JPH0393164A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0393164A
JPH0393164A JP1228432A JP22843289A JPH0393164A JP H0393164 A JPH0393164 A JP H0393164A JP 1228432 A JP1228432 A JP 1228432A JP 22843289 A JP22843289 A JP 22843289A JP H0393164 A JPH0393164 A JP H0393164A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
current collector
electrolyte secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228432A
Other languages
Japanese (ja)
Other versions
JP2932516B2 (en
Inventor
Kiyoshi Katayama
片山 喜代志
Toshimitsu Masuko
益子 俊光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1228432A priority Critical patent/JP2932516B2/en
Publication of JPH0393164A publication Critical patent/JPH0393164A/en
Application granted granted Critical
Publication of JP2932516B2 publication Critical patent/JP2932516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent internal short-circuit by coating a collector with an electrode black mixture leaving both ends in the width direction in a cylinder type drain electrolyte secondary battery having an electrode structure, wherein a band electrode having a positive electrode and a negative electrode is spirally wound through a separator. CONSTITUTION:A nonaqueous electrolyte secondary battery has an electrode structure wherein a band electrode having a positive electrode 1 and a negative electrode 2 is spirally wound through a separator 3. The band electrode is composed of a band collector 10 and of a layer of an electrode black mixture 20 coating the collector 10 leaving both end parts in the width direction. That is, when the negative electrode 2 and the positive electrode 1 are manufactured, a black mixture slurry is applied to both sides of the collector 10 leaving both end parts of the collector 10 for manufacturing the battery. Internal short-circuit of the battery can be therefore prevented so that the secondary battery having big energy density and an excellent rapid charge and discharge cycle characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、正極及び負極の帯状電極をセパレータを介し
て渦巻状に巻いた電極構造を有する円筒型非水電解液二
次電池の構造に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the structure of a cylindrical nonaqueous electrolyte secondary battery having an electrode structure in which positive and negative strip electrodes are spirally wound with a separator in between. It is something.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラやヘッドフォンステレオ等の電子機
器の高性能化、小型化には目ざましいものがあり、これ
らの電子機器の電源となる二次電池の重負荷特性の改善
や高容量化への要求も強まってきている.二次電池とし
ては、鉛二次電池やニッケルーカドごウム電池が従来か
ら用いられている.更には金属リチウムやリチウム合金
あるいはリチウムイオンをドープ、脱ドープできる物質
を負極活物質材料として用いた非水電解液二次電池は、
高エネルギー密度が得られるとしてその開発が活発に行
われている.この中でも特に、正極及び負極の帯状電極
をセパレータを介して渦巻状に巻いて電極面積を大きく
した円筒型渦巻式非水電解液二次電池(以下、渦巻式非
水電解液二次電池と記す)は急速充放電ができるとして
最近着目さねている.しかしながら、この電池は、帯状
電極の幅方向の両端部の電極材料がセパレータを突き破
ってしまうことに起因する内部短絡を起こし易いという
問題点がある。この種の電極は、多くの場合活物質ある
いは電極合剤を溶剤に分散させたスラリーを、帯状の集
電体の全面に塗布して乾燥し、その後にローラープレス
機により圧縮或形して、これを所定の幅にカットして作
製されるが、この方法で得られた電極は、そのカットさ
れた両端部が切り立っており、これがセパレータを突き
破り内部短絡を引き起こし易い。
In recent years, there has been a remarkable increase in performance and miniaturization of electronic devices such as video cameras and headphone stereos, and there is also a demand for improved heavy load characteristics and higher capacity of the secondary batteries that power these electronic devices. It's getting stronger. As secondary batteries, lead secondary batteries and nickel-cadmium batteries have traditionally been used. Furthermore, non-aqueous electrolyte secondary batteries that use metallic lithium, lithium alloys, or substances that can be doped and dedoped with lithium ions as negative electrode active materials,
It is actively being developed because it can provide high energy density. Among these, in particular, a cylindrical spiral type non-aqueous electrolyte secondary battery (hereinafter referred to as a spiral type non-aqueous electrolyte secondary battery) in which the electrode area of the positive and negative electrodes is spirally wound through a separator to increase the electrode area. ) has recently attracted attention as it is capable of rapid charging and discharging. However, this battery has a problem in that it is susceptible to internal short circuits due to the electrode material at both widthwise ends of the strip electrode breaking through the separator. This type of electrode is often made by applying a slurry in which the active material or electrode mixture is dispersed in a solvent to the entire surface of a band-shaped current collector, drying it, and then compressing or shaping it using a roller press. This is produced by cutting it to a predetermined width, but the electrode obtained by this method has sharp edges at both cut ends, which tend to break through the separator and cause an internal short circuit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は、帯状の集電体に活物質あるいは電極合
剤を被覆してなる電極の幅方向の両端部の構造を改良し
、上述した問題の生じない渦巻式非水電解液二次電池を
提供することである。
An object of the present invention is to improve the structure of both ends in the width direction of an electrode consisting of a band-shaped current collector coated with an active material or an electrode mixture, and to improve the structure of a spiral non-aqueous electrolyte secondary that does not cause the above-mentioned problems. The purpose is to provide batteries.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の非水電解液二次電池は、正極及び負極の帯状電
極をセパレータを介して渦巻状に巻いた電極構造を有す
る渦巻式非水電解液二次電池であって、前記帯状電極の
うち、少なくとも一方の電極は帯状集電体と、該集電体
を幅方向の両端部を残して被覆する活物質あるいは電極
合剤の層からなることを特徴とする。ここで、集電体の
幅方向の両端部において、活物質あるいは電極合剤の層
によって被覆されていない部分の幅は、集電体幅の0.
05倍以下であることが好ましい。
The non-aqueous electrolyte secondary battery of the present invention is a spiral type non-aqueous electrolyte secondary battery having an electrode structure in which a positive electrode and a negative electrode are spirally wound with a separator in between. , at least one of the electrodes is characterized by comprising a band-shaped current collector and a layer of active material or electrode mixture covering the current collector except for both ends in the width direction. Here, at both ends of the current collector in the width direction, the width of the portion that is not covered with the active material or electrode mixture layer is 0.0% of the current collector width.
It is preferable that it is 0.05 times or less.

