないため、任意に設定可能である。ここでは、ガスケット30は、窪み部12Uの内部において、蓋部12の上面と外部端子20の下面との間の空間に配置されている。ただし、ガスケット30の設置範囲は、蓋部12の上面と外部端子20の下面との間の空間よりも外側まで拡張されていてもよい。 The installation range of the gasket 30 is not particularly limited and can be set arbitrarily. Here, the gasket 30 is arranged in the space between the upper surface of the lid portion 12 and the lower surface of the external terminal 20 inside the recess portion 12U. However, the installation range of the gasket 30 may extend outside the space between the upper surface of the lid portion 12 and the lower surface of the external terminal 20 .
[電池素子]
 電池素子40は、図1~図3に示したように、充放電反応を進行させる発電素子であり、外装缶10の内部に収納されている。この電池素子40は、第1電極である正極41と、第2電極である負極42と、セパレータ43と、液状の電解質である電解液(図示せず)とを含んでいる。
[Battery element]
The battery element 40, as shown in FIGS. 1 to 3, is a power generation element that advances charge/discharge reactions, and is housed inside the outer can 10. As shown in FIG. The battery element 40 includes a positive electrode 41 as a first electrode, a negative electrode 42 as a second electrode, a separator 43, and an electrolytic solution (not shown) as a liquid electrolyte.
 ここでは、電池素子40は、いわゆる巻回電極体であるため、その電池素子40の素子構造は、いわゆる巻回型である。この場合には、正極41および負極42がセパレータ43を介して互いに積層されていると共に、その正極41、負極42およびセパレータ43が巻回されている。これにより、正極41および負極42は、セパレータ43を介して互いに対向しながら巻回されているため、電池素子40は、巻芯部である巻回中心空間40Kを有している。 Here, since the battery element 40 is a so-called wound electrode body, the element structure of the battery element 40 is a so-called wound type. In this case, the positive electrode 41 and the negative electrode 42 are laminated with the separator 43 interposed therebetween, and the positive electrode 41, the negative electrode 42 and the separator 43 are wound. As a result, the positive electrode 41 and the negative electrode 42 are wound while facing each other with the separator 43 interposed therebetween, so that the battery element 40 has a winding center space 40K as a winding core.
 この電池素子40は、外装缶10の立体的形状と同様の立体的形状を有しているため、扁平かつ円柱状の立体的形状を有している。電池素子40が外装缶10の立体的形状とは異なる立体的形状を有している場合と比較して、その外装缶10の内部に電池素子40が収納された際にデッドスペース(外装缶10と電池素子40との間の余剰空間)が発生しにくくなるため、その外装缶10の内部空間が有効に利用されるからである。これにより、素子空間体積が増加するため、体積エネルギー密度が増加する。 Since the battery element 40 has a three-dimensional shape similar to that of the outer can 10, it has a flat and cylindrical three-dimensional shape. Compared to the case where the battery element 40 has a three-dimensional shape different from the three-dimensional shape of the outer can 10, when the battery element 40 is accommodated inside the outer can 10, dead space (the outer can 10 and the battery element 40), the internal space of the outer can 10 is effectively utilized. As a result, the element space volume increases, so the volumetric energy density increases.
(正極)
 正極41は、図2および図3に示したように、正極集電体41Aおよび正極活物質層41Bを含んでいる。
(positive electrode)
The positive electrode 41 includes a positive electrode current collector 41A and a positive electrode active material layer 41B, as shown in FIGS.
 正極集電体41Aは、正極活物質層41Bを支持する導電性の支持体であり、その正極活物質層41Bが設けられる一対の面を有している。この正極集電体41Aは、金属材料などの導電性材料を含んでおり、その金属材料の具体例は、アルミニウムなどである。 The positive electrode current collector 41A is a conductive support that supports the positive electrode active material layer 41B, and has a pair of surfaces on which the positive electrode active material layer 41B is provided. The positive electrode current collector 41A contains a conductive material such as a metal material, and a specific example of the metal material is aluminum.
 ここでは、正極活物質層41Bは、正極集電体41Aの両面に設けられており、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層41Bは、正極41が負極42に対向する側において正極集電体41Aの片面だけに設けられていてもよい。また、正極活物質層41Bは、さらに、正極結着剤および正極導電剤などの材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層41Bの形成方法は、特に限定されないが、具体的には、塗布法などである。 Here, the positive electrode active material layer 41B is provided on both sides of the positive electrode current collector 41A and contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium. However, the positive electrode active material layer 41B may be provided only on one side of the positive electrode current collector 41A on the side where the positive electrode 41 faces the negative electrode 42 . Moreover, the positive electrode active material layer 41B may further contain one or more of materials such as a positive electrode binder and a positive electrode conductive agent. A method for forming the positive electrode active material layer 41B is not particularly limited, but a specific example is a coating method.
 正極活物質は、リチウム化合物を含んでいる。高いエネルギー密度が得られるからである。このリチウム化合物は、リチウムを構成元素として含む化合物であり、より具体的には、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物である。ただし、リチウム化合物は、さらに、他元素(リチウムおよび遷移金属元素のそれぞれ以外の元素)のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material contains a lithium compound. This is because a high energy density can be obtained. This lithium compound is a compound containing lithium as a constituent element, and more specifically, a compound containing lithium and one or more transition metal elements as constituent elements. However, the lithium compound may further contain one or more of other elements (elements other than lithium and transition metal elements).
 リチウム化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。酸化物の具体例は、LiNiO、LiCoOおよびLiMnなどである。リン酸化合物の具体例は、LiFePOおよびLiMnPOなどである。 The type of lithium compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds. Specific examples of oxides include LiNiO 2 , LiCoO 2 and LiMn 2 O 4 . Specific examples of phosphoric acid compounds include LiFePO4 and LiMnPO4 .
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムの具体例は、スチレンブタジエン系ゴムなどであると共に、高分子化合物の具体例は、ポリフッ化ビニリデンなどである。正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料の具体例は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。 The positive electrode binder contains one or more of synthetic rubber and polymer compounds. A specific example of the synthetic rubber is styrene-butadiene rubber, and a specific example of the polymer compound is polyvinylidene fluoride. The positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and specific examples of the carbon materials include graphite, carbon black, acetylene black, and ketjen black. . However, the conductive material may be a metal material, a polymer compound, or the like.
(負極)
 負極42は、図2および図3に示したように、負極集電体42Aおよび負極活物質層42Bを含んでいる。
(negative electrode)
The negative electrode 42 includes a negative electrode current collector 42A and a negative electrode active material layer 42B, as shown in FIGS.
 負極集電体42Aは、負極活物質層42Bを支持する導電性の支持体であり、その負極活物質層42Bが設けられる一対の面を有している。この負極集電体42Aは、金属材料などの導電性材料を含んでおり、その金属材料の具体例は、銅などである。 The negative electrode current collector 42A is a conductive support that supports the negative electrode active material layer 42B, and has a pair of surfaces on which the negative electrode active material layer 42B is provided. The negative electrode current collector 42A contains a conductive material such as a metal material, and a specific example of the metal material is copper.
 ここでは、負極活物質層42Bは、負極集電体42Aの両面に設けられており、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層42Bは、負極42が正極41に対向する側において負極集電体42Aの片面だけに設けられていてもよい。また、負極活物質層42Bは、さらに、負極結着剤および負極導電剤などの材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。負極活物質層42Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。 Here, the negative electrode active material layer 42B is provided on both sides of the negative electrode current collector 42A, and contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium. However, the negative electrode active material layer 42B may be provided only on one side of the negative electrode current collector 42A on the side where the negative electrode 42 faces the positive electrode 41 . In addition, the negative electrode active material layer 42B may further contain one or more of materials such as a negative electrode binder and a negative electrode conductor. The details of the negative electrode binder and the negative electrode electrical conductor are the same as the details of the positive electrode binder and the positive electrode electrical conductor. The method of forming the negative electrode active material layer 42B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), and the like, or Two or more types.
 負極活物質は、炭素材料および金属系材料などのうちのいずれか1種類または2種類以上を含んでいる。高いエネルギー密度が得られるからである。炭素材料の具体例は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズなどである。ただし、金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよい、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2または0.2<x<1.4)などである。 The negative electrode active material contains one or more of a carbon material, a metal-based material, and the like. This is because a high energy density can be obtained. Specific examples of carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite). A metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , silicon and tin. However, the metallic material may be a single substance, an alloy, a compound, a mixture of two or more thereof, or a material containing two or more phases thereof. Specific examples of metallic materials include TiSi 2 and SiO x (0<x≦2 or 0.2<x<1.4).
(セパレータ)
 セパレータ43は、図2および図3に示したように、正極41と負極42との間に介在している絶縁性の多孔質膜であり、その正極41と負極42との短絡を防止しながらリチウムイオンを通過させる。このセパレータ43は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、正極41、負極42およびセパレータ43のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。
(separator)
The separator 43 is an insulating porous film interposed between the positive electrode 41 and the negative electrode 42, as shown in FIGS. Allows lithium ions to pass through. This separator 43 contains a polymer compound such as polyethylene.
(Electrolyte)
The electrolyte is impregnated in each of the positive electrode 41, the negative electrode 42 and the separator 43, and contains a solvent and an electrolyte salt.
 ここでは、溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。この非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。 Here, the solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution. The non-aqueous solvents are esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどであると共に、鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。 The carbonate compounds include cyclic carbonates and chain carbonates. Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate, and specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
 カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、トリメチル酢酸エチル、酪酸メチルおよび酪酸エチルなどである。 The carboxylic acid ester compound is a chain carboxylic acid ester or the like. Specific examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, ethyl trimethylacetate, methyl butyrate and ethyl butyrate.
 ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。 Lactone-based compounds include lactones. Specific examples of lactones include γ-butyrolactone and γ-valerolactone.
 なお、エーテル類は、上記したラクトン系化合物の他、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどでもよい。 The ethers may be 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, etc., in addition to the lactone compounds described above.
 電解質塩は、リチウム塩などの軽金属塩である。リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiB(C)およびジフルオロ(オキサラト)ホウ酸リチウム(LiB(C)F)などである。 Electrolyte salts are light metal salts such as lithium salts. Specific examples of lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN (FSO2) 2 ), bis(trifluoromethanesulfonyl)imidolithium (LiN( CF3SO2 ) 2 ), lithium tris(trifluoromethanesulfonyl)methide ( LiC ( CF3SO2 ) 3 ) , bis (oxalato)boron lithium oxide (LiB (C2O4)2 ) and lithium difluoro(oxalato)borate ( LiB ( C2O4 )F2).
 電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
[正極リード]
 正極リード51は、図2および図4に示したように、外部端子20に正極41を電気的に接続させるための配線部材であり、外装缶10の内部に収納されている。この正極リード51は、貫通口10Kを経由して正極41のうちの正極集電体41Aおよび外部端子20のそれぞれに接続されているため、その正極41および外部端子20のそれぞれに電気的に接続されている。なお、正極リード51は、蓋部12に近い側において正極41に接続されている。
[Positive lead]
The positive electrode lead 51 is a wiring member for electrically connecting the positive electrode 41 to the external terminal 20, as shown in FIGS. Since the positive electrode lead 51 is connected to the positive electrode current collector 41A of the positive electrode 41 and the external terminal 20 via the through hole 10K, the positive electrode lead 51 is electrically connected to the positive electrode 41 and the external terminal 20, respectively. It is The positive electrode lead 51 is connected to the positive electrode 41 on the side closer to the lid portion 12 .
 ここでは、二次電池は、1本の正極リード51を備えている。ただし、二次電池は、2本以上の正極リード51を備えていてもよい。正極リード51の本数が増加すると、電池素子40の電気抵抗が低下するからである。 Here, the secondary battery has one positive electrode lead 51 . However, the secondary battery may have two or more positive electrode leads 51 . This is because the electrical resistance of the battery element 40 decreases as the number of the positive electrode leads 51 increases.
 正極リード51の形成材料に関する詳細は、正極集電体41Aの形成材料に関する詳細と同様である。ただし、正極リード51の形成材料と正極集電体41Aの形成材料とは、互いに同じでもよいし、互いに異なってもよい。 The details of the material forming the positive electrode lead 51 are the same as the details of the material forming the positive electrode current collector 41A. However, the material for forming the positive electrode lead 51 and the material for forming the positive electrode current collector 41A may be the same as or different from each other.
 この正極リード51は、正極集電体41Aから物理的に分離されているため、その正極集電体41Aとは別体化されている部材である。ただし、正極リード51は、正極集電体41Aと物理的に連続しているため、その正極集電体41Aと一体化されている部材でもよい。 Because the positive electrode lead 51 is physically separated from the positive electrode current collector 41A, it is a separate member from the positive electrode current collector 41A. However, since the positive electrode lead 51 is physically continuous with the positive electrode current collector 41A, it may be a member integrated with the positive electrode current collector 41A.
 なお、正極リード51は、正極41と外部端子20との間の途中において折り返されることにより、外部端子20に接続されている。この正極リード51の構成の詳細に関しては、後述する(図4参照)。 It should be noted that the positive electrode lead 51 is connected to the external terminal 20 by folding back halfway between the positive electrode 41 and the external terminal 20 . The details of the configuration of the positive electrode lead 51 will be described later (see FIG. 4).
[負極リード]
 負極リード52は、図2に示したように、外装缶10に負極42を電気的に接続させるための部材であり、外装缶10の内部に収納されている。この負極リード52は、負極42のうちの負極集電体42Aおよび収納部11のそれぞれに接続されているため、その負極42および外装缶10のそれぞれに電気的に接続されている。なお、負極リード52は、蓋部12から遠い側において負極42に接続されているため、下底部M2に接続されている。
[Negative electrode lead]
The negative electrode lead 52 is a member for electrically connecting the negative electrode 42 to the outer can 10, as shown in FIG. Since the negative electrode lead 52 is connected to the negative electrode current collector 42A of the negative electrode 42 and the housing portion 11, it is electrically connected to the negative electrode 42 and the outer can 10, respectively. Since the negative electrode lead 52 is connected to the negative electrode 42 on the far side from the lid portion 12, it is connected to the lower bottom portion M2.
 ここでは、二次電池は、1本の負極リード52を備えている。ただし、二次電池は、2本以上の負極リード52を備えていてもよい。負極リード52の本数が増加すると、電池素子40の電気抵抗が低下するからである。 Here, the secondary battery has one negative electrode lead 52 . However, the secondary battery may have two or more negative electrode leads 52 . This is because the electrical resistance of the battery element 40 decreases as the number of the negative electrode leads 52 increases.
 負極リード52の形成材料に関する詳細は、負極集電体42Aの形成材料に関する詳細と同様である。ただし、負極リード52の形成材料と負極集電体42Aの形成材料とは、互いに同じでもよいし、互いに異なってもよい。 The details of the material forming the negative electrode lead 52 are the same as the details of the material forming the negative electrode current collector 42A. However, the material for forming the negative electrode lead 52 and the material for forming the negative electrode current collector 42A may be the same as or different from each other.
 この負極リード52は、負極集電体42Aから物理的に分離されているため、その負極集電体42Aとは別体化されている部材である。ただし、負極リード52は、負極集電体42Aと物理的に連続しているため、その負極集電体42Aと一体化されている部材でもよい。 Since the negative electrode lead 52 is physically separated from the negative electrode current collector 42A, it is a separate member from the negative electrode current collector 42A. However, since the negative electrode lead 52 is physically continuous with the negative electrode current collector 42A, it may be a member integrated with the negative electrode current collector 42A.
[シーラント]
 シーラント60は、図2に示したように、正極リード51の表面を被覆している絶縁性の被覆部材である。これにより、正極リード51は、シーラント60を介して外装缶10および負極42のそれぞれから絶縁されている。
[Sealant]
The sealant 60 is an insulating covering member covering the surface of the positive electrode lead 51, as shown in FIG. Thereby, the positive electrode lead 51 is insulated from each of the outer can 10 and the negative electrode 42 via the sealant 60 .
 このシーラント60は、絶縁性の高分子化合物などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでおり、その高分子化合物の具体例は、ポリイミドなどである。 The sealant 60 contains one or more of insulating materials such as insulating polymer compounds, and a specific example of the polymer compound is polyimide.
 なお、シーラント60は、正極41と外部端子20の間の途中において折り返されている正極リード51の一部の表面を被覆している。このシーラント60の構成の詳細に関しては、後述する(図5参照)。 Note that the sealant 60 covers the surface of a part of the positive electrode lead 51 that is folded back midway between the positive electrode 41 and the external terminal 20 . Details of the configuration of the sealant 60 will be described later (see FIG. 5).
[絶縁フィルム]
 絶縁フィルム70は、図2に示したように、蓋部12と電池素子40との間に配置されている絶縁部材である。この絶縁フィルム70は、貫通口10Kと重なる位置に貫通口70Kを有しているため、その貫通口10Kを遮蔽しないように配置されている。
[insulating film]
The insulating film 70 is an insulating member arranged between the lid portion 12 and the battery element 40, as shown in FIG. Since this insulating film 70 has a through hole 70K at a position overlapping with the through hole 10K, it is arranged so as not to shield the through hole 10K.
 ここでは、絶縁フィルム70は、接着層(図示せず)を含む絶縁テープであるため、その接着層を介して蓋部12の内側面(下面)に接着されている。より具体的には、絶縁フィルム70は、蓋部12のうちの窪み部12Uが設けられている部分の下面に接着されている。これにより、絶縁フィルム70の一部は、蓋部12と正極リード51との間に配置されている。 Here, since the insulating film 70 is an insulating tape including an adhesive layer (not shown), it is adhered to the inner surface (lower surface) of the lid portion 12 via the adhesive layer. More specifically, the insulating film 70 is adhered to the lower surface of the portion of the lid portion 12 where the recess portion 12U is provided. As a result, a portion of the insulating film 70 is arranged between the lid portion 12 and the positive electrode lead 51 .
 この絶縁フィルム70は、絶縁性の高分子化合物などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでおり、その絶縁性材料の具体例は、ポリイミドなどである。 The insulating film 70 contains one or more of insulating materials such as insulating polymer compounds, and a specific example of the insulating material is polyimide.
[その他]
 なお、二次電池は、さらに、図示しない他の構成要素のうちのいずれか1種類または2種類以上を備えていてもよい。
[others]
Note that the secondary battery may further include one or more of other components (not shown).
 具体的には、他の構成要素は、収納部11(下底部M2)と電池素子40との間に配置されている他の絶縁フィルムなどである。この場合において、他の絶縁フィルムの一部は、収納部11と負極リード52との間に配置されている。他の絶縁フィルムの形成材料は、絶縁フィルム70の形成材料と同様である。 Specifically, the other component is another insulating film or the like arranged between the storage portion 11 (lower bottom portion M2) and the battery element 40. In this case, part of the other insulating film is arranged between the housing portion 11 and the negative electrode lead 52 . Materials for forming other insulating films are the same as those for forming the insulating film 70 .
<1-2.正極リードおよびシーラントのそれぞれの詳細な構成>
 図4は、図2に示した正極リード51の断面構成を拡大して表している。図5は、図2に示したシーラント60の断面構成を拡大して表している。ただし、図4では、正極リード51の主要部分だけを示している。図5では、後述する外側シーラント部61および内側シーラント部62が互いに分離されている状態を示している。
<1-2. Detailed Configuration of Positive Electrode Lead and Sealant>
FIG. 4 shows an enlarged cross-sectional configuration of the positive electrode lead 51 shown in FIG. FIG. 5 shows an enlarged cross-sectional configuration of the sealant 60 shown in FIG. However, in FIG. 4, only the main part of the positive electrode lead 51 is shown. FIG. 5 shows a state in which an outer sealant portion 61 and an inner sealant portion 62, which will be described later, are separated from each other.
[正極リードの詳細な構成]
 正極リード51は、図2に示したように、蓋部12に近い側において正極41に接続されているため、その正極41の上端部に接続されている。また、正極リード51は、正極41の上端部から貫通口10Kを経由して外部端子20まで引き回されているため、その外部端子20の下面に接続されている。正極リード51の接続方法は、特に限定されないが、具体的には、抵抗溶接法およびレーザ溶接法などの溶接法のうちのいずれか1種類または2種類以上である。ここで説明した溶接法に関する詳細は、以降においても同様である。
[Detailed configuration of positive electrode lead]
As shown in FIG. 2 , the positive electrode lead 51 is connected to the positive electrode 41 on the side closer to the lid portion 12 , and thus is connected to the upper end portion of the positive electrode 41 . Also, since the positive electrode lead 51 is routed from the upper end of the positive electrode 41 to the external terminal 20 via the through hole 10K, the positive electrode lead 51 is connected to the lower surface of the external terminal 20 . A method for connecting the positive electrode lead 51 is not particularly limited, but specifically, one or more of welding methods such as resistance welding and laser welding are used. The details of the welding method described here are the same hereinafter.
 電池素子40が巻回電極体であるため、正極41および負極42がセパレータ43を介して巻回されている場合において、その正極41に対する正極リード51の接続位置は、特に限定されない。ここでは、正極リード51は、巻回途中において正極41に接続されている。ただし、正極リード51は、最も巻外側において正極41に接続されていてもよいし、最も巻内側において正極41に接続されていてもよい。 Since the battery element 40 is a wound electrode body, when the positive electrode 41 and the negative electrode 42 are wound with the separator 43 interposed therebetween, the connection position of the positive electrode lead 51 to the positive electrode 41 is not particularly limited. Here, the positive electrode lead 51 is connected to the positive electrode 41 in the middle of winding. However, the positive electrode lead 51 may be connected to the positive electrode 41 on the outermost winding side, or may be connected to the positive electrode 41 on the innermost winding side.
 この正極リード51は、図4に示したように、折り返し部51Zを含んでおり、その折り返し部51Zよりも先において外部端子20に接続されている。より具体的には、正極リード51は、2つの延在部51X,51Yおよび折り返し部51Zを含んでおり、その延在部51Yの一部(先端部51YN)において外部端子20に接続されている。 As shown in FIG. 4, the positive electrode lead 51 includes a folded portion 51Z and is connected to the external terminal 20 beyond the folded portion 51Z. More specifically, the positive electrode lead 51 includes two extending portions 51X and 51Y and a folded portion 51Z, and is connected to the external terminal 20 at a portion (tip portion 51YN) of the extending portion 51Y. .
 ここでは、延在部51X,51Yおよび折り返し部51Zが互いに連結されることにより、互いに一体化されている。なお、図4では、延在部51Xと折り返し部51Zとの境界に破線を付していると共に、延在部51Yと折り返し部51Zとの境界に破線を付している。 Here, the extending portions 51X, 51Y and the folded portion 51Z are connected to each other and integrated with each other. In FIG. 4, the boundary between the extending portion 51X and the folded portion 51Z is indicated by a broken line, and the boundary between the extending portion 51Y and the folded portion 51Z is indicated by a broken line.
 延在部51Xは、折り返し部51Zに向かう方向(図2および図4中の左方向)に延在する第1延在部である。この延在部51Xの一端部は、正極41に接続されていると共に、その延在部51Xの他端部は、折り返し部51Zの一端部に接続されている。 The extending portion 51X is a first extending portion extending in the direction toward the folded portion 51Z (left direction in FIGS. 2 and 4). One end of the extending portion 51X is connected to the positive electrode 41, and the other end of the extending portion 51X is connected to one end of the folded portion 51Z.
 ただし、延在部51Xは、途中でクランク状に折り曲げられていてもよい。この延在部51Xが途中でクランク状に折りまげられる回数は、特に限定されないため、1回だけでもよいし、2回以上でもよい。 However, the extending portion 51X may be bent into a crank shape in the middle. The number of times the extending portion 51X is bent halfway in a crank shape is not particularly limited, and may be one time or two or more times.
 延在部51Yは、延在部51Xが延在する方向とは反対側の方向(図2および図4中の右方向)に延在する第2延在部である。この延在部51Yの一端部は、外部端子20に接続されていると共に、その延在部51Yの他端部は、折り返し部51Zの他端部に接続されている。特に、延在部51Yは、シーラント60により表面を被覆されていない先端部51YNを含んでおり、その先端部51YNにおいて外部端子20に接続されている。 The extending portion 51Y is a second extending portion that extends in the opposite direction (to the right in FIGS. 2 and 4) to the direction in which the extending portion 51X extends. One end of the extending portion 51Y is connected to the external terminal 20, and the other end of the extending portion 51Y is connected to the other end of the folded portion 51Z. In particular, the extension portion 51Y includes a tip portion 51YN whose surface is not covered with the sealant 60, and is connected to the external terminal 20 at the tip portion 51YN.
 ただし、延在部51Yは、延在部51Xと同様に、途中でクランク状に折り曲げられていてもよい。 However, like the extension 51X, the extension 51Y may be bent into a crank shape in the middle.
 折り返し部51Zは、正極リード51が折り返されている部分であり、その折り返し部51Zでは、正極リード51が貫通口10Kの内部において貫通口10Kの内径方向に折り返されている。この「貫通口10Kの内径方向」とは、図2および図4中の左右方向であるため、正極リード51は、上記したように、左方向に向かって延在したのちに右方向に向かって延在するように折り返されている。これにより、正極リード51は、貫通口10Kを越える側まで配置されておらずに、その貫通口10Kの内部において方向転換するように折り返されている。この折り返し部51Zは、上記したように、延在部51X,51Yのそれぞれに接続されている。 The folded portion 51Z is a portion where the positive electrode lead 51 is folded, and at the folded portion 51Z, the positive electrode lead 51 is folded inside the through hole 10K in the radial direction of the through hole 10K. 2 and 4, the positive electrode lead 51 extends leftward and then rightward as described above. It is folded back to extend. As a result, the positive electrode lead 51 is not arranged beyond the through hole 10K, but is folded back inside the through hole 10K so as to change direction. This folded portion 51Z is connected to each of the extension portions 51X and 51Y as described above.
 この折り返し部51Zでは、正極リード51が屈曲するように折り返されていてもよいし、その正極リード51が湾曲するように折り返されていてもよい。図2および図4では、正極リード51が湾曲するように折り返されている場合を示している。 At the folded portion 51Z, the positive electrode lead 51 may be folded back so as to be bent, or may be folded back so as to be curved. 2 and 4 show the case where the positive electrode lead 51 is folded back so as to be curved.
 正極リード51が折り返し部51Zにおいて折り返される角度、すなわち延在部51Xの延在方向と延在部51Yの延在方向とにより規定される角度は、特に限定されないため、180°でもよいし、その180°から僅かに増減された角度でもよい。 The angle at which the positive electrode lead 51 is folded back at the folded portion 51Z, that is, the angle defined by the extending direction of the extending portion 51X and the extending direction of the extending portion 51Y is not particularly limited. The angle may be slightly increased or decreased from 180°.
 なお、正極リード51は、外側面S1および内側面S2を有している。この外側面S1は、正極リード51の表面を2種類の領域に分類した場合における一方の領域であると共に、内側面S2は、他方の領域である。図4では、外側面S1と内側面S2との境界に破線を付している。 The positive electrode lead 51 has an outer surface S1 and an inner surface S2. The outer surface S1 is one of the two areas when the surface of the positive electrode lead 51 is classified into two areas, and the inner surface S2 is the other area. In FIG. 4, the boundary between the outer surface S1 and the inner surface S2 is indicated by a dashed line.
 具体的には、外側面S1は、上記したように、外装缶10に設けられている貫通口10Kの内部において正極リード51が折り返されている場合において、その折り返された正極リード51同士が互いに対向する(または互いに接近し合う)側の表面とは反対側の表面である。より具体的には、外側面S1は、貫通口10Kの内部における外装缶10(蓋部12)の内壁面および貫通口10Kにおける外部端子20の露出面のそれぞれに対向する側の表面である。 Specifically, when the positive electrode lead 51 is folded inside the through hole 10K provided in the outer can 10 as described above, the outer surface S1 is formed such that the folded positive electrode leads 51 It is the surface opposite to the surface facing (or approaching each other). More specifically, the outer surface S1 is a surface on the side facing the inner wall surface of the outer can 10 (lid portion 12) inside the through hole 10K and the exposed surface of the external terminal 20 in the through hole 10K.
 内側面S2は、外側面S1とは反対側における正極リード51の表面である。すなわち、内側面S2は、折り返された正極リード51同士が互いに対向する側の表面である。より具体的には、内側面S2は、貫通口10Kの内部における外装缶10(蓋部12)の内壁面および貫通口10Kにおける外部端子20の露出面のそれぞれに対向する側の表面とは反対側の表面である。 The inner surface S2 is the surface of the positive electrode lead 51 opposite to the outer surface S1. That is, the inner surface S2 is the surface on the side where the folded positive electrode leads 51 face each other. More specifically, the inner surface S2 is opposite to the surface on the side facing the inner wall surface of the outer can 10 (lid portion 12) inside the through hole 10K and the exposed surface of the external terminal 20 in the through hole 10K. side surface.
 ここで、正極リード51が折り返し部51Zを含んでいるのは、その正極リード51が折り返し部51Zを含んでいない場合と比較して、その正極リード51の余剰長さ(長さマージン)が得られるからである。 Here, the positive electrode lead 51 includes the folded portion 51Z because the excess length (length margin) of the positive electrode lead 51 can be obtained as compared with the case where the positive electrode lead 51 does not include the folded portion 51Z. because it will be
 これにより、二次電池が振動および衝撃などの外力を受けた際に、その外力が正極リード51の長さマージンを利用して緩和されるため、その正極リード51が破損しにくくなる。この破損とは、正極リード51の切断および外部端子20からの正極リード51の脱落の他、その正極リード51における亀裂の発生などである。この場合には、正極リード51が破損しにくくなることにより、外部端子20に対する正極リード51の接続強度も向上する。 As a result, when the secondary battery receives an external force such as vibration or impact, the external force is mitigated by using the length margin of the positive electrode lead 51, so the positive electrode lead 51 is less likely to be damaged. The breakage includes cutting of the positive electrode lead 51 , detachment of the positive electrode lead 51 from the external terminal 20 , and cracking of the positive electrode lead 51 . In this case, the strength of the connection of the positive lead 51 to the external terminal 20 is improved because the positive lead 51 is less likely to be damaged.
 また、後述するように、二次電池の製造工程において収納部11および蓋部12を用いて外装缶10を形成する際に、正極リード51の長さマージンを利用して収納部11に対して蓋部12を立てることが可能になるため(図8参照)、その二次電池を組み立てやすくなる。 In addition, as will be described later, when the outer can 10 is formed using the storage portion 11 and the lid portion 12 in the manufacturing process of the secondary battery, the length margin of the positive electrode lead 51 is used for the storage portion 11. Since the lid portion 12 can be erected (see FIG. 8), the secondary battery can be easily assembled.
 折り返し部51Zを形成するために正極リード51が貫通口10Kの内部において折り返されているのは、その正極リード51が貫通口10Kの外部において折り返されている場合と比較して、体積エネルギー密度が増加すると共に、外部端子20が開閉弁として機能しやすくなるからである。 The positive electrode lead 51 is folded back inside the through hole 10K to form the folded portion 51Z because the volume energy density is higher than that in the case where the positive electrode lead 51 is folded outside the through hole 10K. This is because the external terminal 20 becomes more likely to function as an on-off valve as it increases.
 詳細には、蓋部12と電池素子40との間において正極リード51が折り返されている場合には、電池素子40が収納される外装缶10の内部空間に折り返し部51Zが配置される。この場合には、外装缶10の内部空間に折り返し部51Zが配置される分だけ素子空間体積が減少するため、電池素子40の高さが減少する。これにより、高さが減少する分だけ電池素子40の体積が減少するため、体積エネルギー密度が減少する。 Specifically, when the positive electrode lead 51 is folded back between the lid portion 12 and the battery element 40, the folded portion 51Z is arranged in the inner space of the outer can 10 in which the battery element 40 is housed. In this case, the element space volume is reduced by the amount that the folded portion 51Z is arranged in the inner space of the outer can 10, so the height of the battery element 40 is reduced. As a result, the volume of the battery element 40 is reduced by the amount corresponding to the reduction in height, thereby reducing the volumetric energy density.
 これに対して、正極リード51が貫通口10Kの内部において折り返されている場合には、その貫通口10Kの内部空間に折り返し部51Zが配置される。この場合には、外装缶10の内部空間に折り返し部51Zが配置されない分だけ素子空間体積が増加するため、電池素子40の高さが増加する。これにより、高さが増加する分だけ電池素子40の体積が増加するため、体積エネルギー密度が増加する。 On the other hand, when the positive electrode lead 51 is folded inside the through hole 10K, the folded portion 51Z is arranged in the internal space of the through hole 10K. In this case, the height of the battery element 40 is increased because the element space volume is increased by the amount that the folded portion 51Z is not arranged in the inner space of the outer can 10 . As a result, the volume of the battery element 40 increases by the amount corresponding to the increase in height, so the volumetric energy density increases.
 また、蓋部12と電池素子40との間において正極リード51が折り返されている場合には、異常発生時(内圧の上昇時)において外部端子20が蓋部12から分離する際に、折り返し部51Zが蓋部12に引っ掛かるため、その外部端子20が蓋部12から分離しにくくなる。これにより、外部端子20が開閉弁として機能しにくくなる。 Further, when the positive electrode lead 51 is folded back between the lid portion 12 and the battery element 40, when the external terminal 20 is separated from the lid portion 12 when an abnormality occurs (when the internal pressure increases), the folded portion Since 51Z is caught on the lid portion 12, the external terminal 20 becomes difficult to separate from the lid portion 12.例文帳に追加This makes it difficult for the external terminal 20 to function as an on-off valve.
 これに対して、貫通口10Kの内部において正極リード51が折り返されている場合には、内圧の上昇時において外部端子20が蓋部12から分離する際に、折り返し部51Zが蓋部12に引っ掛からないため、その外部端子20が蓋部12から分離しやすくなる。これにより、外部端子20が開閉弁として機能しやすくなる。 On the other hand, when the positive electrode lead 51 is folded back inside the through hole 10K, when the external terminal 20 is separated from the lid portion 12 when the internal pressure increases, the folded portion 51Z is prevented from being caught by the lid portion 12. Therefore, the external terminal 20 can be easily separated from the lid portion 12 . This makes it easier for the external terminal 20 to function as an on-off valve.
[シーラントの詳細な構成]
 シーラント60は、少なくとも折り返し部51Zの外側面S1を被覆している。
[Detailed configuration of sealant]
The sealant 60 covers at least the outer surface S1 of the folded portion 51Z.
 シーラント60が少なくとも折り返し部51Zの外側面S1を被覆しているのは、貫通口10Kの内部において正極リード51が折り返されていても、その正極リード51がシーラント60を介して外装缶10(蓋部12)から絶縁されるからである。これにより、正極リード51と蓋部12との短絡の発生が防止される。 The reason why the sealant 60 covers at least the outer surface S1 of the folded portion 51Z is that even if the positive electrode lead 51 is folded back inside the through hole 10K, the positive electrode lead 51 is covered with the sealant 60 through the outer can 10 (the lid of the outer can 10). This is because it is insulated from the portion 12). This prevents the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12 .
 特に、貫通口10Kの内部において正極リード51が折り返されている場合において、外部端子20に対する正極リード51(先端部51YN)の接続面積を十分に大きくしようとすると、その貫通口10Kの内部における蓋部12の内壁面に対して正極リード51が接近する。しかしながら、折り返し部51Zの外側面S1がシーラント60により被覆されているため、蓋部12の内壁面に対して正極リード51が接近しても、そのシーラント60を利用して短絡が有効かつ十分に防止される。 In particular, when the positive electrode lead 51 is folded back inside the through hole 10K, if the connection area of the positive electrode lead 51 (tip portion 51YN) to the external terminal 20 is to be sufficiently increased, the cover inside the through hole 10K will The positive electrode lead 51 approaches the inner wall surface of the portion 12 . However, since the outer surface S1 of the folded portion 51Z is covered with the sealant 60, even if the positive electrode lead 51 approaches the inner wall surface of the lid portion 12, the sealant 60 is used to effectively and sufficiently short-circuit the lead. prevented.
 このシーラント60は、折り返し部51Zの外側面S1を被覆していれば、さらに、折り返し部51Zの内側面S2まで被覆していてもよいし、延在部51Xの外側面S1および内側面S2のうちの一方または双方まで被覆していてもよいし、延在部51Yの外側面S1および内側面S2のうちの一方または双方まで被覆していてもよい。 As long as the sealant 60 covers the outer surface S1 of the folded portion 51Z, the sealant 60 may further cover the inner surface S2 of the folded portion 51Z. One or both of them may be covered, or one or both of the outer surface S1 and the inner surface S2 of the extension portion 51Y may be covered.
 ここでは、シーラント60は、図5に示したように、外側シーラント部61および内側シーラント部62を含んでいる。外側シーラント部61は、少なくとも折り返し部51Zの外側面S1を被覆していると共に、内側シーラント部62は、少なくとも折り返し部51Zの内側面S2を被覆している。外側シーラント部61が折り返し部51Zの外側面S1を被覆しているだけでなく、内側シーラント部62が折り返し部51Zの内側面S2を被覆しているのは、正極リード51がシーラント60を介して蓋部12からより絶縁されやすくなるため、短絡の発生がより防止されるからである。 Here, the sealant 60 includes an outer sealant portion 61 and an inner sealant portion 62, as shown in FIG. The outer sealant portion 61 covers at least the outer surface S1 of the folded portion 51Z, and the inner sealant portion 62 covers at least the inner surface S2 of the folded portion 51Z. The reason why the outer sealant portion 61 not only covers the outer surface S1 of the folded portion 51Z but also the inner sealant portion 62 covers the inner surface S2 of the folded portion 51Z is that the positive electrode lead 51 passes through the sealant 60. This is because it becomes easier to insulate from the lid portion 12, so that the occurrence of a short circuit is further prevented.
 外側シーラント部61および内側シーラント部62のそれぞれは、接着層(図示せず)を含む接着テープである。これにより、外側シーラント部61および内側シーラント部62は、正極リード51を介して互いに対向した状態において、それぞれの接着層を介して互いに貼り合わされている。すなわち、正極リード51は、外側シーラント部61および内側シーラント部62により上下から挟まれている。図5では、外側シーラント部61および内側シーラント部62が互いに貼り合わされる前であるため、上記したように、その外側シーラント部61および内側シーラント部62が互いに分離されている状態を示している。 Each of the outer sealant portion 61 and the inner sealant portion 62 is an adhesive tape including an adhesive layer (not shown). As a result, the outer sealant portion 61 and the inner sealant portion 62 are bonded to each other via their adhesive layers while facing each other via the positive electrode lead 51 . That is, the positive electrode lead 51 is sandwiched between the outer sealant portion 61 and the inner sealant portion 62 from above and below. 5 shows a state in which the outer sealant portion 61 and the inner sealant portion 62 are separated from each other, as described above, before the outer sealant portion 61 and the inner sealant portion 62 are attached to each other.
 中でも、シーラント60(外側シーラント部61および内側シーラント部62)は、延在部51Yの表面(外側面S1および内側面S1)まで被覆していることが好ましい。後述するように、二次電池の製造工程においてレーザ溶接法を用いて外部端子20に正極リード51(延在部51Y)を溶接する際に、その延在部51Yのうちのシーラント60により被覆されている部分が外部端子20に溶接されないからである。これにより、延在部51Yのうちのシーラント60により被覆されている部分、言い換えれば延在部51Yのうちの外部端子20に接続されていない部分が正極リード51の長さマージンになるため、上記した正極リード51の長さマージンに由来する利点が得られやすくなる。 Above all, it is preferable that the sealant 60 (the outer sealant portion 61 and the inner sealant portion 62) covers the surface (the outer surface S1 and the inner surface S1) of the extension portion 51Y. As will be described later, when the positive electrode lead 51 (extending portion 51Y) is welded to the external terminal 20 using a laser welding method in the manufacturing process of the secondary battery, the extending portion 51Y is covered with the sealant 60. This is because the portion where the contact is made is not welded to the external terminal 20 . As a result, the portion of the extension portion 51Y that is covered with the sealant 60, in other words, the portion that is not connected to the external terminal 20 of the extension portion 51Y becomes the length margin of the positive electrode lead 51. It becomes easy to obtain the advantage derived from the length margin of the positive electrode lead 51 .
 また、シーラント60(外側シーラント部61および内側シーラント部62)は、延在部51Xの表面(外側面S1および内側面S1)まで被覆していることが好ましい。延在部51Xがシーラント60を介して蓋部12および負極42のそれぞれから絶縁されるため、正極リード51と蓋部12との短絡の発生がより防止されるからである。 In addition, the sealant 60 (the outer sealant portion 61 and the inner sealant portion 62) preferably covers up to the surface (the outer surface S1 and the inner surface S1) of the extension portion 51X. This is because the extended portion 51X is insulated from the lid portion 12 and the negative electrode 42 via the sealant 60, so that the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12 is further prevented.
<1-3.動作>
 図6は、二次電池の動作を説明するために、図2に対応する断面構成を表している。以下では、充放電時の動作に関して説明したのち、異常発生時の動作に関して説明する。
<1-3. Operation>
FIG. 6 shows a cross-sectional configuration corresponding to FIG. 2 in order to explain the operation of the secondary battery. The operation during charging and discharging will be described below, and then the operation when an abnormality occurs will be described.
[充放電時の動作]
 充電時には、電池素子40において、正極41からリチウムが放出されると共に、そのリチウムが電解液を介して負極42に吸蔵される。一方、放電時には、電池素子40において、負極42からリチウムが放出されると共に、そのリチウムが電解液を介して正極41に吸蔵される。これらの充電時および放電時には、リチウムがイオン状態で吸蔵放出される。
[Operation during charging and discharging]
During charging, in the battery element 40, lithium is released from the positive electrode 41 and absorbed into the negative electrode 42 via the electrolyte. On the other hand, during discharge, in the battery element 40, lithium is released from the negative electrode 42 and absorbed into the positive electrode 41 via the electrolyte. Lithium is intercalated and deintercalated in an ionic state during charging and discharging.
[異常発生時の動作]
 外部端子20は、上記したように、蓋部12の外側に配置されていると共に、その蓋部12にガスケット30を介して熱溶着されている。これにより、正常時には、外部端子20がガスケット30を介して蓋部12に固定されているため、貫通口10Kが外部端子20により遮蔽されていると共に、外装缶10が密閉されているため、その外装缶10の内部に電池素子40が封入されている。
[Operation when an error occurs]
As described above, the external terminal 20 is arranged outside the lid portion 12 and is thermally welded to the lid portion 12 via the gasket 30 . Accordingly, in a normal state, the external terminal 20 is fixed to the lid portion 12 via the gasket 30, so that the through hole 10K is shielded by the external terminal 20 and the outer can 10 is sealed. A battery element 40 is sealed inside the outer can 10 .
 これに対して、異常発生時、すなわち外装缶10の内圧が過度に上昇すると、その内圧の上昇に応じて外部端子20が貫通口10Kを経由して外側(上方)に押される。この場合には、ガスケット30を介して外部端子20が蓋部12に固定されている強度(いわゆるシール強度)よりも、その外部端子20を外側に押す力の強度が大きくなると、その外部端子20が蓋部12から部分的または全体的に分離する。これにより、図6に示したように、蓋部12と外部端子20との間に隙間20G(内圧の開放経路)が形成されるため、その隙間20Gを利用して内圧が開放される。なお、図6では、外部端子20が蓋部12から部分的に分離した場合を示している。 On the other hand, when an abnormality occurs, that is, when the internal pressure of the outer can 10 rises excessively, the external terminal 20 is pushed outward (upward) via the through hole 10K according to the rise in internal pressure. In this case, if the strength of the force pushing the external terminal 20 outward becomes greater than the strength (so-called sealing strength) with which the external terminal 20 is fixed to the lid portion 12 via the gasket 30, the external terminal 20 separates partially or wholly from the lid 12 . As a result, as shown in FIG. 6, a gap 20G (an internal pressure release path) is formed between the lid portion 12 and the external terminal 20, and the internal pressure is released using the gap 20G. Note that FIG. 6 shows a case where the external terminal 20 is partially separated from the lid portion 12 .
 上記したように、収納部11は蓋部12に接合されているのに対して、外部端子20はガスケット30を介して蓋部12に熱溶着されているため、上記したシール強度は、その収納部11に対する蓋部12の接合強度よりも小さくなる。この場合には、外装缶10の内圧が過度に上昇すると、蓋部12が収納部11から分離する前に、外部端子20が蓋部12から分離する。これにより、外装缶10が破裂する前に外部端子20が開放弁として機能するため、その外装缶10の破裂が防止される。 As described above, the housing portion 11 is joined to the lid portion 12, whereas the external terminals 20 are thermally welded to the lid portion 12 via the gasket 30. It is smaller than the bonding strength of the lid portion 12 to the portion 11 . In this case, if the internal pressure of the outer can 10 rises excessively, the external terminal 20 separates from the lid portion 12 before the lid portion 12 separates from the storage portion 11 . Since the external terminal 20 functions as a release valve before the outer can 10 bursts, the outer can 10 is prevented from bursting.
<1-4.製造方法>
 図7は、二次電池の製造工程を説明するために、図1に対応する斜視構成を表している。図8は、図7に続く二次電池の製造工程を説明するために、図2に対応する断面構成を表している。
<1-4. Manufacturing method>
FIG. 7 shows a perspective configuration corresponding to FIG. 1 in order to explain the manufacturing process of the secondary battery. FIG. 8 shows a cross-sectional structure corresponding to FIG. 2 in order to explain the manufacturing process of the secondary battery following FIG.
 ただし、図7および図8のそれぞれでは、収納部11に蓋部12が接合される前の状態を示している。これにより、図7では、蓋部12が収納部11から分離されていると共に、図8では、収納部11に対して蓋部12が立てられている。 However, each of FIGS. 7 and 8 shows the state before the lid portion 12 is joined to the storage portion 11 . As a result, the lid portion 12 is separated from the storage portion 11 in FIG. 7, and the lid portion 12 is erected with respect to the storage portion 11 in FIG.
 二次電池を製造する場合には、以下で例示する手順により、正極41および負極42を作製すると共に電解液を調製したのち、その正極41、負極42および電解液を用いて二次電池を組み立てると共に、その組み立て後の二次電池の安定化処理を行う。以下の説明では、図7および図8共に、随時、既に説明した図1~図5を参照する。 In the case of manufacturing a secondary battery, the positive electrode 41 and the negative electrode 42 are prepared and the electrolytic solution is prepared according to the procedure illustrated below, and then the secondary battery is assembled using the positive electrode 41, the negative electrode 42 and the electrolytic solution. At the same time, the secondary battery after assembly is stabilized. In the following description, both FIGS. 7 and 8 will refer to FIGS. 1 to 5 which have already been described.
 ここでは、図7に示したように、外装缶10を形成するために、互いに物理的に分離されている収納部11および蓋部12を用いる。上記したように、収納部11は、開口部11Kを有していると共に、蓋部12は、窪み部12Uを有している。また、上記したように、蓋部12には、あらかじめ外部端子20がガスケット30を介して熱溶着されていると共に、テープ状の絶縁フィルム70が接着されている。 Here, as shown in FIG. 7, a housing portion 11 and a lid portion 12 that are physically separated from each other are used to form the outer can 10 . As described above, the storage portion 11 has the opening portion 11K, and the lid portion 12 has the recess portion 12U. Further, as described above, the external terminals 20 are thermally welded to the lid portion 12 via the gasket 30 in advance, and the tape-like insulating film 70 is adhered thereto.
[正極の作製]
 最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された正極合剤を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。ここで説明した溶媒に関する詳細は、以降においても同様である。続いて、正極集電体41Aの両面に正極合剤スラリーを塗布することにより、正極活物質層41Bを形成する。最後に、ロールプレス機などを用いて正極活物質層41Bを圧縮成型する。この場合には、正極活物質層41Bを加熱してもよいと共に、圧縮成型を複数回繰り返してもよい。これにより、正極集電体41Aの両面に正極活物質層41Bが形成されるため、正極41が作製される。
[Preparation of positive electrode]
First, a paste-like positive electrode mixture slurry is prepared by putting a positive electrode mixture in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent. This solvent may be an aqueous solvent or an organic solvent. The details of the solvent explained here are the same for the following. Subsequently, the cathode active material layer 41B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 41A. Finally, the cathode active material layer 41B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 41B may be heated and the compression molding may be repeated multiple times. As a result, the cathode active material layers 41B are formed on both surfaces of the cathode current collector 41A, so that the cathode 41 is produced.
[負極の作製]
 最初に、負極活物質、負極結着剤および負極導電剤が互いに混合された負極合剤を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体42Aの両面に負極合剤スラリーを塗布することにより、負極活物質層42Bを形成する。最後に、ロールプレス機などを用いて負極活物質層42Bを圧縮成型する。負極活物質層42Bの圧縮成型に関する詳細は、正極活物質層41Bの圧縮成型に関する詳細と同様である。これにより、負極集電体42Aの両面に負極活物質層42Bが形成されるため、負極42が作製される。
[Preparation of negative electrode]
First, a paste-like negative electrode mixture slurry is prepared by putting a negative electrode mixture in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed together into a solvent. Subsequently, the anode active material layer 42B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 42A. Finally, the negative electrode active material layer 42B is compression-molded using a roll press or the like. The details of the compression molding of the negative electrode active material layer 42B are the same as the details of the compression molding of the positive electrode active material layer 41B. As a result, the negative electrode 42 is manufactured because the negative electrode active material layers 42B are formed on both surfaces of the negative electrode current collector 42A.
[電解液の調製]
 溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[Preparation of electrolytic solution]
Add the electrolyte salt to the solvent. This disperses or dissolves the electrolyte salt in the solvent, thus preparing an electrolytic solution.
[二次電池の組み立て]
 最初に、正極リード51を準備したのち、シーラント60を用いて正極リード51の表面を被覆する。この場合には、上記したように、シーラント60を用いて少なくとも折り返し部51Zの外側面S1を被覆し、より具体的には、外側シーラント部61および内側シーラント部62を用いて正極リード51の外側面S1および内側面S2を被覆する。
[Assembly of secondary battery]
First, after preparing the positive electrode lead 51 , the sealant 60 is used to cover the surface of the positive electrode lead 51 . In this case, as described above, the sealant 60 is used to cover at least the outer surface S1 of the folded portion 51Z. It covers the side S1 and the inner side S2.
 続いて、溶接法などを用いて、正極41のうちの正極集電体41Aに正極リード51を接続させると共に、溶接法などを用いて、負極42のうちの負極集電体42Aに負極リード52を接続させる。 Subsequently, the positive electrode lead 51 is connected to the positive electrode current collector 41A of the positive electrode 41 by welding or the like, and the negative electrode lead 52 is connected to the negative electrode current collector 42A of the negative electrode 42 by welding or the like. to connect.
 続いて、セパレータ43を介して正極41および負極42を互いに積層させたのち、その正極41、負極42およびセパレータ43を巻回させることにより、図7に示したように、巻回中心空間40Kを有する巻回体40Zを作製する。この巻回体40Zは、正極41、負極42およびセパレータ43のそれぞれに電解液が含浸されていないことを除いて、電池素子40の構成と同様の構成を有している。なお、図7では、正極リード51および負極リード52のそれぞれの図示を省略している。 Subsequently, after the positive electrode 41 and the negative electrode 42 are laminated with the separator 43 interposed therebetween, the positive electrode 41, the negative electrode 42 and the separator 43 are wound to form a winding center space 40K as shown in FIG. A wound body 40Z having the following is produced. The wound body 40Z has the same structure as the battery element 40 except that the positive electrode 41, the negative electrode 42 and the separator 43 are not impregnated with the electrolytic solution. 7, illustration of each of the positive electrode lead 51 and the negative electrode lead 52 is omitted.
 続いて、開口部11Kから収納部11の内部に巻回体40Zを収納する。この場合には、溶接法などを用いて、収納部11に負極リード52を接続させる。 Subsequently, the wound body 40Z is stored inside the storage section 11 through the opening 11K. In this case, a welding method or the like is used to connect the negative electrode lead 52 to the storage portion 11 .
 続いて、あらかじめ外部端子20がガスケット30を介して熱溶着されていると共に絶縁フィルム70が接着されている蓋部12を準備したのち、溶接法などを用いて貫通口10Kを経由して外部端子20に正極リード51を接続させる。 Subsequently, after preparing the lid portion 12 to which the external terminals 20 are thermally welded via the gasket 30 and to which the insulating film 70 is adhered in advance, the external terminals are welded through the through holes 10K using a welding method or the like. A positive lead 51 is connected to 20 .
 これにより、収納部11の内部に収納されている巻回体40Zのうちの正極41と、蓋部12に取り付けられている外部端子20とが正極リード51を介して互いに接続される。よって、図8に示したように、巻回体40Zと外部端子20とが正極リード51を介して互いに接続されている状態において、保持用の治具(図示せず)を用いて蓋部12が保持されるため、収納部11に対して蓋部12を立てることが可能になる。 As a result, the positive electrode 41 of the wound body 40Z housed inside the housing portion 11 and the external terminal 20 attached to the lid portion 12 are connected to each other via the positive electrode lead 51. Therefore, as shown in FIG. 8, in a state in which the wound body 40Z and the external terminal 20 are connected to each other through the positive electrode lead 51, the lid portion 12 is held by using a holding jig (not shown). is held, the lid portion 12 can be erected with respect to the storage portion 11 .
 この「収納部11に対して蓋部12を立てる」とは、図8から明らかなように、蓋部12が開口部11Kを遮蔽しないようにするために、正極リード51を介して巻回体40Zと外部端子20とが互いに接続された状態において、収納部11の底面(下底部M2)に対してほぼ直交するように蓋部12を配置可能になることを意味している。この場合には、正極リード51の長さを十分に大きくすることにより、収納部11に対して蓋部12を立てても正極リード51が過剰に引っ張られないため、その正極リード51が破損しにくくなる。 As is clear from FIG. 8, this "standing the lid portion 12 against the storage portion 11" means that the lid portion 12 does not block the opening portion 11K. It means that the lid portion 12 can be arranged so as to be substantially perpendicular to the bottom surface (lower bottom portion M2) of the storage portion 11 in a state where 40Z and the external terminal 20 are connected to each other. In this case, by making the length of the positive electrode lead 51 sufficiently large, the positive electrode lead 51 is not excessively pulled even when the cover portion 12 is erected against the storage portion 11, and the positive electrode lead 51 is not damaged. become difficult.
 ここでは、蓋部12が内側(収納部11の内部側)に配置されると共に、正極リード51が外側(収納部11の内部側とは反対側)に配置されるように、収納部11に対して蓋部12を立てる。これにより、レーザ溶接法などを用いて外部端子20に正極リード51を溶接する際に、溶接時に発生した異物などが収納部11の内部に混入しにくくなる。 Here, the housing portion 11 is arranged so that the lid portion 12 is arranged inside (the inside side of the housing portion 11) and the positive electrode lead 51 is arranged outside (the side opposite to the inside side of the housing portion 11). The lid portion 12 is erected against it. As a result, when the positive electrode lead 51 is welded to the external terminal 20 using a laser welding method or the like, foreign matter generated during welding is less likely to enter the housing portion 11 .
 続いて、開口部11Kから収納部11の内部に電解液を注入する。この場合には、上記したように、正極リード51を介して巻回体40Zと外部端子20とが互いに接続されていても、蓋部12が開口部11Kを邪魔しないため、その開口部11Kから収納部11の内部に電解液を注入しやすくなる。これにより、巻回体40Z(正極41、負極42およびセパレータ43)に電解液が含浸されるため、巻回電極体である電池素子40が作製される。 Subsequently, the electrolytic solution is injected into the storage portion 11 through the opening portion 11K. In this case, as described above, even if the wound body 40Z and the external terminal 20 are connected to each other through the positive electrode lead 51, the lid portion 12 does not obstruct the opening portion 11K. This makes it easier to inject the electrolytic solution into the storage portion 11 . As a result, the wound body 40Z (the positive electrode 41, the negative electrode 42, and the separator 43) is impregnated with the electrolytic solution, so that the battery element 40, which is a wound electrode body, is produced.
 この場合には、特に、電解液の一部が巻回中心空間40Kの内部に供給される。これにより、巻回中心空間40Kが電解液の含浸経路として利用されるため、その電解液が巻回体40Zに含浸されやすくなる。 In this case, part of the electrolytic solution is particularly supplied to the inside of the winding center space 40K. As a result, the winding center space 40K is used as an impregnation path for the electrolytic solution, so that the wound body 40Z is easily impregnated with the electrolytic solution.
 続いて、収納部11に接近するように蓋部12を傾斜させることにより、その蓋部12を用いて開口部11Kを遮蔽したのち、溶接法などを用いて、その収納部11に蓋部12を接合させる。この場合には、正極リード51のうちのシーラント60により被覆されている部分が貫通口10Kの内部において折り返されるようにする。これにより、外装缶10が形成されると共に、その外装缶10の内部に電池素子40などが収納されるため、図2に示したように、二次電池が組み立てられる。 Subsequently, by inclining the lid portion 12 so as to approach the storage portion 11, the lid portion 12 is used to shield the opening portion 11K. to join. In this case, the portion of the positive electrode lead 51 covered with the sealant 60 is folded inside the through hole 10K. As a result, the outer can 10 is formed, and the battery element 40 and the like are housed inside the outer can 10, so that the secondary battery is assembled as shown in FIG.
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、電池素子40において正極41および負極42のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。
[Stabilization of secondary battery]
The secondary battery after assembly is charged and discharged. Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set. As a result, films are formed on the respective surfaces of the positive electrode 41 and the negative electrode 42 in the battery element 40, so that the state of the secondary battery is electrochemically stabilized.
 よって、外装缶10の内部に電池素子40などが封入されるため、二次電池が完成する。 Therefore, since the battery element 40 and the like are sealed inside the outer can 10, the secondary battery is completed.
<1-5.作用および効果>
 この二次電池によれば、貫通口10Kを有する外装缶10の内部に電池素子40が収納されており、その外装缶10の外側に配置された外部端子20が貫通口10Kを遮蔽している。また、正極リード51が貫通口10Kを経由して正極41および外部端子20のそれぞれに接続されており、シーラント60が正極リード51の表面を被覆している。さらに、正極リード51が折り返し部51Zを含んでおり、その折り返し部51Zでは貫通口10Kの内部において正極リード51が貫通口10Kの内径方向に折り返されており、シーラント60が少なくとも折り返し部51Zの外側面S1を被覆している。
<1-5. Action and effect>
According to this secondary battery, the battery element 40 is housed inside the outer can 10 having the through hole 10K, and the external terminal 20 arranged outside the outer can 10 shields the through hole 10K. . Also, the positive electrode lead 51 is connected to the positive electrode 41 and the external terminal 20 via the through hole 10K, and the sealant 60 covers the surface of the positive electrode lead 51 . Further, the positive electrode lead 51 includes a folded portion 51Z, in which the positive electrode lead 51 is folded back in the inner diameter direction of the through hole 10K inside the through hole 10K at the folded portion 51Z, and the sealant 60 is at least outside the folded portion 51Z. It covers the side surface S1.
 この場合には、上記したように、正極リード51およびシーラント60のそれぞれの構成に基づいて、以下で説明する一連の作用が得られる。 In this case, as described above, based on the configurations of the positive electrode lead 51 and the sealant 60, a series of actions described below are obtained.
 第1に、正極リード51が折り返し部51Zを含んでいるため、その正極リード51の長さマージンが得られる。これにより、二次電池が外力を受けた際に、その外力が正極リード51の長さマージンを利用して緩和されるため、その正極リード51が破損しにくくなる。 First, since the positive electrode lead 51 includes the folded portion 51Z, a length margin of the positive electrode lead 51 can be obtained. As a result, when the secondary battery receives an external force, the external force is relieved using the length margin of the positive electrode lead 51, so that the positive electrode lead 51 is less likely to be damaged.
 第2に、折り返し部51Zを形成するために正極リード51が貫通口10Kの内部において折り返されているため、その折り返し部51Zが外装缶10の内部空間に配置されない。これにより、素子空間体積が増加するため、体積エネルギー密度が増加する。 Second, since the positive electrode lead 51 is folded inside the through hole 10K to form the folded portion 51Z, the folded portion 51Z is not arranged in the internal space of the outer can 10. As a result, the element space volume increases, so the volumetric energy density increases.
 第3に、シーラント60が少なくとも折り返し部51Zの外側面S1を被覆しているため、貫通口10Kの内部において正極リード51が折り返されていても、その正極リード51がシーラント60を介して外装缶10(蓋部12)から絶縁される。これにより、正極リード51と蓋部12との短絡の発生が防止されるため、二次電池が安定に動作しやすくなる。 Thirdly, since the sealant 60 covers at least the outer surface S1 of the folded portion 51Z, even if the positive electrode lead 51 is folded inside the through-hole 10K, the positive electrode lead 51 is inserted through the sealant 60 into the outer can. 10 (lid portion 12). This prevents the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12, thereby facilitating stable operation of the secondary battery.
 第4に、貫通口10Kの内部において正極リード51が折り返されているため、外装缶10の内圧上昇時において外部端子20が蓋部12から分離する際に、折り返し部51Zが蓋部12に引っ掛からない。これにより、外部端子20が蓋部12から分離しやすくなるため、その外部端子20が開閉弁として安定に機能しやすくなる。 Fourthly, since the positive electrode lead 51 is folded back inside the through hole 10K, when the external terminal 20 is separated from the lid portion 12 when the internal pressure of the outer can 10 rises, the folded portion 51Z does not get caught on the lid portion 12. No. As a result, the external terminal 20 can be easily separated from the lid portion 12, so that the external terminal 20 can stably function as an on-off valve.
 これらのことから、高い体積エネルギー密度が得られると共に、外力に起因する正極リード51の破損が防止されながら、短絡の発生が防止される観点において二次電池が安定に動作しやすくなると共に、開閉弁としての外部端子20の機能が担保される観点においても二次電池が安定に動作しやすくなる。よって、優れた電池容量特性、優れた物理的耐久性および優れた動作信頼性を得ることができる。 As a result, a high volumetric energy density can be obtained, the positive electrode lead 51 can be prevented from being damaged by an external force, and the occurrence of a short circuit can be prevented. From the viewpoint of securing the function of the external terminal 20 as a valve, the secondary battery can easily operate stably. Therefore, excellent battery capacity characteristics, excellent physical durability, and excellent operational reliability can be obtained.
 この場合には、特に、上記したように、正極リード51の長さマージンを利用して、二次電池の製造工程において収納部11に対して蓋部12を立てることが可能になるため、その正極リード51を介して電池素子40(正極41)と外部端子20とが互いに接続された状態においても、開口部11Kから収納部11の内部に電解液が注入されやすくなる。よって、二次電池を組み立てやすくなるため、その二次電池の製造容易性を向上させることもできる。 In this case, as described above, it is possible to use the length margin of the positive electrode lead 51 to stand the lid portion 12 against the storage portion 11 in the manufacturing process of the secondary battery. Even when the battery element 40 (positive electrode 41) and the external terminal 20 are connected to each other through the positive electrode lead 51, the electrolytic solution is easily injected into the storage portion 11 through the opening 11K. Therefore, since the secondary battery can be easily assembled, the ease of manufacturing the secondary battery can be improved.
 この他、シーラント60が折り返し部51Zの内側面S2も被覆していれば、正極リード51と蓋部12との短絡の発生がより防止されるため、より高い効果を得ることができる。 In addition, if the sealant 60 also covers the inner surface S2 of the folded portion 51Z, short-circuiting between the positive electrode lead 51 and the lid portion 12 can be further prevented, and a higher effect can be obtained.
 また、シーラント60が延在部51Yの表面まで被覆していれば、その延在部51Yのうちのシーラント60により被覆されている部分まで正極リード51の長さマージンになる。よって、正極リード51の長さマージンが十分に大きくなるため、より高い効果を得ることができる。 Also, if the sealant 60 covers the surface of the extending portion 51Y, the portion of the extending portion 51Y that is covered with the sealant 60 provides a length margin for the positive electrode lead 51. Therefore, since the length margin of the positive electrode lead 51 is sufficiently large, a higher effect can be obtained.
 また、シーラント60が延在部51Xの表面まで被覆していていれば、その延在部51Xがシーラント60を介して蓋部12および負極42のそれぞれから絶縁される。よって、正極リード51と蓋部12との短絡の発生がより抑制されるため、より高い効果を得ることができる。 Also, if the sealant 60 covers the surface of the extension 51X, the extension 51X is insulated from the lid 12 and the negative electrode 42 via the sealant 60. Therefore, the occurrence of a short circuit between the positive electrode lead 51 and the lid portion 12 is further suppressed, and a higher effect can be obtained.
 また、外装缶10が収納部11および蓋部12を含んでおり、その収納部11と蓋部12とが互いに接合されていれば、いわゆるクリンプレスの接合缶である外装缶10を用いて二次電池が構成されるため、体積エネルギー密度がより増加する。よって、電池容量特性がより向上するため、より高い効果を得ることができる。 In addition, if the outer can 10 includes the storage portion 11 and the lid portion 12, and the storage portion 11 and the lid portion 12 are joined to each other, the outer can 10, which is a so-called crimpless joining can, can be used for the two-piece construction. Since the secondary battery is constructed, the volumetric energy density is further increased. Therefore, since the battery capacity characteristic is further improved, a higher effect can be obtained.
 この場合には、蓋部12が窪み部12Uを有しており、その窪み部12Uの内部に外部端子20が配置されていれば、二次電池の高さHが小さくなるため、体積エネルギー密度がさらに増加する。よって、電池容量特性がさらに向上するため、さらに高い効果を得ることができる。 In this case, if the lid portion 12 has the recessed portion 12U and the external terminals 20 are arranged inside the recessed portion 12U, the height H of the secondary battery is reduced, and the volumetric energy density is reduced. further increases. Therefore, since the battery capacity characteristics are further improved, a higher effect can be obtained.
 また、外装缶10が負極42に電気的に接続されていれば、その外装缶10が負極42の外部接続用端子として機能する。これにより、二次電池が外装缶10とは別個に負極42の外部接続用端子を備えていなくてもよいため、体積エネルギー密度がより増加する。よって、電池容量特性がより向上するため、より高い効果を得ることができる。 Also, if the outer can 10 is electrically connected to the negative electrode 42 , the outer can 10 functions as an external connection terminal for the negative electrode 42 . As a result, the secondary battery does not need to be provided with an external connection terminal for the negative electrode 42 separately from the outer can 10, so that the volumetric energy density is further increased. Therefore, since the battery capacity characteristic is further improved, a higher effect can be obtained.
 また、外装缶10が扁平かつ柱状の立体的形状を有していれば、その外装缶10の内圧が上昇しやすい小型の二次電池においても優れた物理的耐久性および優れた動作信頼性が得られるため、より高い効果を得ることができる。 In addition, if the outer can 10 has a flat and columnar three-dimensional shape, excellent physical durability and excellent operational reliability can be achieved even in a small secondary battery in which the internal pressure of the outer can 10 tends to increase. Therefore, a higher effect can be obtained.
 また、外装缶10が金属缶であれば、その外装缶10が変形しにくくなる。よって、外装缶10の変形の観点においても物理的耐久性が向上するため、より高い効果を得ることができる。 Also, if the outer can 10 is a metal can, the outer can 10 is less likely to deform. Therefore, physical durability is improved in terms of deformation of the outer can 10, and a higher effect can be obtained.
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。 Also, if the secondary battery is a lithium-ion secondary battery, a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
<2.変形例>
 上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
<2. Variation>
The configuration of the secondary battery described above can be changed as appropriate, as described below. However, any two or more of the series of modifications described below may be combined with each other.
[変形例1]
 図2、図4および図5では、シーラント60(外側シーラント部61および内側シーラント部62)が延在部51X,51Yおよび折り返し部51Zのそれぞれの表面(外側面S1および内側面S2)を被覆している。しかしながら、上記したように、シーラント60が少なくとも折り返し部51Zの外側面S1を被覆していれば、そのシーラント60の被覆範囲は特に限定されない。
[Modification 1]
2, 4 and 5, sealant 60 (outer sealant portion 61 and inner sealant portion 62) covers respective surfaces (outer surface S1 and inner surface S2) of extension portions 51X and 51Y and folded portion 51Z. ing. However, as described above, as long as the sealant 60 covers at least the outer surface S1 of the folded portion 51Z, the coverage range of the sealant 60 is not particularly limited.
 具体的には、図2に対応する図9に示したように、シーラント60(外側シーラント部61および内側シーラント部62)が折り返し部51Zの表面(外側面S1および内側面S2)だけを被覆していてもよい。 Specifically, as shown in FIG. 9 corresponding to FIG. 2, the sealant 60 (outer sealant portion 61 and inner sealant portion 62) covers only the surface (outer surface S1 and inner surface S2) of the folded portion 51Z. may be
 また、図2に対応する図10に示したように、シーラント60(外側シーラント部61)が折り返し部51Zの外側面S1だけを被覆していてもよい。 Also, as shown in FIG. 10 corresponding to FIG. 2, the sealant 60 (outer sealant portion 61) may cover only the outer surface S1 of the folded portion 51Z.
 これらの場合においても、シーラント60を利用して、高い体積エネルギー密度が得られると共に外力に起因する正極リード51の破損が防止されながら、短絡の発生防止の観点および開閉弁としての外部端子20の機能担保の観点において二次電池が安定に動作しやすくなるため、図2に示した場合と同様の効果を得ることができる。 Even in these cases, the sealant 60 is used to obtain a high volumetric energy density and to prevent damage to the positive electrode lead 51 due to external force. Since the secondary battery can operate stably more easily from the viewpoint of ensuring the function, the same effect as the case shown in FIG. 2 can be obtained.
[変形例2]
 図2では、貫通口10Kの内部において正極リード51が1回だけ折り返されているため、その正極リード51が1個の折り返し部51Zだけを含んでいる。これにより、シーラント60は、1個の折り返し部51Zの表面だけを被覆している。
[Modification 2]
In FIG. 2, since the positive electrode lead 51 is folded only once inside the through hole 10K, the positive electrode lead 51 includes only one folded portion 51Z. Thereby, the sealant 60 covers only the surface of one folded portion 51Z.
 しかしながら、ここでは具体的に図示しないが、貫通口10Kの内部において正極リード51が2回以上折り返されているため、その正極リード51が2個以上の折り返し部51Zを含んでいてもよい。これにより、シーラント60は、2個以上の折り返し部51Zのそれぞれの表面を被覆していてもよい。なお、2個以上の折り返し部51Zは、互いに重なっていてもよいし、互いに重なっていなくてもよい。もちろん、2個以上の折り返し部51Zの一部のみが互いに重なっていてもよい。 However, although not specifically illustrated here, since the positive electrode lead 51 is folded two or more times inside the through hole 10K, the positive electrode lead 51 may include two or more folded portions 51Z. Thereby, the sealant 60 may cover the surface of each of the two or more folded portions 51Z. Note that the two or more folded portions 51Z may or may not overlap each other. Of course, only a part of two or more folded portions 51Z may overlap each other.
 この場合においても、2個以上の折り返し部51Zと、その2個以上の折り返し部51Zのそれぞれの表面を被覆するシーラント60とを利用して、図2に示した場合と同様の効果を得ることができる。 In this case as well, two or more folded portions 51Z and a sealant 60 covering the surface of each of the two or more folded portions 51Z are used to obtain the same effect as in the case shown in FIG. can be done.
 この場合には、特に、折り返し部51Zの数が増加すると正極リード51の長さマージンが増加するため、より高い効果を得ることができる。 In this case, in particular, when the number of folded portions 51Z increases, the length margin of the positive electrode lead 51 increases, so a higher effect can be obtained.
[変形例3]
 図2、図4および図5では、正極リード51の外側面S1および内側面S2の双方を被覆するために、シーラント60が外側シーラント部61および内側シーラント部62を含んでおり、その外側シーラント部61および内側シーラント部62が正極リード51を介して互いに貼り合わされている。
[Modification 3]
2, 4 and 5, the sealant 60 includes an outer sealant portion 61 and an inner sealant portion 62 to cover both the outer surface S1 and the inner surface S2 of the positive lead 51, the outer sealant portion 61 and inner sealant portion 62 are attached to each other via positive electrode lead 51 .
 しかしながら、シーラント60が正極リード51の外側面S1および内側面S2の双方を被覆可能であれば、そのシーラント60の構成は特に限定されない。ここでは具体的に図示しないが、シーラント60は、チューブ状の構造を有していてもよい。すなわち、シーラント60は、チューブ状の構造を有する単一の部材でもよい。 However, if the sealant 60 can cover both the outer surface S1 and the inner surface S2 of the positive electrode lead 51, the configuration of the sealant 60 is not particularly limited. Although not specifically illustrated here, the sealant 60 may have a tubular structure. That is, sealant 60 may be a single piece having a tubular structure.
 この場合においても、正極リード51がシーラント60を介して外装缶10(蓋部12)から絶縁されるため、図2に示した場合と同様の効果を得ることができる。 Also in this case, since the positive electrode lead 51 is insulated from the outer can 10 (cover portion 12) via the sealant 60, the same effect as in the case shown in FIG. 2 can be obtained.
[変形例4]
 図2では、蓋部12が窪み部12Uを有しており、その窪み部12Uの内部に外部端子20が配置されている。
[Modification 4]
In FIG. 2, the lid portion 12 has a recessed portion 12U, and the external terminal 20 is arranged inside the recessed portion 12U.
 しかしながら、図2に対応する図11に示したように、蓋部12が窪み部12Uを有しておらずに略平坦であり、その蓋部12の上に外部端子20が配置されていてもよい。この場合においても、図2に示した場合と同様の効果を得ることができる。ただし、二次電池の高さHが増加すると、体積エネルギー密度が減少する可能性があることに留意すべきである。 However, as shown in FIG. 11 corresponding to FIG. 2, even if the lid portion 12 is substantially flat without the recessed portion 12U and the external terminals 20 are arranged on the lid portion 12, good. Also in this case, the same effect as in the case shown in FIG. 2 can be obtained. However, it should be noted that increasing the height H of the secondary battery may decrease the volumetric energy density.
[変形例5]
 図2では、第1電極である正極41が正極リード51を介して外部端子20に接続されていると共に、第2電極である負極42が負極リード52を介して収納部11に接続されている。これにより、外部端子20が正極41の外部接続用端子として機能すると共に、外装缶10が負極42の外部接続用端子として機能する。
[Modification 5]
In FIG. 2 , the positive electrode 41 as the first electrode is connected to the external terminal 20 via the positive lead 51 , and the negative electrode 42 as the second electrode is connected to the housing portion 11 via the negative lead 52 . . As a result, the external terminal 20 functions as an external connection terminal for the positive electrode 41 , and the outer can 10 functions as an external connection terminal for the negative electrode 42 .
 しかしながら、図2に対応する図12に示したように、第2電極である正極41が正極リード51を介して収納部11に接続されていると共に、第1電極である負極42が負極リード52を介して外部端子20に接続されていてもよい。これにより、外装缶10が正極41の外部接続用端子として機能すると共に、外部端子20が負極42の外部接続用端子として機能してもよい。 However, as shown in FIG. 12 corresponding to FIG. 2, the positive electrode 41 which is the second electrode is connected to the housing portion 11 via the positive electrode lead 51, and the negative electrode 42 which is the first electrode is connected to the negative electrode lead 52. may be connected to the external terminal 20 via the . As a result, the outer can 10 may function as an external connection terminal for the positive electrode 41 , and the external terminal 20 may function as an external connection terminal for the negative electrode 42 .
 この場合において、外部端子20は、負極42の外部接続用端子として機能するために、金属材料および合金材料の導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その金属材料および合金材料の具体例は、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などである。外装缶10、すなわち収納部11および蓋部12のそれぞれは、正極41の外部接続用端子として機能するために、金属材料および合金材料の導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その金属材料および合金材料の具体例は、アルミニウム、アルミニウム合金およびステンレスなどである。 In this case, the external terminal 20 contains one or more of conductive materials such as a metal material and an alloy material in order to function as a terminal for external connection of the negative electrode 42, and the metal material and alloy materials include iron, copper, nickel, stainless steel, iron alloys, copper alloys and nickel alloys. Each of the outer can 10, that is, the storage portion 11 and the lid portion 12, is made of one or more of conductive materials such as a metal material and an alloy material in order to function as an external connection terminal for the positive electrode 41. Specific examples of metal materials and alloy materials include aluminum, aluminum alloys and stainless steel.
 ここでは具体的に図示しないが、外部端子20に接続されている配線部材である負極リード52は、図4に示した正極リード51の構成と同様の構成を有しているため、2つの延在部および折り返し部を含んでいる。これにより、シーラント60は、負極リード52の表面を被覆しており、より具体的には、少なくとも折り返し部の表面を被覆している。 Although not specifically illustrated here, the negative lead 52, which is a wiring member connected to the external terminal 20, has the same configuration as the positive lead 51 shown in FIG. Includes a stay section and a folded section. Thereby, the sealant 60 covers the surface of the negative electrode lead 52, and more specifically covers at least the surface of the folded portion.
 この場合においても、二次電池が外部端子20(負極42の外部接続用端子)および外装缶10(正極41の外部接続用端子)を介して電子機器に接続可能であるため、図2に示した場合と同様の効果を得ることができる。 Even in this case, the secondary battery can be connected to the electronic device via the external terminal 20 (terminal for external connection of the negative electrode 42) and the outer can 10 (terminal for external connection of the positive electrode 41). It is possible to obtain the same effect as in the case of
[変形例6]
 多孔質膜であるセパレータ43を用いた。しかしながら、ここでは具体的に図示しないが、セパレータ43の代わりに、高分子化合物層を含む積層型のセパレータを用いてもよい。
[Modification 6]
A separator 43, which is a porous membrane, was used. However, although not specifically illustrated here, instead of the separator 43, a laminated separator including a polymer compound layer may be used.
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極41および負極42のそれぞれに対するセパレータの密着性が向上するため、電池素子40の巻きずれが抑制されるからである。これにより、電解液の分解反応が発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。 Specifically, a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 41 and the negative electrode 42 is improved, so that the winding misalignment of the battery element 40 is suppressed. As a result, even if a decomposition reaction of the electrolytic solution occurs, the secondary battery is less likely to swell. The polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱を促進させるため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機粒子および樹脂粒子のうちの一方または双方などである。無機粒子の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどの粒子である。樹脂粒子の具体例は、アクリル樹脂およびスチレン樹脂などの粒子である。 One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the safety (heat resistance) of the secondary battery is improved because the plurality of insulating particles promote heat dissipation when the secondary battery generates heat. The insulating particles include one or both of inorganic particles and resin particles. Specific examples of inorganic particles are particles such as aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin particles are particles of acrylic resins, styrene resins, and the like.
 積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、多孔質膜に前駆溶液を塗布する代わりに、その前駆溶液中に多孔質膜を浸漬させてもよい。また、前駆溶液中に複数の絶縁性粒子を添加してもよい。 When manufacturing a laminated separator, after preparing a precursor solution containing a polymer compound, a solvent, etc., the precursor solution is applied to one or both sides of the porous membrane. In this case, instead of applying the precursor solution to the porous membrane, the porous membrane may be immersed in the precursor solution. Also, a plurality of insulating particles may be added to the precursor solution.
 この積層型のセパレータを用いた場合においても、正極41と負極42との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、二次電池の安全性が向上するため、より高い効果を得ることができる。 Even when this laminated separator is used, lithium ions can move between the positive electrode 41 and the negative electrode 42, so the same effect can be obtained. In this case, particularly, as described above, the safety of the secondary battery is improved, so that a higher effect can be obtained.
[変形例7]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
[Modification 7]
An electrolytic solution, which is a liquid electrolyte, was used. However, although not specifically illustrated here, an electrolyte layer that is a gel electrolyte may be used instead of the electrolyte solution.
 電解質層を用いた電池素子40では、セパレータ43および電解質層を介して正極41および負極42が互いに積層されていると共に、その正極41、負極42、セパレータ43および電解質層が巻回されている。この電解質層は、正極41とセパレータ43との間に介在していると共に、負極42とセパレータ43との間に介在している。ただし、電解質層は、正極41とセパレータ43との間だけに介在していてもよいし、負極42とセパレータ43との間だけに介在していてもよい。 In the battery element 40 using the electrolyte layer, the positive electrode 41 and the negative electrode 42 are laminated with the separator 43 and the electrolyte layer interposed therebetween, and the positive electrode 41, the negative electrode 42, the separator 43 and the electrolyte layer are wound. This electrolyte layer is interposed between the positive electrode 41 and the separator 43 and interposed between the negative electrode 42 and the separator 43 . However, the electrolyte layer may be interposed only between the positive electrode 41 and the separator 43 , or may be interposed only between the negative electrode 42 and the separator 43 .
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および溶媒などを含む前駆溶液を調製したのち、正極41および負極42のそれぞれの片面または両面に前駆溶液を塗布する。 Specifically, the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented. The composition of the electrolytic solution is as described above. Polymer compounds include polyvinylidene fluoride and the like. When forming the electrolyte layer, after preparing a precursor solution containing an electrolytic solution, a polymer compound, a solvent, and the like, the precursor solution is applied to one side or both sides of each of the positive electrode 41 and the negative electrode 42 .
 この電解質層を用いた場合においても、正極41と負極42との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。 Even when this electrolyte layer is used, lithium ions can move between the positive electrode 41 and the negative electrode 42 through the electrolyte layer, so that similar effects can be obtained. In this case, especially, as described above, leakage of the electrolytic solution is prevented, so that a higher effect can be obtained.
 以上、一実施形態を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態において説明された構成に限定されないため、種々に変形可能である。 Although the present technology has been described above while citing one embodiment, the configuration of the present technology is not limited to the configuration described in the one embodiment, and can be variously modified.
 具体的には、電池素子の素子構造が巻回型である場合に関して説明したが、その素子構造は、特に限定されないため、積層型および九十九折り型などでもよい。積層型では、正極および負極がセパレータを介して交互に積層されていると共に、九十九折り型では、正極および負極がセパレータを介してジグザグに折り畳まれている。 Specifically, the case where the element structure of the battery element is a wound type has been described, but the element structure is not particularly limited, and may be a laminated type or a folded type. In the laminate type, positive electrodes and negative electrodes are alternately laminated with separators interposed therebetween, and in the multifold type, positive electrodes and negative electrodes are folded in zigzags with separators interposed therebetween.
 また、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。このため、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。 Also, the case where the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited. Thus, the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above. Alternatively, the electrode reactant may be other light metals such as aluminum.
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。 Since the effects described in this specification are merely examples, the effects of the present technology are not limited to the effects described in this specification. Accordingly, other advantages may be obtained with respect to the present technology.

Claims (9)

  1.  貫通口を有する導電性の外装部材と、
     前記外装部材の内部に収納されると共に第1電極および第2電極を含む電池素子と、
     前記外装部材の外側に配置されると共に前記貫通口を遮蔽する電極端子と、
     前記外装部材と前記電極端子との間に配置された絶縁性の封止部材と、
     前記貫通口を経由して前記第1電極および前記電極端子のそれぞれに接続された配線部材と、
     前記配線部材の表面を被覆する絶縁性の被覆部材と
     を備え、
     前記配線部材は、前記貫通口の内部において前記配線部材が前記貫通口の内径方向に折り返された折り返し部を含み、
     前記被覆部材は、少なくとも前記折り返し部の外側面を被覆している、
     二次電池。
    a conductive exterior member having a through hole;
    a battery element housed inside the exterior member and including a first electrode and a second electrode;
    an electrode terminal arranged outside the exterior member and shielding the through hole;
    an insulating sealing member disposed between the exterior member and the electrode terminal;
    a wiring member connected to each of the first electrode and the electrode terminal via the through hole;
    and an insulating coating member that coats the surface of the wiring member,
    The wiring member includes a folded portion in which the wiring member is folded back in an inner diameter direction of the through hole inside the through hole,
    The covering member covers at least the outer surface of the folded portion,
    secondary battery.
  2.  前記被覆部材は、さらに、前記折り返し部の内側面を被覆している、
     請求項1記載の二次電池。
    The covering member further covers the inner surface of the folded portion,
    The secondary battery according to claim 1.
  3.  前記配線部材は、さらに、
     前記折り返し部に向かう方向に延在すると共に、前記第1電極および前記折り返し部のそれぞれに接続された第1延在部と、
     前記第1延在部が延在する方向とは反対側の方向に延在すると共に、前記電極端子および前記折り返し部のそれぞれに接続された第2延在部と
     を含み、
     前記被覆部材は、前記第1延在部および前記第2延在部のうちの少なくとも一方の表面まで被覆している、
     請求項1または請求項2に記載の二次電池。
    The wiring member further includes:
    a first extending portion extending in a direction toward the folded portion and connected to each of the first electrode and the folded portion;
    a second extending portion extending in a direction opposite to the direction in which the first extending portion extends and connected to each of the electrode terminal and the folded portion;
    The covering member covers up to the surface of at least one of the first extending portion and the second extending portion,
    The secondary battery according to claim 1 or 2.
  4.  前記外装部材は、
     開口部を有すると共に前記電池素子を内部に収納する収納部と、
     前記貫通口を有すると共に前記開口部を閉塞する蓋部と
     を含み、
     前記蓋部および前記収納部は、互いに接合されている、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
    The exterior member is
    a storage section having an opening and housing the battery element therein;
    a lid that has the through hole and closes the opening,
    The lid portion and the storage portion are joined to each other,
    The secondary battery according to any one of claims 1 to 3.
  5.  前記蓋部は、前記貫通口が設けられた窪み部を有し、
     前記窪み部では、前記蓋部が前記収納部の内部に向かって部分的に窪むように屈曲しており、
     前記電極端子は、前記窪み部の内部に配置されている、
     請求項4記載の二次電池。
    The lid portion has a recess portion provided with the through hole,
    In the recessed portion, the lid portion is bent so as to be partially recessed toward the interior of the storage portion,
    The electrode terminal is arranged inside the recess,
    The secondary battery according to claim 4.
  6.  前記外装部材は、前記第2電極に電気的に接続されている、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
    The exterior member is electrically connected to the second electrode,
    The secondary battery according to any one of claims 1 to 5.
  7.  前記外装部材は、扁平かつ柱状の立体的形状を有する、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
    The exterior member has a flat and columnar three-dimensional shape,
    The secondary battery according to any one of claims 1 to 6.
  8.  前記外装部材は、金属缶である、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
    The exterior member is a metal can,
    The secondary battery according to any one of claims 1 to 7.
  9.  リチウムイオン二次電池である、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
    A lithium ion secondary battery,
    The secondary battery according to any one of claims 1 to 8.
PCT/JP2022/007293 2021-06-14 2022-02-22 Secondary battery WO2022264526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098982 2021-06-14
JP2021-098982 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264526A1 true WO2022264526A1 (en) 2022-12-22

Family

ID=84526119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007293 WO2022264526A1 (en) 2021-06-14 2022-02-22 Secondary battery

Country Status (1)

Country Link
WO (1) WO2022264526A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302751A (en) * 1997-04-30 1998-11-13 Fuji Film Selltec Kk Battery electrode and battery using the same
JP2006100097A (en) * 2004-09-29 2006-04-13 Hitachi Maxell Ltd Sealed square battery
JP2008181683A (en) * 2007-01-23 2008-08-07 Sony Corp Battery
JP2008262825A (en) * 2007-04-12 2008-10-30 Hitachi Maxell Ltd Coin-shaped nonaqueous electrolytic solution secondary battery
CN111613739A (en) * 2020-06-03 2020-09-01 珠海冠宇电池股份有限公司 Button cell, manufacturing method thereof and electronic equipment
WO2021229846A1 (en) * 2020-05-14 2021-11-18 株式会社村田製作所 Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302751A (en) * 1997-04-30 1998-11-13 Fuji Film Selltec Kk Battery electrode and battery using the same
JP2006100097A (en) * 2004-09-29 2006-04-13 Hitachi Maxell Ltd Sealed square battery
JP2008181683A (en) * 2007-01-23 2008-08-07 Sony Corp Battery
JP2008262825A (en) * 2007-04-12 2008-10-30 Hitachi Maxell Ltd Coin-shaped nonaqueous electrolytic solution secondary battery
WO2021229846A1 (en) * 2020-05-14 2021-11-18 株式会社村田製作所 Secondary battery
CN111613739A (en) * 2020-06-03 2020-09-01 珠海冠宇电池股份有限公司 Button cell, manufacturing method thereof and electronic equipment

Similar Documents

Publication Publication Date Title
JP5505218B2 (en) Sealed storage battery
CN102646844B (en) Rechargeable battery
JP2011049064A (en) Battery
JP3891047B2 (en) battery
JP5173095B2 (en) Sealed battery
JPWO2012147782A1 (en) Sealed battery and method for manufacturing the same
JP6097030B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2004006226A (en) Battery
JP3464750B2 (en) Lithium secondary battery
JP3583592B2 (en) Thin rechargeable battery
JP2004039651A (en) Battery
WO2023022101A1 (en) Secondary battery
JP5720946B2 (en) Electricity storage element
JPH11144691A (en) Thin battery and manufacture thereof
WO2022264526A1 (en) Secondary battery
JP2000294286A (en) Polymer lithium secondary battery
KR20160138727A (en) Secondary Battery
JPH11204088A (en) Sheet battery
WO2023063222A1 (en) Secondary battery
JPH11162436A (en) Thin secondary battery
JP2002222666A (en) Lithium secondary cell
WO2023026959A1 (en) Secondary battery
WO2023063223A1 (en) Secondary battery
JPH11162421A (en) Sheet type battery
WO2022264822A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE