JPH09120818A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09120818A
JPH09120818A JP7279227A JP27922795A JPH09120818A JP H09120818 A JPH09120818 A JP H09120818A JP 7279227 A JP7279227 A JP 7279227A JP 27922795 A JP27922795 A JP 27922795A JP H09120818 A JPH09120818 A JP H09120818A
Authority
JP
Japan
Prior art keywords
battery
thickness
film
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7279227A
Other languages
Japanese (ja)
Inventor
Naoyuki Sugano
直之 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7279227A priority Critical patent/JPH09120818A/en
Publication of JPH09120818A publication Critical patent/JPH09120818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct light a secondary battery with a nonaqueous electrolyte using a lightweight current collector by forming the collectors of the positive and the negative electrode from a conductive film of resin where a conductive metal is provided as the surface layer. SOLUTION: A nonaqueous electrolyte secondary battery concerned is composed of a positive electrode made of Lix MO2 (M is one of the elements Ni, Co, Fe, and Mn) and a negative electrode made of lithium metal, lithium alloy, or a carbonic substance capable of doping and dedoping the lithium. If a conductive film of resin having a conductive metal as the surface layer is used for the current collector of both or either of the positive and negative electrodes, the collector can be made light in weight, which should lead to a lightweight construction of the resultant secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば携帯電話や
ヘッドホンステレオやCDプレイヤーやパーソナルコン
ピュータ等の小型電子機器の電源に適用して好適な非水
電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery suitable for use as a power source for small electronic devices such as mobile phones, headphone stereos, CD players and personal computers.

【0002】[0002]

【従来の技術】近年携帯電話やヘッドホンステレオやC
Dプレイヤーやパーソナルコンピュータ等の小型電子機
器の発達が目覚ましく、これらの用途に用いられる小型
で大容量の電源に対する要望が大きくなっている。これ
らの用途向けに鉛電池やNiCd電池からより大容量の
NiMH電池さらにはリチウムイオン電池が実用化され
てきた。
2. Description of the Related Art Recently, mobile phones, headphone stereos, and Cs.
The development of small electronic devices such as D players and personal computers has been remarkable, and there is an increasing demand for a small-sized and large-capacity power source used for these purposes. For these applications, lead batteries, NiCd batteries, NiMH batteries having a larger capacity, and lithium ion batteries have been put to practical use.

【0003】特にリチウムイオン二次電池は小型軽量電
池に、適合できる最も有望な電池である。正極にLiC
oO2 もしくはLiNiO2 、LiMn2 4 を用い、
負極に金属リチウムもしくはリチウムをドープ/脱ドー
プ可能な炭素を負極に用いた、非水電解液二次電池にお
いて非水電解液電池の性能を高めるために、大きな電極
面積にした薄い電極が用いられている。
In particular, lithium ion secondary batteries are the most promising batteries that can be adapted to small and lightweight batteries. LiC on the positive electrode
oO 2 or LiNiO 2 , LiMn 2 O 4 ,
In order to improve the performance of non-aqueous electrolyte secondary batteries in non-aqueous electrolyte secondary batteries in which metallic lithium or carbon capable of doping / dedoping lithium is used for the negative electrode, thin electrodes with a large electrode area are used. ing.

【0004】この薄い電極の製法として、従来からの金
属ネットに正極活物質の混合物を塗布した電極と共に近
年は、金属箔に正極もしくは負極活物質混合物を塗布し
た電極が使用されてきた。
As a method for producing this thin electrode, an electrode in which a positive electrode or negative electrode active material mixture is applied to a metal foil has been used in recent years in addition to a conventional electrode in which a positive electrode active material mixture is applied to a metal net.

【0005】金属ネット型電極は主として1次電池の渦
巻き型電池に用いられてきた。一方の金属箔型電極は主
として非水電池の渦巻き型電池に用いられてきた。
The metal net type electrode has been mainly used for a spiral type battery of a primary battery. On the other hand, the metal foil type electrode has been mainly used for spiral type batteries of non-aqueous batteries.

【0006】いずれも、非水電解液電池の放電性能や保
存性能向上に貢献するものであり、電極製造の効率向上
の特徴を発揮させるものであった。
All of them contributed to the improvement of the discharge performance and storage performance of the non-aqueous electrolyte battery, and exhibited the feature of improving the efficiency of electrode production.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年の
小型電池の性能向上に伴い、電池の軽量化と放電容量増
大が求められている。金属のネットや金属箔を用いた電
極を用いた電池はその重量が増加してしまい軽量化には
限界がある。
However, as the performance of small batteries has been improved in recent years, there has been a demand for weight reduction and increase in discharge capacity of batteries. The weight of a battery using an electrode using a metal net or a metal foil increases, and there is a limit to weight reduction.

【0008】とりわけ電池が小型のものから大きな電池
を目指して開発を進めると、電池の中に占める集電体や
金属リード体の体積/重量の割合が大きくなり、電池の
エネルギー密度が低下してしまう。特に、電池を大型化
する際には集電部分から端子リード部分の体積/重量は
増加する。
[0008] In particular, when the development is promoted from a small battery to a large battery, the volume / weight ratio of the current collector and the metal lead body in the battery increases, and the energy density of the battery decreases. I will end up. In particular, when the battery is upsized, the volume / weight from the current collecting portion to the terminal lead portion increases.

【0009】これらの点はこれまであまり重大な関心は
持たれておらず、電池の用途としても据え置き型電池等
では考慮しないで済んできた。これから新たな用途とし
て、移動可能な電源として開発する際には極めて重要な
点になるものと言える。
Up to now, these points have not been so seriously concerned, and they have not been taken into consideration in stationary batteries and the like as batteries. It can be said that it will be an extremely important point when developing a mobile power source as a new application.

【0010】本発明はこのような課題に鑑みてなされた
ものであり、重量エネルギー密度の向上を図ることがで
きる非水電解液二次電池を提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a non-aqueous electrolyte secondary battery capable of improving the weight energy density.

【0011】[0011]

【課題を解決するための手段】本発明の非水電解液二次
電池は、正極にLix MO2 (M=Ni、Co、Fe、
Mnより選ばれてなる)を用い、負極にリチウム金属も
しくはリチウム合金、またはリチウムをドープ/脱ドー
プ可能な炭素材料を用いた非水電解液二次電池におい
て、正極および負極の双方またはいずれか一方の集電体
として、樹脂シート状膜に導電性金属を表層に有する導
電性薄膜を用いたものである。
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode is Li x MO 2 (M = Ni, Co, Fe,
(Selected from Mn) and a lithium metal or a lithium alloy, or a carbon material capable of being doped / dedoped with lithium in the negative electrode, in a non-aqueous electrolyte secondary battery, both positive electrode and / or negative electrode. As the current collector of (1), a conductive thin film having a conductive metal as a surface layer is used for the resin sheet film.

【0012】また、本発明の非水電解液二次電池は、樹
脂シート状膜が、ポリエステル、ポリエーテルエーテル
ケトン、ポリイミド、またはポリオレフィンからなる上
述構成の電池である。
Further, the non-aqueous electrolyte secondary battery of the present invention is a battery having the above-mentioned constitution in which the resin sheet-like film is made of polyester, polyether ether ketone, polyimide or polyolefin.

【0013】また、本発明の非水電解液二次電池は、樹
脂シート状膜の厚みが5〜20μmの範囲にある上述構
成の電池である。
The non-aqueous electrolyte secondary battery of the present invention is a battery having the above-mentioned structure in which the thickness of the resin sheet film is in the range of 5 to 20 μm.

【0014】また、本発明の非水電解液二次電池は、導
電性金属が、銅、ニッケル、またはアルミニウムである
上述構成の電池である。
Further, the non-aqueous electrolyte secondary battery of the present invention is a battery having the above-mentioned structure in which the conductive metal is copper, nickel or aluminum.

【0015】また、本発明の非水電解液二次電池は、導
電性金属の膜厚が0.05〜2μmの範囲にある上述構
成の電池である。
Further, the non-aqueous electrolyte secondary battery of the present invention has the above-mentioned structure in which the thickness of the conductive metal is in the range of 0.05 to 2 μm.

【0016】本発明の非水電解液二次電池によれば、正
極および負極の双方またはいずれか一方の集電体とし
て、樹脂シート状膜に導電性金属を表層に有する導電性
薄膜を用いたことにより、電池の重量を軽くすることが
でき、特に集電材として金属銅箔/ネットを用いた電池
に比較すると集電体部分だけでの比較で1/4〜1/6
程度まで集電体を軽量化できる。
According to the non-aqueous electrolyte secondary battery of the present invention, a conductive thin film having a resin sheet-like film and a conductive metal as a surface layer is used as a current collector for both the positive electrode and / or the negative electrode. As a result, the weight of the battery can be reduced, and in particular, compared with a battery using a metal copper foil / net as a current collector, only 1/4 to 1/6 of the current collector portion is compared.
The weight of the current collector can be reduced to some extent.

【0017】[0017]

【発明の実施の形態】以下、本発明非水電解液二次電池
の実施例について図1および図2を参照しながら説明す
る。まず、実施例1〜11、および比較例1〜4の具体
的な内容について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the non-aqueous electrolyte secondary battery of the present invention will be described below with reference to FIGS. 1 and 2. First, specific contents of Examples 1 to 11 and Comparative Examples 1 to 4 will be described.

【0018】実施例1 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み14μmのフイルムに真空
蒸着法でアルミニウムを500オングストロームの厚み
で両面に成形した、導電性シートを作製した。
Example 1 As a resin sheet-like conductive film, a conductive sheet was produced by forming a film of polyethylene terephthalate (PET) having a thickness of 14 μm for a positive electrode on the both surfaces of which aluminum was formed to a thickness of 500 angstrom by vacuum deposition.

【0019】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法でニッケル
を500オングストロームの厚みで両面に成形した、導
電性シートを作製した。
Polyethylene terephthalate (P
ET) A conductive sheet was prepared by forming nickel on a film having a thickness of 14 μm with a thickness of 500 angstroms on both sides by a vacuum deposition method.

【0020】正極材として、リチウムとコバルトをモル
比で1対1になるように、炭酸リチウムと炭酸コバルト
を所定量計量し、乳鉢で十分混合した後、空気中で90
0℃の条件下、8時間焼成し室温まで冷却した後、粉砕
し平均粒子径20μmの活物質を得た。この活物質は粉
末X線回折法でLiCoO2 に一致する回折ピークを有
する材料であった。
As the positive electrode material, a predetermined amount of lithium carbonate and cobalt carbonate were weighed so that the molar ratio of lithium and cobalt was 1: 1 and thoroughly mixed in a mortar, and then 90% in air.
After firing at 0 ° C. for 8 hours, cooling to room temperature, and pulverization, an active material having an average particle diameter of 20 μm was obtained. This active material was a material having a diffraction peak corresponding to LiCoO 2 by a powder X-ray diffraction method.

【0021】このLiCoO2 を91重量%と導電材と
してグラファイトを6重量%と結着剤としてポリフッ化
ビニリデン(PVDF)を3重量%混合し、分散溶媒と
してNメチル2ピロリドンを加え、正極合剤ペーストと
した。
91% by weight of this LiCoO 2 , 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride (PVDF) as a binder were mixed, and N-methyl-2pyrrolidone was added as a dispersion solvent to prepare a positive electrode mixture. It was a paste.

【0022】この正極合剤ペーストを前述のAl蒸着導
電性PETシートに両面に均一塗布し乾燥させ、正極電
極材とした。
This positive electrode material mixture paste was uniformly applied to both surfaces of the above-mentioned Al vapor-deposited conductive PET sheet and dried to obtain a positive electrode material.

【0023】この正極電極材をローラープレス機で加圧
成型し幅54mm、長さ470mmの所定の大きさに裁
断し、一端にアルミニウム製の厚み50μmで4mm×
100mmのリード材を2つに折曲げて表面に凹凸をつ
けた加圧機を用いて固定し、正極とした。
This positive electrode material was pressure-molded with a roller press machine and cut into a predetermined size of width 54 mm and length 470 mm, and one end was made of aluminum and had a thickness of 50 μm and was 4 mm ×.
A 100 mm lead material was bent in two and fixed using a pressurizer having an uneven surface to obtain a positive electrode.

【0024】負極には、原料として石油ピッチを用いこ
れに酸素を含む官能基を10〜20%導入した(いわゆ
る酸素架橋)後、不活性ガス雰囲気下1000℃加熱処
理して、ガラス状炭素に近い性質を持った炭素材料を得
た。この材料のX線回折測定を行った結果、d(00
2)面の面間隔は3.76オングストロームであった。
この材料を粉砕し、平均粒子径20μmの炭素材料粉末
とした。
For the negative electrode, petroleum pitch was used as a raw material, and 10 to 20% of a functional group containing oxygen was introduced into this (so-called oxygen cross-linking), followed by heat treatment at 1000 ° C. in an inert gas atmosphere to form glassy carbon. A carbon material with similar properties was obtained. As a result of X-ray diffraction measurement of this material, d (00
The interplanar spacing between the 2) planes was 3.76 angstroms.
This material was crushed to obtain a carbon material powder having an average particle diameter of 20 μm.

【0025】このようにして得た炭素材料粉末を負極活
物質とし、これを90重量%と結着剤としてポリフッ化
ビニリデン(PVDF)10重量%を混合し負極合剤と
した、この負極合剤を分散溶媒Nメチル2ピロリドンに
分散し負極合剤ペーストとした。
The carbon material powder thus obtained was used as a negative electrode active material, and 90% by weight of this powder was mixed with 10% by weight of polyvinylidene fluoride (PVDF) as a binder to prepare a negative electrode mixture. Was dispersed in a dispersion solvent N-methyl-2pyrrolidone to obtain a negative electrode mixture paste.

【0026】この負極合剤ペーストを前述のニッケル蒸
着導電性PETシートに両面均一塗布し乾燥させ、負極
電極材とした。この負極電極材をローラープレス機で加
圧成型し、幅57mm、長さ510mmの所定の大きさ
に裁断し、一端に厚み100μmで4mm×100mm
のニッケル製リード材を2つに折曲げて表面に凸凹をつ
けた加圧機を用いて固定し、負極とした。
This negative electrode mixture paste was uniformly applied to both surfaces of the above-mentioned nickel-deposited conductive PET sheet and dried to obtain a negative electrode material. This negative electrode material is pressure-molded by a roller press machine, cut into a predetermined size of width 57 mm and length 510 mm, and one end has a thickness of 100 μm and 4 mm × 100 mm.
The nickel lead material of No. 2 was bent into two and fixed by using a pressurizer having an uneven surface to obtain a negative electrode.

【0027】これらの正極、負極およびセパレータとし
てポリプロピレン製微多孔膜を用いて、正極/セパレー
タ/負極/セパレータの順序で積層し、直径18mmの
円筒状電池缶に入るように多数回巻回した後外周をテー
プを用い巻回体を固定した。
After using a polypropylene microporous film as the positive electrode, the negative electrode, and the separator, the positive electrode / separator / negative electrode / separator were laminated in this order, and after being wound many times so as to enter a cylindrical battery can having a diameter of 18 mm. The wound body was fixed to the outer circumference using a tape.

【0028】この巻回体を、図1に示すように、上下に
絶縁板4を挿入し直径18mmの電池缶5に入れ、負極
リード12を電池缶5に溶接固定し、正極リード13を
安全弁装置8に溶接した。
As shown in FIG. 1, the wound body is inserted into a battery can 5 having a diameter of 18 mm by inserting an insulating plate 4 into the upper and lower parts, the negative electrode lead 12 is welded and fixed to the battery can 5, and the positive electrode lead 13 is connected to a safety valve. Welded to device 8.

【0029】ここで電解液として、炭酸プロピレンとジ
エチルカーボネートの混合液にLiPF6を溶解してな
る電解液を注液した後、PTC素子(正温度係数素子)
9と電池蓋7を載置しカシメて、封口し直径18mm、
高さ65mmの電池とした。組み立てられた電池の重量
は36.8gであった。
Here, as the electrolytic solution, an electrolytic solution prepared by dissolving LiPF6 in a mixed solution of propylene carbonate and diethyl carbonate is poured, and then a PTC element (positive temperature coefficient element)
9 and the battery lid 7 are placed, caulked, and sealed to have a diameter of 18 mm,
The battery was 65 mm in height. The assembled battery weighed 36.8 g.

【0030】実施例2 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み14μmのフイルムに真空
蒸着法でアルミニウムを1000オングストロームの厚
みで両面に成形した、導電性シートを作製した。
Example 2 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum into a film having a thickness of 1000 angstroms on both surfaces of a polyethylene terephthalate (PET) film having a thickness of 14 μm for a positive electrode by a vacuum deposition method.

【0031】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法でニッケル
を1000オングストロームの厚みで両面に成形した、
導電性シートを作製した。
Polyethylene terephthalate (P
ET) Nickel was formed on both surfaces of a film having a thickness of 14 μm by a vacuum deposition method to a thickness of 1000 Å,
A conductive sheet was produced.

【0032】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は36.8gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 36.8 g.

【0033】実施例3 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み18μmのフイルムに真空
蒸着法でアルミニウムを2000オングストロームの厚
みで両面に成形した、導電性シートを作製した。
Example 3 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum into a film having a thickness of 2000 angstroms on both surfaces of a polyethylene terephthalate (PET) film having a thickness of 18 μm for a positive electrode by a vacuum deposition method.

【0034】負極用にポリエチレンテレフタレート(P
ET)厚み20μmのフィルムに真空蒸着法でニッケル
を2000オングストロームの厚みで両面に成形した、
導電性シートを作製した。
Polyethylene terephthalate (P
ET) Nickel was formed on both sides of a film having a thickness of 2000 μm to a thickness of 2000 μm by a vacuum deposition method on a film having a thickness of 20 μm.
A conductive sheet was produced.

【0035】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は36.8gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 36.8 g.

【0036】実施例4 樹脂シート状導電性膜として、正極用にポリエチレンナ
フタレート(PEN)厚み14μmのフイルムに真空蒸
着法でアルミニウムを500オングストロームの厚みで
両面に成形した、導電性シートを作製した。
Example 4 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum in a thickness of 500 angstroms on both surfaces of a polyethylene naphthalate (PEN) film having a thickness of 14 μm for a positive electrode by a vacuum deposition method. .

【0037】負極用にポリエチチレンナフタレート(P
EN)厚み14μmのフィルムに真空蒸着法で銅を10
00オングストロームの厚みで両面に成形した、導電性
シートを作製した。
Polyethylene naphthalate (P
EN) Copper is deposited on a 14 μm thick film by vacuum deposition.
A conductive sheet having a thickness of 00 angstrom and formed on both sides was prepared.

【0038】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は36.8gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 36.8 g.

【0039】実施例5 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み20μmのフイルムに真空
蒸着法でアルミニウムを1000オングストロームの厚
みで両面に成形した、導電性シートを作製した。
Example 5 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum on a double-sided film of polyethylene terephthalate (PET) with a thickness of 20 μm for a positive electrode by vacuum vapor deposition to a thickness of 1000 Å.

【0040】負極用にポリエチチレンテレフタレート
(PET)厚み14μmのフィルムに真空蒸着法でニッ
ケルを500オングストロームの厚みで両面に成形し
た、導電性シートを作製した。
For the negative electrode, a polyethylene terephthalate (PET) film having a thickness of 14 μm was formed on both sides of nickel to a thickness of 500 Å by vacuum deposition to prepare a conductive sheet.

【0041】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は37.0gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral battery was assembled in the same manner as in Example 1. The assembled battery weighed 37.0 g.

【0042】実施例6 樹脂シート状導電性膜として、正極用にポリブチレンテ
レフタレーT(PBT)厚み15μmのフイルムに真空
蒸着法でアルミニウムを1000オングストロームの厚
みで両面に成形した、導電性シートを作製した。
Example 6 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum into a film having a thickness of 1000 angstroms on both surfaces of a polybutylene terephthalate T (PBT) film having a thickness of 15 μm for a positive electrode by a vacuum deposition method. It was made.

【0043】負極用にポリブチレンテレフタレート(P
BT)厚み15μmのフィルムに真空蒸着法でニッケル
を1000オングストロームの厚みで両面に成形した、
導電性シートを作製した。
Polybutylene terephthalate (P
BT) Nickel was formed on both sides of a film having a thickness of 15 μm by a vacuum deposition method to a thickness of 1000 Å,
A conductive sheet was produced.

【0044】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は36.8gであった
A positive electrode and a negative electrode were manufactured in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 36.8 g.

【0045】実施例7 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み14μmのフイルムに真空
蒸着法でアルミニウムを2000オングストロームの厚
みで両面に成形した、導電性シートを作製した。
Example 7 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum on a surface of polyethylene terephthalate (PET) having a thickness of 14 μm for a positive electrode by vacuum vapor deposition to have a thickness of 2000 angstroms on both sides.

【0046】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法で銅を50
0オングストロームの厚みで両面に成型し、次に無電解
めっき法で銅を1μmの厚みで両面に成型した導電性シ
ートを作製した。
Polyethylene terephthalate (P
ET) 50 μm copper on a 14 μm thick film by vacuum deposition
A conductive sheet was formed by molding both surfaces to a thickness of 0 angstrom and then molding copper to a thickness of 1 μm on both surfaces by an electroless plating method.

【0047】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は37.3gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 37.3 g.

【0048】実施例8 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み14μmのフイルムに真空
蒸着法でアルミニウムを5000オングストロームの厚
みで両面に成形した、導電性シートを作製した。
Example 8 As a resin sheet-like conductive film, a conductive sheet was prepared by forming aluminum into a film having a thickness of 5000 angstroms on both surfaces of a polyethylene terephthalate (PET) film having a thickness of 14 μm for a positive electrode by a vacuum deposition method.

【0049】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法で銅を50
0オングストローム成型し、無電解めっき法で2μmの
厚みで両面に成形した、導電性シートを作製した。
Polyethylene terephthalate (P
ET) 50 μm copper on a 14 μm thick film by vacuum deposition
A 0 angstrom-molded and electroless plating method was applied to both sides to form a conductive sheet having a thickness of 2 μm.

【0050】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は37.9gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 37.9 g.

【0051】実施例9 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み10μmのフイルムに真空
蒸着法でアルミニウムを500オングストローム成型し
電解めっき法でアルミニウムを1μmの厚みで両面に成
形した、導電性シートを作製した。
Example 9 As a resin sheet conductive film, polyethylene terephthalate (PET) film for a positive electrode was formed into a film having a thickness of 10 μm, 500 angstrom of aluminum was formed by a vacuum deposition method, and aluminum was formed on both sides by an electrolytic plating method to a thickness of 1 μm. Then, a conductive sheet was prepared.

【0052】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法でニッケル
を2000オングストロームの厚みで両面に成形した、
導電性シートを作製した。
Polyethylene terephthalate (P
ET) Nickel was formed on both sides of a film having a thickness of 2000 μm by a vacuum deposition method on a film having a thickness of 14 μm.
A conductive sheet was produced.

【0053】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は37.0gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral battery was assembled in the same manner as in Example 1. The assembled battery weighed 37.0 g.

【0054】実施例10 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み14μmのフイルムに真空
蒸着法でアルミニウムを500オングストローム成型
し、電解めっき法でアルミニウムを2μmの厚みで両面
に成形した、導電性シートを作製した。
Example 10 As a resin sheet-like conductive film, polyethylene terephthalate (PET) film for a positive electrode was formed into a film having a thickness of 14 μm, 500 angstrom of aluminum was formed by a vacuum deposition method, and aluminum was formed to a thickness of 2 μm by electrolytic plating on both surfaces. A molded conductive sheet was produced.

【0055】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法で銅を50
0オングストローム成型し、無電解めっき法で銅を0.
5μmの厚みで両面に成形した、導電性シートを作製し
た。
Polyethylene terephthalate (P
ET) 50 μm copper on a 14 μm thick film by vacuum deposition
Molded to 0 angstrom and made copper less than 0.1 by electroless plating.
A conductive sheet having a thickness of 5 μm and formed on both sides was produced.

【0056】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は37.2gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 37.2 g.

【0057】実施例11 集電体として正極用にポリエチレンテレフタレート(P
ET)14μmにアルミニウムを真空蒸着法で厚み10
00オングストロームで両面に成型した集電体を用いて
電極を作製した、負極用に銅箔10μmの集電体を用い
て電極を作製した。
Example 11 Polyethylene terephthalate (P
ET) 14 μm thick aluminum by vacuum evaporation method 10
An electrode was produced using a current collector molded on both sides of 00 angstrom, and an electrode was produced using a current collector of 10 μm copper foil for the negative electrode.

【0058】上記導電性シートを用いて正極および負極
は実施例1と同様に作製して、渦巻き型電池を実施例1
と同様に組み立てた。組み立てられた電池の重量は3
9.2gであった
A positive electrode and a negative electrode were manufactured in the same manner as in Example 1 using the above conductive sheet, and a spiral wound battery was prepared in Example 1.
Assembled as. The assembled battery weighs 3
It was 9.2 g

【0059】比較例1 集電体として正極用にアルミニウム20μm厚みの集電
体を用いて電極を作製した、負極用に銅箔10μmの集
電体を用いて電極を作製した。
Comparative Example 1 An electrode was prepared using a 20 μm thick aluminum current collector for the positive electrode and a 10 μm thick copper foil current collector for the negative electrode.

【0060】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は40.0gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 40.0 g

【0061】比較例2 集電体として正極用にニッケル箔20μm厚みの集電体
を用いて電極を作製した、負極用にニッケル箔10μm
の集電体を用いて電極を作製した。
Comparative Example 2 An electrode was prepared by using a nickel foil 20 μm thick current collector for a positive electrode as a current collector, and a nickel foil 10 μm for a negative electrode.
An electrode was produced using the current collector of.

【0062】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は41.9gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 41.9 g.

【0063】比較例3 集電体として正極用にアルミニウム箔の厚み20μmを
用い、電極を作製した、負極用にステンレス304箔厚
み10μmを用いて、電極を作製した。
Comparative Example 3 An electrode was prepared by using an aluminum foil having a thickness of 20 μm for the positive electrode as a current collector and a stainless 304 foil having a thickness of 10 μm for the negative electrode.

【0064】正極および負極は実施例1と同様に作製し
て、渦巻き型電池を実施例1と同様に組み立てた。組み
立てられた電池の重量は39.2gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a spiral wound battery was assembled in the same manner as in Example 1. The assembled battery weighed 39.2 g.

【0065】比較例4 樹脂シート状導電性膜として、正極用にポリエチレンテ
レフタレート(PET)厚み14μmのフイルムに真空
蒸着法でアルミニウムを500オングストロームの厚み
で両面に成形した、導電性シートを作製した。
Comparative Example 4 As a resin sheet-like conductive film, a conductive sheet was prepared by forming a film of polyethylene terephthalate (PET) having a thickness of 14 μm for a positive electrode on the both surfaces of which aluminum was formed to a thickness of 500 angstrom by the vacuum deposition method.

【0066】負極用にポリエチレンテレフタレート(P
ET)厚み14μmのフィルムに真空蒸着法で銅を20
0オングストロームの厚みで両面に成形した、導電性シ
ートを作製した。
Polyethylene terephthalate (P
ET) 20 μm copper on a 14 μm thick film by vacuum deposition
A conductive sheet having a thickness of 0 angstrom and formed on both sides was produced.

【0067】上記導電性シートを用いて正極および負極
は実施例1と同様に作製して、渦巻き型電池を実施例1
と同様に組み立てた。組み立てられた電池の重量は3
6.7gであった
A positive electrode and a negative electrode were prepared in the same manner as in Example 1 using the above conductive sheet, and a spiral wound battery was prepared in Example 1.
Assembled as. The assembled battery weighs 3
It was 6.7 g

【0068】以上の実施例1〜11、および比較例1〜
4について、正極集電層の材質とその厚み、負極集電層
の材質とその厚み、および電池重量をまとめたものが表
1である。
The above Examples 1 to 11 and Comparative Examples 1 to 1
Table 1 summarizes the material and thickness of the positive electrode current collecting layer, the material and thickness of the negative electrode current collecting layer, and the battery weight for No. 4.

【0069】[0069]

【表1】 [Table 1]

【0070】次に、表1に示した実施例1〜11、およ
び比較例1〜4の電池を用いて、充電電流0.5A、上
限電圧4.20Vで3.5hr充電し、この後に6Ωの
抵抗素子を用いて2.5Vまで放電させるサイクルを行
った。実施例1〜11、および比較例1〜4の電池につ
いて、内部抵抗値、5サイクル目放電容量、10サイク
ル目放電容量、重量エネルギー密度、100サイクル目
放電容量、および2A負荷放電容量を測定した結果は、
表2に示すとおりである。
Next, using the batteries of Examples 1 to 11 and Comparative Examples 1 to 4 shown in Table 1, 3.5 hours was charged at a charging current of 0.5 A and an upper limit voltage of 4.20 V, and then 6Ω. A cycle of discharging up to 2.5 V was performed using the resistance element of. With respect to the batteries of Examples 1 to 11 and Comparative Examples 1 to 4, the internal resistance value, the 5th cycle discharge capacity, the 10th cycle discharge capacity, the weight energy density, the 100th cycle discharge capacity, and the 2A load discharge capacity were measured. Result is,
It is as shown in Table 2.

【0071】[0071]

【表2】 [Table 2]

【0072】この様に充放電サイクル性能は何れもほぼ
同等の性能が得られ、充放電は実用に耐えられるもので
ある一方、電池の重量が軽量化できることは金属性の集
電体を用いないことから、有利に作用し、電池を携帯用
に適用する際には大いに効果がある。上記の結果でも重
量エネルギー密度が向上しており、新たに電池を大型化
するに際しても効果が大きく、電池を軽量でしかも出力
の大きなものを作る際に有効である。
As described above, the charging / discharging cycle performances are almost the same, and the charging / discharging can be practically used. On the other hand, the fact that the weight of the battery can be reduced does not use a metallic current collector. Therefore, it has an advantageous effect and is very effective when the battery is applied in a portable manner. The above results also show that the weight energy density is improved, the effect is great even when the battery is newly enlarged, and it is effective when the battery is lightweight and has a large output.

【0073】また、集電体のシート状膜に樹脂シートを
用いていることにより、落下時の衝撃がセパレータと集
電シートの両方に分散される、樹脂シートは弾性を有し
ていることから金属体の様に1箇所に集中せず周りも変
形して、過度の応力集中に至らない。
Further, by using the resin sheet for the sheet-like film of the current collector, the impact at the time of dropping is dispersed to both the separator and the current collecting sheet. Since the resin sheet has elasticity. Unlike a metal body, it does not concentrate in one place and deforms the surroundings, so excessive stress concentration does not occur.

【0074】樹脂であることから、何らかの力に対し
て、金属で見られる、直線的破断はせず、シート自体が
伸びながら切れて行く破壊となる、したがって、集電体
全体での同時的破断はせず、徐々に破壊する形態をと
る。
Since it is a resin, it does not undergo linear breakage, which is seen in metal, against some force, and the sheet itself breaks as it stretches. Therefore, simultaneous breakage of the entire current collector occurs. It does not do so, but takes the form of gradually destroying.

【0075】以上のことから、本例によれば、電極の集
電体として導電性の金属を表面に有する樹脂シートの薄
膜体を用いることで電池の軽量化が可能であり、この所
定の導電層厚みを有することで従来から用いられてきた
金属箔と同等の性能を発揮できる点からも本発明の範囲
での導電性を有するシートを用いることが極めて効果を
大とするものである。
From the above, according to the present example, it is possible to reduce the weight of the battery by using the thin film body of the resin sheet having the conductive metal on the surface as the current collector of the electrode. The use of a conductive sheet within the scope of the present invention is extremely effective in that it has the same thickness as the conventionally used metal foil due to the layer thickness.

【0076】導電性集電シートとして用いる樹脂シート
の厚みに関しては正負Mixの塗布を実用的に行うため
に、シートの強度をある程度以上有する必要があり塗膜
の均一性を保つために機械による引っ張りに耐えられる
ように3kgf/cm以上の破断強度が必要である。特
に塗膜の均一性を保つうえから4kgf/cmのシート
を用いることが望ましい。
Regarding the thickness of the resin sheet used as the conductive current collector sheet, in order to practically apply the positive and negative mix, it is necessary to have the strength of the sheet to a certain extent or more. In order to withstand the above, a breaking strength of 3 kgf / cm or more is required. In particular, it is desirable to use a sheet of 4 kgf / cm in order to maintain the uniformity of the coating film.

【0077】導電性薄膜の厚みとしては、導電性薄膜の
製造が困難となるのを防止するために5μm以上である
ことが好ましい。また、膜の強度、電極の成型性、電池
重量の点から20μm以下であることが好ましい。
The thickness of the conductive thin film is preferably 5 μm or more in order to prevent the production of the conductive thin film from becoming difficult. Further, it is preferably 20 μm or less from the viewpoint of film strength, electrode moldability, and battery weight.

【0078】導電膜は電池の軽量化からより薄いものが
望ましく、片面0.05〜2μm程度の範囲にあること
が好ましい(図2参照)。また活物質との、導通を確保
するためには、導電膜厚みは0.02μm程度以上ある
ことが好ましい。
It is desirable that the conductive film is thinner in order to reduce the weight of the battery, and it is preferable that the conductive film is in the range of 0.05 to 2 μm on one side (see FIG. 2). Further, in order to ensure electrical continuity with the active material, the thickness of the conductive film is preferably about 0.02 μm or more.

【0079】なお、本発明は、必ずしも上述した実施例
に限定されるものではない。すなわち、樹脂シート状膜
としては、PET、PBT、またはPENなどのポリエ
ステルのほか、他のポリエステル、ポリエーテルエーテ
ルケトン、ポリイミド、またはポリプロピレン等を用い
ることができる。
The present invention is not necessarily limited to the above embodiment. That is, as the resin sheet film, polyester such as PET, PBT, or PEN, as well as other polyester, polyether ether ketone, polyimide, polypropylene, or the like can be used.

【0080】また、シート状膜の表層の導電性金属とし
ては正極として用いる場合、アルミニウム、またはニッ
ケルのほか、ニッケル白金、チタン、または亜鉛等を用
いることができる。また負極として用いる場合、銅、ニ
ッケル、またはSUSのほか、パラジウム、銀、または
チタン等を用いることができる。
As the conductive metal for the surface layer of the sheet-shaped film, when used as a positive electrode, nickel platinum, titanium, zinc or the like can be used in addition to aluminum or nickel. When used as the negative electrode, in addition to copper, nickel, or SUS, palladium, silver, titanium, or the like can be used.

【0081】また、表層の導電膜の成形方法としては真
空蒸着法、または無電解メッキ法のほか、電解メッキ箔
(2μm以下)の圧着法、または金属熔射薄膜成形法等
を用いることができる。
As the method for forming the surface conductive film, a vacuum deposition method or an electroless plating method, a pressure bonding method for electrolytically plated foil (2 μm or less), a metal sprayed thin film forming method, or the like can be used. .

【0082】また、電極の製造方法に関しても、本実施
例に記される方法以外でも実現可能である。とりわけ、
電極の活物質は種々のものを用いることができ、非水電
解液電池であれば、いずれも適用可能である。
The method of manufacturing the electrode can also be realized by methods other than the method described in this embodiment. Above all,
Various active materials can be used for the electrodes, and any non-aqueous electrolyte battery can be applied.

【0083】例えば、正極活物質としてはLiCoO2
のほか、LiNiO2 、LiCoxNi1-x 2 、Li
Mn2 4 、LiMnO2 、LiFeO2 、MoO2
MoO3 、MoS2 、TiS2 、LiTiO2 、V2
5 、V3 6 、Lix VOy、MnO2 等さまざまな材
料が使用可能であり、負極活物質としてはガラス状炭素
に近い炭素材料のほか、金属リチウムはもちろんリチウ
ム合金、リチウムをドープ/脱ド−プ可能な他の炭素や
リチウム金属化合物が使用可能である。
For example, as the positive electrode active material, LiCoO 2
In addition to LiNiO 2 , LiCo x Ni 1-x O 2 , Li
Mn 2 O 4 , LiMnO 2 , LiFeO 2 , MoO 2 ,
MoO 3 , MoS 2 , TiS 2 , LiTiO 2 , V 2 O
Various materials such as 5 , V 3 O 6 , Li x VO y , and MnO 2 can be used. In addition to carbon materials close to glassy carbon as the negative electrode active material, lithium alloys and lithium alloys and lithium are doped / Other dedopable carbon and lithium metal compounds can be used.

【0084】また、電池の形状は円筒型のほか、平板
状、直方体等の形状に適用可能である。
The shape of the battery is not limited to the cylindrical shape, but may be a flat plate shape, a rectangular parallelepiped shape, or the like.

【0085】また、本発明は上述の実施例に限らず本発
明の要旨を逸脱することなくその他種々の構成を採り得
ることはもちろんである。
Further, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0086】[0086]

【発明の効果】以上説明したように、従来の方法ではエ
ネルギー密度が大きく、軽量でしかも大型電池に適用で
きる電池にすることは難しく、種々の電池に対して性能
/軽量化を達成するには本発明の方法を用いることで、
より高性能な電池を製造できる。
As described above, according to the conventional method, it is difficult to obtain a battery which has a large energy density, is lightweight and can be applied to a large battery, and it is difficult to achieve performance / weight reduction for various batteries. By using the method of the present invention,
Batteries with higher performance can be manufactured.

【0087】本発明の集電体、すなわち樹脂シート状膜
に導電性金属を表層に有する導電性薄膜に、正極あるい
は負極活物質混合物を塗布した電極を電池に用いた電池
は電池の重量を軽くすることができ、特に集電材として
金属銅箔/ネットを用いた電池に比較すると集電体部分
だけでの比較で1/4〜1/6程度まで集電体を軽量化
できる。
The current collector of the present invention, that is, a battery in which a positive electrode or a negative electrode active material mixture electrode is applied to a conductive thin film having a conductive metal on the surface of a resin sheet film as a battery, is light in weight. In particular, compared with a battery using a metal copper foil / net as a current collector, the current collector can be reduced in weight by about 1/4 to 1/6 in comparison with only the current collector portion.

【0088】樹脂シートがポリエステル、ポリエーテル
エーテルケトン、ポリイミドを用いる場合、バインダー
との結着力の増大が期待でき、活物質の導電部からのハ
クリや脱落を防止できる効果を併せて期待できる。
When polyester, polyetheretherketone, or polyimide is used for the resin sheet, the binding force with the binder can be expected to increase, and the effect of preventing the active material from peeling or falling off from the conductive portion can be expected together.

【0089】活物質のバインダーとしてポリフッ化ビニ
リデン、ポリテトラフロロエチレンなどの他にポリエス
テル樹脂、ポリエチレン等も使用することが可能とな
り、電極製造が容易になり価格低減に効果がある。
Polyvinylidene fluoride, polytetrafluoroethylene, etc., as well as polyester resin, polyethylene, etc. can be used as the binder of the active material, which facilitates the production of electrodes and is effective in reducing the cost.

【0090】さらに導電性膜の部分での衝撃吸収が期待
でき、振動の衝撃を緩和できる。
Furthermore, shock absorption at the conductive film portion can be expected, and shock of vibration can be alleviated.

【0091】電池の異常発熱時、あるいは局部発熱状態
での電極の集電機構、集電機構が樹脂シート状膜である
ことで溶融が起こり導電性の停止が期待できる。
When the battery is abnormally heated, or when the electrode current collecting mechanism or the current collecting mechanism is a resin sheet-shaped film when the battery is locally heated, melting can occur and the conductivity can be expected to stop.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明非水電解液二次電池の一実施例を示す構
成図である。
FIG. 1 is a configuration diagram showing an embodiment of a non-aqueous electrolyte secondary battery of the present invention.

【図2】導電膜厚みと重量エネルギー密度の関係を示す
図である。
FIG. 2 is a diagram showing a relationship between a conductive film thickness and a weight energy density.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレータ 4 絶縁板 5 電池缶 6 封口ガスケット 7 電池蓋 8 安全弁装置 9 PTC素子 10 負極集電体 11 正極集電体 12 負極リード 13 正極リード 14 センターピン 1 Negative electrode 2 Positive electrode 3 Separator 4 Insulating plate 5 Battery can 6 Sealing gasket 7 Battery lid 8 Safety valve device 9 PTC element 10 Negative electrode current collector 11 Positive electrode current collector 12 Negative electrode lead 13 Positive electrode lead 14 Center pin

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極にLix MO2 (M=Ni、Co、
Fe、Mnより選ばれてなる)を用い、負極にリチウム
金属もしくはリチウム合金、またはリチウムをドープ/
脱ドープ可能な炭素材料を用いた非水電解液二次電池に
おいて、 正極および負極の双方またはいずれか一方の集電体とし
て、樹脂シート状膜に導電性金属を表層に有する導電性
薄膜を用いたことを特徴とする非水電解液二次電池。
1. A positive electrode having Li x MO 2 (M = Ni, Co,
Fe or Mn), and the negative electrode is doped with lithium metal or a lithium alloy, or lithium.
In a non-aqueous electrolyte secondary battery using a carbon material that can be dedoped, use a conductive thin film having a conductive metal on the resin sheet film as the current collector for the positive electrode and / or the negative electrode. The non-aqueous electrolyte secondary battery characterized in that
【請求項2】 樹脂シート状膜は、ポリエステル、ポリ
エーテルエーテルケトン、ポリイミド、またはポリオレ
フィンからなることを特徴とする請求項1記載の非水電
解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the resin sheet film is made of polyester, polyetheretherketone, polyimide, or polyolefin.
【請求項3】 樹脂シート状膜は、その厚みが5〜20
μmの範囲にあることを特徴とする請求項1記載の非水
電解液二次電池。
3. The resin sheet film has a thickness of 5 to 20.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is in the range of μm.
【請求項4】 導電性金属は、銅、ニッケル、またはア
ルミニウムであることを特徴とする請求項1記載の非水
電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive metal is copper, nickel, or aluminum.
【請求項5】 導電性金属は、その膜厚が0.05〜2
μmの範囲にあることを特徴とする請求項1記載の非水
電解液二次電池。
5. The conductive metal has a thickness of 0.05 to 2
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is in the range of μm.
JP7279227A 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery Pending JPH09120818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7279227A JPH09120818A (en) 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7279227A JPH09120818A (en) 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09120818A true JPH09120818A (en) 1997-05-06

Family

ID=17608210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7279227A Pending JPH09120818A (en) 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09120818A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JP2000100443A (en) * 1998-09-25 2000-04-07 Mitsubishi Chemicals Corp Electrode base material film for secondary battery and secondary battery
JP2000357517A (en) * 1999-06-14 2000-12-26 Matsushita Electric Ind Co Ltd Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery
WO2004023584A1 (en) * 2002-08-29 2004-03-18 Toyo Kohan Co., Ltd. Composite current collector
JP2004165098A (en) * 2002-11-15 2004-06-10 Sony Corp Negative electrode and battery, and manufacturing method of same
JP2004527068A (en) * 2000-12-21 2004-09-02 モルテック・コーポレーション Lithium negative electrode for electrochemical cells
JP2004253270A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Battery electrode plate provided with ptc element and battery using it
JP2004311146A (en) * 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Method for manufacturing electrode plate of battery
WO2004059781A3 (en) * 2002-12-27 2005-02-24 Avestor Ltd Partnership Current collector for electrochemical cells and electrochemical generators thereof
JP2005108835A (en) * 2003-09-26 2005-04-21 Samsung Sdi Co Ltd Rechargeable lithium-ion secondary battery
KR100497249B1 (en) * 2003-04-28 2005-06-23 삼성에스디아이 주식회사 Lithium ion secondary battery
US7217476B2 (en) * 2002-09-11 2007-05-15 Sony Corporation Battery
JP2007335308A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2010010364A (en) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd Polarizable electrode for electric double-layer capacitor and its production process
WO2010016432A1 (en) * 2008-08-08 2010-02-11 シャープ株式会社 Battery
JP2012048913A (en) * 2010-08-25 2012-03-08 Sharp Corp Collector and electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US8663832B2 (en) 2007-08-15 2014-03-04 Nissan Motor Co., Ltd. Cell for reducing short circuit and battery incorporating the cell
CN103915647A (en) * 2014-03-31 2014-07-09 上虞安卡拖车配件有限公司 Low-temperature lithium ion battery
US9548497B2 (en) 2011-06-10 2017-01-17 Eaglepicher Technologies, Llc Layered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
EP3367485A4 (en) * 2017-01-12 2018-09-12 Contemporary Amperex Technology Co., Limited Current collector, pole plate and battery thereof, and application
JP2019102428A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
JP2019522874A (en) * 2016-06-14 2019-08-15 ソルヴェイ(ソシエテ アノニム) Flexible battery
CN110600745A (en) * 2019-09-05 2019-12-20 东莞市烯热材料科技有限公司 Preparation method of novel polyimide composite negative current collector for lithium ions
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery
JP2020184497A (en) * 2019-04-26 2020-11-12 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
JP2022528846A (en) * 2019-05-31 2022-06-16 寧徳時代新能源科技股▲分▼有限公司 Negative electrode current collector, negative electrode sheet and electrochemical device
JP2022528832A (en) * 2019-05-31 2022-06-16 寧徳時代新能源科技股▲分▼有限公司 Negative electrode current collector, negative electrode sheet, electrochemical device and equipment
US11539050B2 (en) 2017-01-12 2022-12-27 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and battery containing the same, and application thereof
JP2023508672A (en) * 2019-12-24 2023-03-03 ユーアンドエス エナジー インコーポレイテッド Current collector for positive electrode

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213338A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Battery and lithium ion secondary battery
JP2000100443A (en) * 1998-09-25 2000-04-07 Mitsubishi Chemicals Corp Electrode base material film for secondary battery and secondary battery
JP2000357517A (en) * 1999-06-14 2000-12-26 Matsushita Electric Ind Co Ltd Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP2004527068A (en) * 2000-12-21 2004-09-02 モルテック・コーポレーション Lithium negative electrode for electrochemical cells
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery
WO2004023584A1 (en) * 2002-08-29 2004-03-18 Toyo Kohan Co., Ltd. Composite current collector
US7217476B2 (en) * 2002-09-11 2007-05-15 Sony Corporation Battery
JP2004165098A (en) * 2002-11-15 2004-06-10 Sony Corp Negative electrode and battery, and manufacturing method of same
WO2004059781A3 (en) * 2002-12-27 2005-02-24 Avestor Ltd Partnership Current collector for electrochemical cells and electrochemical generators thereof
US6933077B2 (en) 2002-12-27 2005-08-23 Avestor Limited Partnership Current collector for polymer electrochemical cells and electrochemical generators thereof
JP2004253270A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Battery electrode plate provided with ptc element and battery using it
JP2004311146A (en) * 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Method for manufacturing electrode plate of battery
KR100497249B1 (en) * 2003-04-28 2005-06-23 삼성에스디아이 주식회사 Lithium ion secondary battery
JP2005108835A (en) * 2003-09-26 2005-04-21 Samsung Sdi Co Ltd Rechargeable lithium-ion secondary battery
CN100452521C (en) * 2003-09-26 2009-01-14 三星Sdi株式会社 Rechargable lithium ion cell
US7560192B2 (en) 2003-09-26 2009-07-14 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery
US7736809B2 (en) 2003-09-26 2010-06-15 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery
JP2007335308A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
US8663832B2 (en) 2007-08-15 2014-03-04 Nissan Motor Co., Ltd. Cell for reducing short circuit and battery incorporating the cell
JP2010010364A (en) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd Polarizable electrode for electric double-layer capacitor and its production process
WO2010016432A1 (en) * 2008-08-08 2010-02-11 シャープ株式会社 Battery
JP4649502B2 (en) * 2008-08-08 2011-03-09 シャープ株式会社 Lithium ion secondary battery
JP2010040489A (en) * 2008-08-08 2010-02-18 Sharp Corp Lithium-ion secondary battery
JP2012048913A (en) * 2010-08-25 2012-03-08 Sharp Corp Collector and electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US9548497B2 (en) 2011-06-10 2017-01-17 Eaglepicher Technologies, Llc Layered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
CN103915647A (en) * 2014-03-31 2014-07-09 上虞安卡拖车配件有限公司 Low-temperature lithium ion battery
JP2019522874A (en) * 2016-06-14 2019-08-15 ソルヴェイ(ソシエテ アノニム) Flexible battery
EP3367485A4 (en) * 2017-01-12 2018-09-12 Contemporary Amperex Technology Co., Limited Current collector, pole plate and battery thereof, and application
US11539050B2 (en) 2017-01-12 2022-12-27 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and battery containing the same, and application thereof
JP2019102428A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
US10658673B2 (en) 2017-12-05 2020-05-19 Contemporary Amperex Technology Co., Limited Battery
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery
JP2021082612A (en) * 2019-04-26 2021-05-27 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
JP2020184497A (en) * 2019-04-26 2020-11-12 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
JP2022528846A (en) * 2019-05-31 2022-06-16 寧徳時代新能源科技股▲分▼有限公司 Negative electrode current collector, negative electrode sheet and electrochemical device
JP2022528832A (en) * 2019-05-31 2022-06-16 寧徳時代新能源科技股▲分▼有限公司 Negative electrode current collector, negative electrode sheet, electrochemical device and equipment
CN110600745A (en) * 2019-09-05 2019-12-20 东莞市烯热材料科技有限公司 Preparation method of novel polyimide composite negative current collector for lithium ions
JP2023508672A (en) * 2019-12-24 2023-03-03 ユーアンドエス エナジー インコーポレイテッド Current collector for positive electrode

Similar Documents

Publication Publication Date Title
JPH09120818A (en) Nonaqueous electrolyte secondary battery
US7462422B2 (en) Positive electrode active material and non-aqueous electrolyte secondary cell
KR101309430B1 (en) Battery
JP4905267B2 (en) Positive electrode mixture and non-aqueous electrolyte battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3436600B2 (en) Rechargeable battery
TW478200B (en) Positive electrode active material for a non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same
JP2001015146A (en) Battery
JPH08171917A (en) Cell
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JPH11219731A (en) Organic electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2002075460A (en) Lithium secondary cell
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JPH10261429A (en) Battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JPH08180878A (en) Lithium secondary battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JPH0434855A (en) Spiral type non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313