本発明は、帯状の集電体に活物質あるいは電極合剤の層
を被覆してなる電極を用いた電池に適用できる。例えば
、有機高分子焼成体やピッチコークスを粉砕し、これを
集電体に被覆した負極やリチウムマンガン酸化物やリチ
ウムコバルト酸化物を集電体に被覆した正極等である。
The present invention can be applied to a battery using an electrode formed by coating a band-shaped current collector with a layer of an active material or an electrode mixture. Examples include a negative electrode in which a current collector is coated with a pulverized organic polymer fired body or pitch coke, and a positive electrode in which a current collector is coated with lithium manganese oxide or lithium cobalt oxide.

また、本発明に係わる電解液としては、例えばリチウム
塩を電解質とし、これを有機溶剤(非水溶媒)に溶解し
た非水電解液が使用される。ここで有機溶剤としては、
特に限定されるものではないが、例えば、プロピレンカ
ーボネート、エチレンカーボネート、1.2−ジメトキ
シエタン、1.2−ジエトキシエタン、γ−プチロラク
トン、テトラヒドロフラン、1.3−ジオキソラン、4
−メチル−1.3一ジオキソラン、ジエチルエーテル、
スルホラン、メチルスルホラン、アセトニトリル、プロ
ビオニトリル等の単独もしくは2種以上の混合溶剤が使
用できる。電解液も従来より公知のものがいずれも使用
可能であり、例えば、LiCIOn、LiAsFb、L
iPFb.. LiBF4、LiB(CJs)4、LI
Cl% LiBr,CHzSOiLi, CF+SO:
+Li等がある。
Further, as the electrolytic solution according to the present invention, for example, a non-aqueous electrolytic solution in which a lithium salt is used as an electrolyte and is dissolved in an organic solvent (non-aqueous solvent) is used. Here, the organic solvent is
Examples include, but are not limited to, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4
-Methyl-1.3-dioxolane, diethyl ether,
A single solvent or a mixture of two or more solvents such as sulfolane, methylsulfolane, acetonitrile, and probionitrile can be used. Any conventionally known electrolyte can be used, for example, LiCIOn, LiAsFb, L
iPFb. .. LiBF4, LiB(CJs)4, LI
Cl% LiBr, CHzSOiLi, CF+SO:
+Li etc.

〔作用〕[Effect]

集電体の幅方向の両端部を残して活物質あるいは電極合
剤を被覆することによって内部短絡を防止できる。
By covering both widthwise ends of the current collector with the active material or electrode mixture, internal short circuits can be prevented.

〔実施例] 第3図は、本発明に係わる渦巻弐非水電解液二次電池の
構造を模式的に示す断面図である。
[Example] FIG. 3 is a cross-sectional view schematically showing the structure of a two-volume spiral non-aqueous electrolyte secondary battery according to the present invention.

以下、実施例及び比較例を第3図を参照しながら説明す
る。
Examples and comparative examples will be described below with reference to FIG.

実施例1 正極活物質としてLiCoO,、負極活物質としてニ一
ドルコークスを用いて電池を作製した。粉砕した二一ド
ルコークス90重量部及び結着剤としてのポリフッ化ビ
ニリデン10重量部を混合し、負極合剤とした。そして
、この負極合剤を溶剤N−メチルピロリドンに分散させ
てスラリ−(ペースト状)にした。次に34 . 5+
++mの幅にカットされた厚さIOμmの銅箔の帯状の
負極集電体の両面に、その両端からそれぞれ0.5mm
残してこの負極合剤スラリーを塗布し、乾燥した。
Example 1 A battery was produced using LiCoO as a positive electrode active material and needle coke as a negative electrode active material. 90 parts by weight of crushed 21 dollar coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture. Then, this negative electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste). Next, 34. 5+
0.5 mm from each end on both sides of a strip-shaped negative electrode current collector made of copper foil with a thickness of IO μm cut to a width of ++m.
This negative electrode mixture slurry was applied to the remaining parts and dried.

乾燥後、ローラープレス機により圧縮或形して、これを
帯状の負極2とした。この帯状の負極2において、負極
合剤は負極集電体の両面にほぼ同じ膜厚で形成され、こ
れらの膜厚の和は約175μmであった。
After drying, it was compressed and shaped using a roller press to form a strip-shaped negative electrode 2. In this strip-shaped negative electrode 2, the negative electrode mixture was formed on both sides of the negative electrode current collector with approximately the same film thickness, and the sum of these film thicknesses was about 175 μm.

次に正極は次のようにして作製した。炭酸リチウムlモ
ルと炭酸コバルト1モルを混合し、900゜Cの空気中
で5時間焼成して粉状のLiCo02を得て、これを正
極活物質として用い、このLiCoOz91重量に導電
材としてグラファイト6重量部、結着剤としてボリフッ
化ビニリデン3重量部を加え混合し正極合剤とした。そ
してこの正極合剤を溶剤N−メチルビロリドンに分散さ
せてスラリ−(ペースト状)にした.次に33.5mm
の幅にカットされた厚さ20μmの帯状のアル稟ニウム
箔の正極集電体の両面に、その両端部からそれぞれ0.
5ms残してこの正極合剤スラリーを塗布し、乾燥した
。乾燥後にローラープレス機により圧縮成形して、これ
を帯状の正極1とした。この帯状の正極lにおいて、正
極合剤は正極集電体の両面にほぼ同じ膜厚で形威され、
これらの膜厚の和は約175μmであった。
Next, a positive electrode was produced as follows. 1 mole of lithium carbonate and 1 mole of cobalt carbonate were mixed and fired in air at 900°C for 5 hours to obtain powdered LiCo02. This was used as a positive electrode active material, and graphite 6 was added as a conductive material to 91% of this LiCoOz91 weight. parts by weight, and 3 parts by weight of polyvinylidene fluoride as a binder were added and mixed to prepare a positive electrode mixture. This positive electrode mixture was then dispersed in the solvent N-methylpyrrolidone to form a slurry (paste). Next 33.5mm
A strip of aluminum foil with a thickness of 20 μm was cut to have a width of 0.0 μm on both sides of the positive electrode current collector.
This positive electrode mixture slurry was applied leaving a gap of 5 ms and dried. After drying, compression molding was performed using a roller press to obtain a strip-shaped positive electrode 1. In this strip-shaped positive electrode 1, the positive electrode mixture is formed on both sides of the positive electrode current collector with approximately the same film thickness,
The sum of these film thicknesses was approximately 175 μm.

そして、帯状の正極1、帯状の負極2及び厚さ25μm
の微孔性ポリプロピレンフィルムからなるセバレータ3
を、負極2、セパレータ3、正極l、セパレータ3の順
序で積層してから、この積層体を渦巻状に多数回巻回す
ることによって巻回体を作った。以上のようにして作っ
た巻同体を、第l図に示すように、ニッケルメッキを施
した内径13.3lIImlの鉄製電池缶5に収納した
。そして正極lの集電を行うためにアルミニウム製の正
極リードの一端を正極1に取付け、その他端を電池M7
に溶接した。また負極2の集電を行うために、ニッケル
製の負極リードの一端を負極2に取付け、その他端を電
池缶5に溶接した。この電池缶5の中に、六フフ化リン
酸リチウムを1モル/I!.溶解した炭酸プロピレンと
1.2−ジメトキシエタンとを混合して得た電解液を注
入した。次に巻回体の上下面に対向するように、電池缶
5内に絶縁板4を配設した.最後にこの電池缶5と電池
蓋7を絶縁封ロガスケット6を介してかしめて、電池蓋
7を封ロした。以上のようにして直径13.8ms+高
さ42mmの渦巻式非水電解液二次電池を作製した。
Then, a strip-shaped positive electrode 1, a strip-shaped negative electrode 2 and a thickness of 25 μm
Sebarator 3 made of microporous polypropylene film
were laminated in the order of negative electrode 2, separator 3, positive electrode 1, and separator 3, and then this laminated body was wound spirally many times to produce a wound body. The volume thus produced was housed in a nickel-plated iron battery can 5 having an inner diameter of 13.3 lIIml, as shown in FIG. Then, in order to collect current from the positive electrode 1, one end of the aluminum positive electrode lead is attached to the positive electrode 1, and the other end is attached to the battery M7.
Welded to. Further, in order to collect current from the negative electrode 2, one end of a nickel negative electrode lead was attached to the negative electrode 2, and the other end was welded to the battery can 5. In this battery can 5, there is 1 mol/I of lithium hexafluorophosphate! .. An electrolytic solution obtained by mixing dissolved propylene carbonate and 1,2-dimethoxyethane was injected. Next, an insulating plate 4 was placed inside the battery can 5 so as to face the top and bottom surfaces of the wound body. Finally, the battery can 5 and the battery lid 7 were caulked together with an insulating sealing gasket 6 interposed therebetween, and the battery lid 7 was sealed. As described above, a spiral non-aqueous electrolyte secondary battery having a diameter of 13.8 ms and a height of 42 mm was produced.

実施例2 負極及び正極を作製するとき、合剤スラリーを集電体の
両端からそれぞれlIIIII1残して集電体の両面に
塗布し、それ以外は実施例lと同様にして電池を作製し
た。
Example 2 When producing a negative electrode and a positive electrode, the mixture slurry was applied to both sides of the current collector, leaving lIII1 from both ends of the current collector, and a battery was produced in the same manner as in Example 1 except for that.

実施例3 負極及び正極を作製するとき、合剤スラリーを集電体の
両端からそれぞれ1.8mn+残して集電体の両面に塗
布し、それ以外は実施例1と同様にして電池を作製した
Example 3 When producing a negative electrode and a positive electrode, the mixture slurry was applied to both sides of the current collector, leaving 1.8 mm+ from both ends of the current collector, and a battery was otherwise produced in the same manner as in Example 1. .

比較例1 負極は、集電体の全面に負極合剤スラjJ−を塗布・乾
燥し、これをローラープレス機により圧縮威形した後、
34.5mmの幅にカットして作った。正極は集電体の
全面に正極合剤スラリー・を塗布・乾燥し、これをロー
ラープレス機により圧wi戊形した後、33.5mmの
幅にカットして作った。そして、それ以外は実施例1と
同様にして電池を作製した。
Comparative Example 1 The negative electrode was prepared by coating and drying the negative electrode mixture slurry jJ- on the entire surface of the current collector, compressing it with a roller press machine, and then
It was cut to a width of 34.5mm. The positive electrode was prepared by applying a positive electrode mixture slurry to the entire surface of the current collector, drying it, pressing it into a shape using a roller press, and then cutting it into a width of 33.5 mm. A battery was produced in the same manner as in Example 1 except for this.

比較例2 負極は34.5ma+の幅にカットされた集重体の全面
に負極合剤スラリーを塗布・乾燥し、これをローラープ
レス機により圧縮或形して作った,,正極は、33.5
n+mの幅にカットされた集電体の全面に正極合剤スラ
リーを塗布・乾燥し、これをローラープレス機により圧
縮或形して作った。そして、それ以外は実施例lと同様
にして電池を作製した。
Comparative Example 2 The negative electrode was made by coating and drying a negative electrode mixture slurry on the entire surface of an aggregate cut into a width of 34.5 ma+, and compressing or shaping this with a roller press.
A positive electrode mixture slurry was coated and dried on the entire surface of a current collector cut into a width of n+m, and this was compressed or shaped using a roller press machine. A battery was produced in the same manner as in Example 1 except for the above.

実施例及び比較例で得た正極及び負極の帯状電極の断面
を顕微鏡で観察したところ次の結果を得た。第1図は、
実施例1、2、3で得た電極の断面を模式的に示した図
である。第2図Aは、比較例lで得た電極の断面を模式
的に示した図、また第2図Bは比較例2で得た電極の断
面を模式的に示した図である。以上の結果で示されるよ
うに、実施例で得た電極はいずれも幅方向の端面のカド
がどれている。一方、比較例1で得た電極は幅方向の端
面が切り立っている。また、比較例2で得た電極は幅方
向の端面のカドは取れてはいるものの、第2図Bで示す
ように電極両端部には集電体が存在しない. 前記実施例■、2、3及び比較例l、2の電池を各々5
0個作製し、これらについてそれぞれ190n+Aの電
流で上限電圧4.1vとして3時間充電し、続いてi6
0Ωの定抵抗で、放電終止電圧2.9vまで放電させる
充放電サイクルを30サイクル行い、再び前述の条件で
充電した後常温で10日間放置し、3.9v以下に開路
電圧が低下した電池を内部短絡品としてその発生率を調
べた。また、これらの電池のうち、内部短絡していない
ものについて前述の条件で放電させその容量も調べた。
When the cross sections of the positive and negative strip electrodes obtained in Examples and Comparative Examples were observed under a microscope, the following results were obtained. Figure 1 shows
FIG. 3 is a diagram schematically showing the cross section of the electrodes obtained in Examples 1, 2, and 3. FIG. 2A is a diagram schematically showing a cross section of the electrode obtained in Comparative Example 1, and FIG. 2B is a diagram schematically showing a cross section of the electrode obtained in Comparative Example 2. As shown by the above results, the edges of the end faces in the width direction of all the electrodes obtained in the examples are shifted. On the other hand, the electrode obtained in Comparative Example 1 has a sharp end face in the width direction. Further, although the edges of the electrode obtained in Comparative Example 2 have been removed in the width direction, there is no current collector at both ends of the electrode, as shown in FIG. 2B. Five batteries each of Examples ①, 2, and 3 and Comparative Examples Ⅰ and 2 were used.
They were each charged at a current of 190n+A at an upper limit voltage of 4.1v for 3 hours, and then an i6
Perform 30 charge/discharge cycles to discharge to a final discharge voltage of 2.9V with a constant resistance of 0Ω, then charge again under the above conditions and leave it at room temperature for 10 days. The occurrence rate was investigated as an internal short circuit product. In addition, among these batteries, those that were not internally short-circuited were discharged under the conditions described above, and their capacities were also investigated.

その結果を第1表に示す。The results are shown in Table 1.

この表から判るように、比較例1の電池は、内部短絡品
の発生率は極めて多い。この内部短絡している電池を解
体して調べたところ電極の両端部の電極合剤が一部セバ
レータを突き破っているのが観察された。また比較例2
の電池でも内部短絡品が発生しているが、この内部短絡
している電池を解体して調べたところ電極の両端部の電
極合剤が電極から脱落して、これがセパレータを突き破
っているのが観察された。
As can be seen from this table, the battery of Comparative Example 1 had an extremely high incidence of internal short circuits. When this internally short-circuited battery was disassembled and examined, it was observed that some of the electrode mixture at both ends of the electrode had penetrated the separator. Also, comparative example 2
Internal short circuits also occur in batteries, but when we disassembled and examined the batteries with internal short circuits, we found that the electrode mixture at both ends of the electrodes had fallen off from the electrodes and had broken through the separator. observed.

実施例1、2、3の電池では内部短絡品が発生せず、従
って集電体の両端部に電極合剤を被覆しないことの効果
は大きいと考えられる。また放電容量について、実施例
l、2、3を比べると集電体の電極合剤が被覆していな
い部分の幅が大きい程放電容量が小さくなっている。両
端部で電極合剤を被覆しない部分の幅が集電体の幅に対
して0.05倍以上ある実施例3では、電極合剤を集電
体全面に被覆した比較例1の場合に比べて、放電容量が
IO%以上も小さくなっており好ましくない。
In the batteries of Examples 1, 2, and 3, no internal short circuit occurred, and therefore, it is considered that the effect of not covering both ends of the current collector with the electrode mixture is great. Regarding the discharge capacity, comparing Examples 1, 2, and 3, the larger the width of the portion of the current collector not covered with the electrode mixture, the smaller the discharge capacity. In Example 3, where the width of the part not covered with the electrode mixture at both ends is 0.05 times or more the width of the current collector, compared to Comparative Example 1 in which the entire surface of the current collector was coated with the electrode mixture. Therefore, the discharge capacity is reduced by more than IO%, which is not preferable.

なお、以上の実施例で示したように、正極及び負極の両
電極について、集電体の両端部が活物質あるいは電極合
剤で被覆されないことが好ましいが、正極あるいは負極
のどちらか一方の電極についてそうであっても、内部短
絡防止に有効であることはいうまでもない。
As shown in the above examples, it is preferable that both ends of the current collector are not coated with the active material or electrode mixture for both the positive and negative electrodes. However, it goes without saying that it is effective in preventing internal short circuits.

〔発明の効果〕〔Effect of the invention〕

本発明により、渦巻弐非水電解液二次電池において、そ
の問題点の一つであった電池の内部短絡を防止すること
が可能となった。この結果、エネルギー密度が大きく、
急速充放電サイクル特性に優れた二次電池を提供できる
ようになり、その工業的な価値は大きい。
According to the present invention, it has become possible to prevent internal short circuits in the spiral non-aqueous electrolyte secondary battery, which was one of the problems. As a result, the energy density is large,
It is now possible to provide a secondary battery with excellent rapid charge/discharge cycle characteristics, which has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の帯状電極の模式的断面図で、第2図A
,Bは比較例の帯状電極の模式的断面図で、第3図は本
発明の渦巻式非水電解液二次電池の構造を示す模式的断
面図である。 第1図及び第2図A,Bの中で、工0は集電体、゛20
は電極合剤を示す。 第3図の中で、1は正極、2は負極、3はセパレータ、
5は電池缶を示す。 曳ミー 突腫伊{のIP漱電喝河頂式゛的断面凶第 冨 図 比較例11一斧」だ電掻0槽式的断面団第2rIAA 第2図 B
FIG. 1 is a schematic cross-sectional view of the strip-shaped electrode of the example, and FIG.
, B are schematic cross-sectional views of band-shaped electrodes of comparative examples, and FIG. 3 is a schematic cross-sectional view showing the structure of the spiral non-aqueous electrolyte secondary battery of the present invention. In Fig. 1 and Fig. 2 A and B, work 0 is the current collector, ゛20
indicates the electrode mixture. In Figure 3, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator,
5 indicates a battery can. Figure 2 B

Claims (1)

【特許請求の範囲】 1、正極及び負極の帯状電極をセパレータを介して渦巻
状に巻いた電極構造を有する円筒型非水電解液二次電池
において、前記帯状電極のうち、少なくとも一方の電極
は帯状集電体と、該集電体を、幅方向の両端部を残して
被覆する活物質あるいは電極合剤の層からなることを特
徴とする円筒型非水電解液二次電池。 2、帯状集電体の幅方向の両端部の、活物質あるいは電
極合剤が被覆されていない部分の幅が集電体幅の0.0
5倍以下である特許請求の範囲第1項記載の円筒型非水
電解液二次電池。
[Claims] 1. In a cylindrical non-aqueous electrolyte secondary battery having an electrode structure in which positive and negative strip electrodes are spirally wound with a separator interposed therebetween, at least one of the strip electrodes is A cylindrical non-aqueous electrolyte secondary battery comprising a band-shaped current collector and a layer of an active material or an electrode mixture covering the current collector except for both ends in the width direction. 2. The width of the portions at both ends in the width direction of the band-shaped current collector that are not covered with the active material or electrode mixture is 0.0 of the width of the current collector.
The cylindrical non-aqueous electrolyte secondary battery according to claim 1, which is 5 times or less.
JP1228432A 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2932516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228432A JP2932516B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228432A JP2932516B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0393164A true JPH0393164A (en) 1991-04-18
JP2932516B2 JP2932516B2 (en) 1999-08-09

Family

ID=16876396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228432A Expired - Fee Related JP2932516B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2932516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168481A (en) * 2001-12-03 2003-06-13 Sony Corp Secondary battery, its manufacturing method, and application equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA017498B1 (en) * 2007-12-25 2012-12-28 Бид Компани Лимитед Construction of electrochemical storage cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168481A (en) * 2001-12-03 2003-06-13 Sony Corp Secondary battery, its manufacturing method, and application equipment

Also Published As

Publication number Publication date
JP2932516B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP2001015146A (en) Battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP3589021B2 (en) Lithium ion secondary battery
JP3131976B2 (en) Non-aqueous electrolyte secondary battery
US20080113260A1 (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3237015B2 (en) Non-aqueous electrolyte secondary battery
JPH04332481A (en) Nonaqueous electrolyte secondary battery
JPH11329447A (en) Non-aqueous secondary battery
JP3371908B2 (en) Non-aqueous electrolyte secondary battery
JP2002373655A (en) Lithium secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP3013392B2 (en) Spiral type non-aqueous electrolyte battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2932516B2 (en) Non-aqueous electrolyte secondary battery
JP2506572Y2 (en) Lithium ion secondary battery
JPH08180878A (en) Lithium secondary battery
JP2021096901A (en) Lithium ion secondary battery
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP2000200609A (en) Nonaqueous secondary battery
JP2000082495A (en) Solid electrolyte battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees