JPH0935715A - Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery - Google Patents

Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery

Info

Publication number
JPH0935715A
JPH0935715A JP20736095A JP20736095A JPH0935715A JP H0935715 A JPH0935715 A JP H0935715A JP 20736095 A JP20736095 A JP 20736095A JP 20736095 A JP20736095 A JP 20736095A JP H0935715 A JPH0935715 A JP H0935715A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
electrode
material
positive
active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20736095A
Other languages
Japanese (ja)
Other versions
JP3543437B2 (en )
Inventor
Naoyuki Kato
Takao Nirasawa
Yoshikatsu Yamamoto
尚之 加藤
佳克 山本
貴夫 韮澤
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54Manufacturing of lithium-ion, lead-acid or alkaline secondary batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which an electrode filling property is high and a high energy density is obtained and which excels in a heavy load cycle characteristic by manufacturing a positive electrode active material in which a high electrode filling property is obtained and at the sane time a wide reaction area is ensured and using the obtained positive electrode active material. SOLUTION: A surface of a core particle 34 comprising either one of predetermined lithium-containing compounds is covered with very fine particles 35 of a lithium-containing compound, thereby producing a composite particle 36. The composite particle is used as a positive electrode active material of a battery.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、正極活物質の製造方法及びそれを用いた非水電解液二次電池に関する。 The present invention relates to relates to a method for manufacturing and a non-aqueous electrolyte secondary battery using the same positive electrode active material.

【0002】 [0002]

【従来の技術】近年の電子技術のめざましい進歩により、電子機器の高性能化、小型化、ポータブル化が進み、これら電子機器に使用される電池に対しても高エネルギーであることが求められるようになっている。 The remarkable progress of the Related Art In recent years electronic technology, the performance of electronic devices, miniaturization, portable and advances, so that it is high energy is required even for batteries used in these electronic devices It has become.

【0003】従来より、電子機器に使用されている二次電池としてはニッケル・カドミウム電池や鉛電池等の水溶液系の二次電池が挙げられる。 Conventionally, as a secondary battery used in electronic equipment include a secondary battery of aqueous systems such as nickel-cadmium batteries and lead batteries. しかし、これら水溶液系の二次電池は、放電電位が低く、近年要求されるエネルギー密度の向上には十分に応えられないのが実情である。 However, the secondary batteries of the aqueous solution system, discharge potential is low, it is actual circumstances not adequately be met in improving the energy density that is required in recent years.

【0004】一方、最近、高エネルギー密度が得られる電池システムとして、金属リチウムやリチウム合金を負極活物質として使用するリチウム二次電池が注目され、 On the other hand, recently, as a battery system high energy density is obtained, it is noted lithium secondary battery using metal lithium or a lithium alloy as a negative electrode active material,
盛んに研究が行われている。 Active research is being carried out.

【0005】しかしながら、この二次電池においては、 [0005] However, in the secondary battery,
金属リチウムを負極活物質として用いた場合には、負極上でリチウムが溶解、析出する際に当該負極から金属リチウムがデンドライト状に結晶成長し、ついには正極に到達して内部ショートに至るといった可能性が高い。 In the case of using metallic lithium as the negative electrode active material, can such lithium dissolved in the negative electrode, metal lithium from the negative electrode is grown into a dendrite shape during the deposition, finally leading to an interior short circuit to reach the cathode high sex. またリチウム合金を負極活物質として用いた場合には、やはり負極上でリチウムが溶解、析出することによって負極が微細化し、負極性能の劣化が招来される。 In the case of using a lithium alloy as a negative electrode active material is also a lithium dissolution, the negative electrode is miniaturized by precipitation, deterioration of the negative electrode performance is incurred again on the negative electrode. いずれにしてもリチウム二次電池は、サイクル寿命、安全性、急速充電性能等において問題点が認識され、このことが実用化に対する大きな障害となっており、一部コイン型として実用化されているに過ぎない。 Lithium secondary batteries In any case, cycle life, safety, problems in rapid charging performance and the like is recognized, this has been a major obstacle to commercialization, it has been practically used as part coin type only.

【0006】そこで、このような問題点を解消するために、炭素質材料のようなリチウムイオンをドープ・脱ドープすることが可能な物質を負極活物質とする非水電解液二次電池(リチウムイオン二次電池)の研究開発が盛んに行われている。 [0006] In order to solve such a problem, a non-aqueous electrolyte secondary battery (lithium for a lithium ion a substance capable of doping and dedoping a negative electrode active material such as carbonaceous material research and development of ion secondary battery) has been actively conducted. この非水電解液二次電池では、電池系内でリチウムが金属状態で存在しないため、負極から金属リチウムがデンドライト状に結晶成長するといったこともなく、良好なサイクル特性、安全性が得られることになる。 In this nonaqueous electrolyte secondary battery, since lithium in the battery system is not present in the metallic state, without even such metal lithium from the negative electrode is grown into a dendrite shape, good cycle characteristics, the safety is obtained become.

【0007】また、このような非水電解液二次電池では、特に正極活物質として酸化還元電位の高いリチウム含有化合物を用いることにより、電池電圧が高くなり、 Further, in such a non-aqueous electrolyte secondary battery, in particular by using a high oxidation-reduction potential of lithium-containing compound as a positive electrode active material, the higher the battery voltage,
エネルギー密度が高められる。 Energy density is increased. さらに、自己放電がニッケル・カドミウム電池と比較して小さく、二次電池として非常に優れた性能を発揮する。 Further, self-discharge is small as compared with the nickel-cadmium batteries, exhibits very excellent performance as a secondary battery. このように炭素質材料を負極活物質とする非水電解液二次電池は、優れた特性を有することから例えば8m/mVTR、CDプレーヤー、ラップトップ・コンピューター、セルラーテレフォン等のポータブル用電子機器の電源として商品化が開始されている。 Thus non-aqueous electrolyte secondary battery using carbonaceous material as the negative electrode active material, excellent example from 8m / MVTR to have properties, CD player, laptop computers, portable electronic devices such as cellular telephone commercialization has been started as a power source.

【0008】ところで、二次電池が用いられるポータブル用電子機器においては、機能の多様化等に伴って消費電力が増大する傾向にある。 By the way, in the portable electronic equipment used secondary batteries, the power consumption with the diversification of functions tends to increase. このため、電源となる電池に対しても、エネルギー密度の向上とともに重負荷サイクル特性についてもさらなる改善が求められるようになっている。 Therefore, even for a battery as a power source, so that further improvement is required also for the heavy duty cycle characteristics with increase of energy density.

【0009】ここで、電池の重負荷サイクル特性は電極での反応面積に大きく依存する。 [0009] Here, a heavy duty cycle characteristics of the battery greatly depends on the reaction area of ​​the electrode. すなわち、電池では、 In other words, in the battery,
電極の反応面積が大きい場合に良好な重負荷サイクル特性が得られる。 Good heavy load cycle characteristics when the reaction area of ​​the electrode is large is obtained.

【0010】このような点から、リチウムイオン二次電池の電池形態として主に採用されている円筒型電池とコイン型電池を見ると、まず円筒型電池では、集電体となる帯状金属箔表面に電極合剤層が形成された薄膜状の正極と負極を、セパレータを介して複数層積層し、これを巻回して形成される巻回型電極体が用いられ、いわゆるジェリーロールタイプとされている。 [0010] From this point of view, looking at the cylindrical battery and coin type battery, which is mainly used as a battery of the lithium ion secondary battery, the first cylindrical battery, the strip metallic foil surface as a collector the positive electrode and the negative electrode of the thin film of the electrode mixture layer is formed, a plurality of layers laminated via a separator, this wound electrode body formed by winding is used, is a so-called jelly roll type there. なお、電極合剤層とは、負極の場合では、炭素質材料の粉末と結着剤を有機溶媒に分散させた負極合剤スラリーを、集電体表面に塗布、乾燥させることで形成される層である。 Note that the electrode mixture layer, in the case of the negative electrode is formed by the anode mixture slurry dispersed in an organic solvent a powder and a binder of the carbonaceous material, coated on the current collector surface and dried it is a layer. 正極の場合では、リチウム含有化合物の粉末と結着剤及び導電剤を有機溶媒に分散させた正極合剤スラリーを、やはり集電体表面に塗布乾燥させることで形成される層である。 In the case of the positive electrode is a layer formed powder and a binder of a lithium-containing compound and a conductive agent mixture slurry dispersed in an organic solvent, also by causing coating and drying on the surface of the current collector.

【0011】このような薄膜状電極が複数積層された巻回電極体は、比較的反応面積が大きく得られ、急速充電が可能であるとともに長サイクル寿命が得られる。 [0011] Such thin film electrodes have multiple stacked wound electrode body is relatively reaction area is obtained large, long cycle life can be obtained with a possible rapid charging.

【0012】一方、コイン型電池では、電極合剤を電池缶形状に合わせて圧縮成型することで得られるペレット状の正極と負極が、セパレータを間に挟んで積層されたかたちで電池缶内に収納される。 Meanwhile, the coin-type battery, the electrode mixture pellet-like positive electrode and the negative electrode obtained by compression molding in accordance with the battery can shape, the battery can in a form stacked in between the separator It is housed.

【0013】このようなペレット状の電極が積層された電池の場合、電極反応はセパレータに対向した正極,負極の表面から進行し易いものと考えられ、この表面から遠い部分程電極反応が遅くなる。 [0013] When a battery such pellet-shaped electrode are stacked, the electrode reaction is positive facing the separator, believed easily proceeds from the surface of the negative electrode, the electrode reaction becomes slow farther part from the surface . このため、電極厚さが厚くなると、セパレータに対向した表面から遠い部分では、見かけ上の過電圧状態になり易く、活物質の劣化が進行する。 Therefore, when the electrode thickness is increased, the portion away from the opposed surfaces to the separator, tends to over-voltage conditions on the apparent degradation of the active material proceeds. このため、十分なサイクル特性や負荷特性等が得られない。 Therefore, sufficient cycle characteristics and load characteristics are obtained.

【0014】コイン型電池の反応面積を増大させるために、電極を厚さ方向に分断し、間に集電体を介在させた電極構成も考えられている。 In order to increase the reaction area of ​​the coin-type battery, and divide the electrode in the thickness direction, it is also considered electrode configuration is interposed a current collector between. しかしながら、この場合には、電池缶容積の一部を集電体が占めることになることから、その分電極合剤の充填率が低くなり、電池容量が小さくなるといった不都合がある。 However, in this case, since it will occupy a part of the battery can volume the current collector, the filling ratio of the partial electrode mixture is lowered, there is a disadvantage battery capacity is reduced.

【0015】 [0015]

【発明が解決しようとする課題】このようにこれまでの非水電解液二次電池では、電極形態によってその度合いは異なるが、電極の反応面積を確保しようとすると電極充填性が小さくなるといった問題があり、エネルギー密度を維持しながら重負荷特性を改善するのが非常に困難である。 BRIEF Problem to be Solved] Thus, in the non-aqueous electrolyte secondary batteries so far, the degree is different depending electrode configuration, a problem electrode packing property when you try to ensure reaction area of ​​the electrode is reduced There are, it is very difficult to improve the heavy load characteristics while maintaining the energy density.

【0016】そこで、本発明は、このような従来の実情に鑑みて提案されたものであり、電極を構成したときに、高い電極充填性が得られるとともに広い反応面積が確保される正極活物質の製造方法を提供することを目的とする。 [0016] Therefore, the present invention has such a proposed in view of the conventional situation, the positive electrode active material when constituting an electrode, a wide reaction area with a high electrode packing property can be obtained is assured and to provide a method of manufacturing. また、そのような製造方法で得られた正極活物質を用いることにより、電極充填性が高く、高エネルギー密度が得られるとともに、重負荷サイクル特性に優れた非水電解液二次電池を提供することを目的とする。 Moreover, by using the positive electrode active material obtained in such a manufacturing method, the electrode packing property is high, with a high energy density is obtained, provides an excellent non-aqueous electrolyte secondary battery to a heavy duty cycle characteristics and an object thereof.

【0017】 [0017]

【課題を解決するための手段】上述の目的を達成するために本発明の正極活物質の製造方法は、Li x CoO 2 Means for Solving the Problems] The method for producing a positive electrode active material of the present invention to achieve the above object of, Li x CoO 2,
Li x NiO 2 、Li x Mn 24 、Li x Co 1-yy2 Li x NiO 2, Li x Mn 2 O 4, Li x Co 1-y M y O 2,
Li x Ni 1-yy2 、L x Mn 1-yy2 (但し、Mは、 Li x Ni 1-y M y O 2, L x Mn 1-y M y O 2 ( where, M is
Ti,V,Cr,Mn,Fe,Al,Co,Ni,C Ti, V, Cr, Mn, Fe, Al, Co, Ni, C
u,Zn,Mo,Bi,Bから選ばれる少なくとも1種の元素を表し、xは0<x≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆することによって複合粒子を生成する。 u, Zn, Mo, represents at least one element Bi, selected from B, either x is 0 <x ≦ 1.2, y is 0 <a lithium-containing compound represented by y <1) the surface of the more becomes the core particles, to produce a composite particle by coating either become more particles of lithium-containing compounds.

【0018】なお、このようにして正極活物質を製造するに当たっては、芯粒子に微粒子が被覆した状態、すなわち複合粒子としての平均粒径r 1とその芯粒子の平均粒径r 2及び芯粒子の回りを被覆する微粒子の平均粒径r 3が適正であることが重要である。 [0018] Incidentally, in manufacturing the positive electrode active material in this manner had an average particle size r 2 and the core particles in a state in which fine particles are coated on the core particles, i.e. the average particle diameter r 1 of the composite particles that the core particles it is important that the average particle diameter r 3 of the fine particles covering the around is correct.

【0019】すなわち、複合粒子自体の平均粒径r 1とその芯粒子の平均粒径r 2の比r 1 /r 2が、1.01≦ [0019] That is, the ratio r 1 / r 2 of the average particle diameter r 2 of the average particle diameter r 1 and its core particles of the composite particles themselves, 1.01 ≦
1 /r 2 ≦2であることが望ましく、微粒子の平均粒径r 3と芯粒子の平均粒径r 2の比r 3 /r 2が、r 3 /r 2 r 1 / r is preferably a 2 ≦ 2, the ratio r 3 / r 2 having an average particle diameter r 2 of the average particle diameter r 3 and the core particles of the fine particles, r 3 / r 2
1/5であるとさらに好ましい。 Further preferably 1/5. 但し、ここで言う平均粒径とはメジアン径、すなわち積算分布の50%に対する粒子径である。 However, the average particle diameter referred to here is a particle size to 50% of the median size, i.e. cumulative distribution.

【0020】また、生成された複合粒子は、その後熱処理を施すようにしても良い。 [0020] The generated composite particles, may be subsequently subjected to a heat treatment.

【0021】本発明の非水電解液二次電池は、このようにして製造される複合粒子を正極活物質として正極が構成される。 The non-aqueous electrolyte secondary battery of the present invention, the positive electrode is constituted of composite particles which are produced as a positive electrode active material in this way. なお、この場合、負極は、リチウム金属、リチウム合金またはリチウムをドープ・脱ドープすることが可能な炭素材料を主体として構成される。 In this case, the negative electrode is composed of lithium metal, a carbon material capable of lithium alloys or lithium doping-undoping mainly.

【0022】 [0022]

【発明の実施の形態】本発明の具体的な実施の形態について以下に説明する。 Specific embodiment of the embodiment of the present invention will be described below.

【0023】本発明の正極活物質の製造方法では、図1 [0023] In the method for producing the positive electrode active material of the present invention, FIG. 1
に示すように、Li x CoO 2 、Li x NiO 2 、Li x As shown in, Li x CoO 2, Li x NiO 2, Li x M
24 、Li x Co 1-yy2 、Li x Ni 1-yy2 、L n 2 O 4, Li x Co 1-y M y O 2, Li x Ni 1-y M y O 2, L
x Mn 1-yy2 (但し、Mは、Ti,V,Cr,Mn, x Mn 1-y M y O 2 ( where, M is, Ti, V, Cr, Mn ,
Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,B Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, B
から選ばれる少なくとも1種の元素を表し、xは0<x It represents at least one element selected from, x is 0 <x
≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子34の表面を、これらリチウム含有化合物のいずれかよりなる微粒子35 ≦ 1.2, y is 0 <y <either become more surfaces of the core particles 34 of a lithium-containing compound represented by a is) 1, fine particles 35 made of more of any of these lithium-containing compounds
で被覆することによって複合粒子36を生成する。 In generating a composite particle 36 by coating.

【0024】リチウム含有化合物よりなる芯粒子34の表面に、リチウム含有化合物よりなる微粒子35を被覆させる方法としては、高速気流中衝撃法が挙げられる。 [0024] surface of the core particles 34 of a lithium-containing compound, as a method for coating the fine particles 35 made of lithium-containing compounds include high speed air stream impact method.
高速気流中衝撃法とは、高速気流中に、粉体と微粒子とが均一に混合されたミクスチャーを分散し、衝撃操作を繰り返し行うことで、粉体に機械的熱的エネルギーを与えるようにしたものである。 The high speed air stream impact method, during high-speed air stream to distribute Mixture of powder and the fine particles are uniformly mixed, by repeating the impact operation, was to provide mechanical thermal energy to the powder it is intended. この作用によって粉体表面に微粒子が均一に付着した状態となり粉体が表面改質される。 This state will powder particles in the powder surface was uniformly deposited by action is surface modified. 参考のため、微粒子によって被覆されていないL For reference, not covered by particles L
iCoO 2芯粒子の走査顕微鏡写真を図2に、LiCo scanning micrograph of ICoO 2 core particles in FIG. 2, LiCo
2微粒子によって被覆された複合粒子の走査顕微鏡写真を図3に示す。 Scanning micrograph of the coated composite particles by O 2 particles is shown in FIG. この場合、芯粒子の平均粒径r 2と微粒子の平均粒径r 3の比r 3 /r 2は0.05である。 In this case, the ratio r 3 / r 2 having an average particle diameter r 2 and an average particle diameter r 3 of the fine particles of the core particles is 0.05. なお、芯粒子と微粒子とは、このように同じ種類のリチウム含有化合物であってもよく、異なる種類のリチウム含有化合物であってもよい。 Note that the core particles and the fine particles, thus may be a lithium-containing compound of the same type, may be different kinds of lithium-containing compounds.

【0025】芯粒子表面を微粒子で被覆したリチウム含有化合物の複合粒子を正極活物質として用いると以下のような効果が得られる。 The following effects and using the composite particles as the positive electrode active material of a lithium-containing compound to the core particle surfaces coated with particles is obtained.

【0026】すなわち、一般に粉体粒子の充填密度は、 [0026] That is, the packing density generally powder particles,
粒子径が大きくなるにつれて高くなる傾向が見られる。 It tends to increases as the particle diameter increases seen.
この傾向はリチウム含有化合物で正極を構成する場合にも当てはまり、粒子径の大きいリチウム含有化合物を用いる程、活物質充填性の高い正極が得られる。 This trend is true also in the case of constituting the positive electrode in a lithium-containing compound, as used large lithium-containing compound having a particle size, high active material filling positive electrode is obtained.

【0027】しかし、粒子径の単純に大きいリチウム含有化合物は、電極充填性は高くできるものの、その比表面積が小さいために、電極反応に寄与する有効反応面積が小さい。 [0027] However, simply large lithium-containing compound of the particle size, although the electrode packing property can be high, because the specific surface area is small, the small effective reaction area contributing to the electrode reaction. したがって、このような単に粒子径の大きいリチウム含有化合物を用いる正極では、負極と対向する面から遠い部分では過電圧状態になり易く、活物質の劣化が進行する。 Thus, the positive electrode using such simply large lithium-containing compound having a particle size, tends to be over-voltage state in the portion far from the anode surface facing the deterioration of the active material proceeds.

【0028】これに対して、芯粒子表面を微粒子で被覆したリチウム含有化合物の複合粒子は、同じ粒径の通常のリチウム含有化合物に比べて比表面積が大きい。 [0028] In contrast, the composite particles of the lithium-containing compound to the core particle surface is coated with fine particles, a large specific surface area compared to conventional lithium-containing compound of the same particle size. このため、粒径を大きくすることで充填性を高めながら、電極反応に有効に寄与する反応面積も十分に確保される。 Therefore, while increasing the filling factor by increasing the particle size, effectively contributes reaction area in the electrode reactions is sufficiently secured.
したがって、この複合粉末を正極に用いると、高いエネルギーが得られると同時に重負荷特性,サイクル特性に優れた電池が実現することになる。 Therefore, using this composite powder in the positive electrode, the heavy load characteristics and at the same time a high energy obtained will realize excellent battery cycle characteristics.

【0029】なお、このような作用を効果的に得るには、芯粒子に微粒子が被覆した状態、すなわち複合粒子としての平均粒径r 1とその芯粒子の平均粒径r 2及び芯粒子の回りを被覆する微粒子の平均粒径r 3が適正であることが重要である。 [0029] In order to obtain such an effect effectively, the core particle state in which fine particles are coated, i.e. the average particle size r 2 and the core particles having an average particle diameter r 1 and its core particles as composite particles it is important that the average particle diameter r 3 of the fine particles covering around is correct.

【0030】すなわち、複合粒子の平均粒径r 1と芯粒子の平均粒径r 2の比r 1 /r 2は、1.01≦r 1 /r 2 [0030] That is, the ratio r 1 / r 2 of the average particle diameter r 2 of the mean particle size r 1 and the core particles of the composite particles, 1.01 ≦ r 1 / r 2
≦2であることが好ましい。 ≦ preferably 2. 1 /r 2が1.01より小さい場合、すなわち微粒子によって形成される被覆層の占める割合が小さ過ぎる場合には、重負荷サイクル特性を十分に改善することができない。 If r 1 / r 2 is 1.01 less, that is, when the proportion of the coating layer formed by the fine particles is too small, it is impossible to sufficiently improve the heavy load cycle characteristics. 逆にr 1 /r 2が2よりも大きい場合、すなわち微粒子によって形成される被覆層の占める割合が大き過ぎる場合には、重負荷サイクル特性が却って悪くなる。 If r 1 / r 2 in the reverse is greater than 2, that is, when the proportion of the coating layer formed by the fine particles is too large, heavy load cycle characteristics rather deteriorated.

【0031】また、微粒子の平均粒径r 3と芯粒子の平均粒径r 2の比r 3 /r 2は1/5以下であることが好ましい。 Further, it is preferable the ratio r 3 / r 2 having an average particle diameter r 2 of the average particle diameter r 3 and the core particles of the fine particles is 1/5 or less. 3 /r 2が1/5より大きい場合、すなわち芯粒子の粒径に対して微粒子の粒径が大き過ぎる場合には、 If r 3 / r 2 is greater than 1/5, i.e. when the particle size of the fine particles is too large with respect to the particle diameter of the core particles,
芯粒子と微粒子の間に隙間が大きく空き、複合粒子構造が壊れる可能性が高い。 Gap free large between the core particles and the fine particles are likely to composite particle structure is broken.

【0032】このうち芯粒子の平均粒径r 2は、具体的には3μm≦r 2 ≦30μmであるのが取扱い上望ましい。 The average particle diameter r 2 of these core particles is given specifically a 3 [mu] m ≦ r 2 ≦ 30 [mu] m is handling desirable.

【0033】なお、芯粒子表面を微粒子で被覆したリチウム複合酸化物の複合粉末には、さらに適度な温度で熱処理を施すようにしても良い。 It should be noted, the core particle surface in the composite powder of the lithium composite oxide coated with fine particles may be subjected to heat treatment at more moderate temperatures. これにより、複合粉末の導電性等の特性が改善され、正極活物質としてさらに優れたものになる。 This improves the properties such as the conductivity of the composite powder, made to that more excellent as the positive electrode active material.

【0034】本発明の非水電解液二次電池は、以上のようにして作製されるリチウム含有化合物を正極活物質として使用する。 The non-aqueous electrolyte secondary battery of the present invention, a lithium-containing compound is produced as described above for use as the positive electrode active material. したがって、高い電極充填性が得られるとともに電極反応面積が十分に確保され、高いエネルギー密度が得られるとともに良好な重負荷サイクル特性が得られる。 Therefore, a sufficiently secure the electrode reaction area with a high electrode packing property can be obtained, satisfactory heavy load cycle characteristics with a high energy density is obtained is obtained.

【0035】一方、電池の負極活物質としては、リチウムやリチウム合金、リチウムをドープ・脱ドープすることが可能な炭素材料が用いられる。 On the other hand, as the negative electrode active material of a battery, a lithium or lithium alloy, a carbon material capable of lithium doping and undoping used. この炭素材料としては、2000℃以下の比較的低い温度で焼成して得られる低結晶性炭素材料、あるいは結晶化しやすい原料を3 As the carbon material, a low crystalline carbon material obtained by baking at a relatively low temperature of 2000 ° C. or less, or easily crystallized material 3
000℃近くの高温で熱処理することで得られる人造黒鉛や天然黒鉛等の高結晶性炭素材料が用いられる。 Highly crystalline carbon materials such as artificial graphite or natural graphite obtained by heat treatment at 000 ° C. near high temperatures used. 具体的には、熱分解炭素類、コークス類(ピッチコークス、 More specifically, pyrolytic carbons, cokes (pitch coke,
ニードルコークス、石油コークス等)、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フラン樹脂などを適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられる。 Needle coke, petroleum coke), graphites, vitreous carbons, organic polymer compound fired body (calcined and furan resins at an appropriate temperature which carbonized), carbon fiber, activated carbon. 特に、(002)面の面間隔が0. In particular, 0 spacing of (002) plane.
370nm以上、真比重が1.70g/cc未満であり、且つ空気気流中における示差熱分析で700℃以上に発熱ピークを有しないといった特性を有する炭素材料が好適である。 370nm or more, a true specific gravity of less than 1.70 g / cc, a carbon material and having properties such no exothermic peak at 700 ° C. or higher in differential thermal analysis in an air stream is preferred.

【0036】また、電解液としては、リチウム塩を支持電解質とし、これを有機溶媒に溶解させた電解液が用いられる。 [0036] As the electrolyte, a lithium salt as supporting electrolyte, an electrolyte solution is used to which was dissolved in an organic solvent.

【0037】有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、 [0037] As the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, .gamma.-butyrolactone,
テトラヒドロフラン、2−メチルテトラヒドロフラン、 Tetrahydrofuran, 2-methyltetrahydrofuran,
1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、スルホラン、メチルスルホラン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート等が使用可能である。 1,3-dioxolane, 4-methyl-1,3-dioxolane, sulfolane, methyl sulfolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate can be used.

【0038】支持電解質としては、LiClO 4 、Li [0038] as a supporting electrolyte, LiClO 4, Li
AsF 6 、LiPF 6 、LiBF 4 、LiB(C 654 AsF 6, LiPF 6, LiBF 4 , LiB (C 6 H 5) 4,
CH 3 SO 3 Li、CF 3 SO 3 Li、LiN(CF 3 CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (CF 3 S
22 、LiC(CF 3 SO 23 、LiCl、LiBr O 2) 2, LiC (CF 3 SO 2) 3, LiCl, LiBr
等が挙げられる。 Etc. The.

【0039】 [0039]

【実施例】本発明の実施例について実験結果に基づいて説明する。 It will be described based on experimental results for the embodiment of EXAMPLES The invention.

【0040】 作製した電池の構成後述の各実験例において作製した電池の構造を図4に示す。 [0040] The structure of the battery produced in each experiment example of the structure below the battery prepared is shown in FIG.

【0041】この非水電解液二次電池は、図4に示すように、負極集電体10に負極活物質を塗布してなる負極1と、正極集電体11に正極活物質を塗布してなる正極2とを、セパレータ3を介して巻回し、この巻回体を上下に絶縁体4を載置した状態で電池缶5に収納してなるものである。 [0041] The non-aqueous electrolyte secondary battery, as shown in FIG. 4, a negative electrode 1 formed by applying an electrode active material on the anode current collector 10, a positive electrode active material is coated on the cathode current collector 11 a positive electrode 2 made Te, are wound through a separator 3 is made by housing the battery can 5 in a state of arranging an insulating member 4 with the winding body up and down.

【0042】前記電池缶5には電池蓋7が封口ガスケット6を介してかしめることによって取付けられ、それぞれ負極リード12及び正極リード13を介して負極1あるいは正極2と電気的に接続され、電池の負極あるいは正極として機能するように構成されている。 The said battery can 5 mounted by the battery cover 7 is caulked with the sealing gasket 6, are connected the negative electrode lead 12 and the cathode lead 13 electrically to the anode 1 or the cathode 2 through a battery It is configured to function as a negative electrode or a positive electrode.

【0043】そして、本実施例の電池では、前記正極リード13は電流遮断機構を有する安全弁装置8に溶接されて取付けられ、この安全弁装置8を介して電池蓋7との電気的接続が図られている。 [0043] In the battery of this embodiment, the positive electrode lead 13 is attached is welded to the safety valve apparatus 8 having a current interrupting mechanism, the electrical connection between the battery lid 7 through the safety valve device 8 is achieved ing.

【0044】このような構成を有する電池において、電池内部の圧力が上昇すると、前記安全弁装置8が押し上げられて変形する。 [0044] In the battery having such a configuration, the pressure inside the battery increases, deforming the safety valve device 8 is pushed up. すると、正極リード13が安全弁装置8と溶接された部分を残して切断され、電流が遮断される。 Then, cut to leave portions which a cathode lead 13 was welded to the safety valve device 8, the current is cut off.

【0045】 実施例1まず、次のようにして正極活物質を生成した。 [0045] Example 1 First, to produce a positive electrode active material as follows.

【0046】炭酸コバルトと炭酸リチウムを、Li/C [0046] The cobalt carbonate and lithium carbonate, Li / C
o比=1となるように混合し、空気中、温度900℃で5時間焼成した。 Were mixed so that the o ratio = 1 in air, and calcined 5 hours at 900 ° C.. この焼成物についてX線回折測定を行った結果、JCPDSカードにおけるLiCoO 2の回折パターンと良く一致していた。 As a result of X-ray diffraction measurement of this fired product was in good agreement with the diffraction patterns of LiCoO 2 in JCPDS card. このLiCoO 2を粉砕することで、平均粒径3.0μmの芯粒子と平均粒径0.1μmの微粒子を得た。 The LiCoO 2 by grinding to obtain an average particle size 0.1μm microparticles with an average particle diameter 3.0μm of the core particles. そして、このLiCoO 2 Then, the LiCoO 2
芯粒子の表面に、LiCoO 2微粒子を高速気流中衝撃法によって被覆し、LiCoO 2の複合粒子を作製した。 The surface of the core particles, the LiCoO 2 particles coated with a high speed air stream impact method, to produce composite particles of LiCoO 2. 作製された複合粒子の平均粒径は5.9μmであった。 The average particle diameter of the produced composite particles was 5.9 [mu] m. なお、この平均粒径は、体積基準のメジアン径であり、レーザー回折粒度計(堀場製作所社製商品名LA− Incidentally, the average particle size is the median diameter on a volume basis, a laser diffraction granulometer (manufactured by HORIBA, Ltd. trade name LA-
50)で測定した。 It was measured at 50).

【0047】そして、このLiCoO 2の複合粒子を正極活物質として以下のようにして正極を作製した。 [0047] Then, to produce a positive electrode composite particles of the LiCoO 2 as follows as a positive electrode active material.

【0048】LiCoO 2の複合粒子91重量%、導電剤としてグラファイト6重量%、ポリフッ化ビニリデン3重量%を混合して正極合剤を調製し、N−メチル−2 The composite particles 91 wt% of LiCoO 2, graphite 6 weight%, a mixture of 3 wt% of polyvinylidene fluoride to prepare a positive electrode mixture as a conductive agent, N- methyl-2
−ピロリドンに分散させることで正極合剤スラリーを調製した。 - a positive electrode mixture slurry was prepared by dispersing the pyrrolidone.

【0049】この正極合剤スラリーを正極集電体11となるアルミニウム箔の両面に塗布、乾燥した後、ローラープレス機で圧縮成型することで帯状正極2を作製した。 The cathode mixture slurry is applied to the both surfaces of an aluminum foil as a positive electrode current collector 11, dried to prepare a positive electrode strip 2 by compression molding with a roller press.

【0050】次に、負極活物質を生成した。 Next, to produce a negative electrode active material.

【0051】出発原料に石油ピッチを用い、これを酸素を含む官能基を10〜20%導入(酸素架橋)した後、 [0051] After using a petroleum pitch, 10-20% introducing a functional group containing oxygen which (oxygen bridge) as a starting material,
不活性ガス中、温度1000℃で焼成した。 In an inert gas, and calcined at a temperature 1000 ° C.. その結果、 as a result,
ガラス状炭素材料に近い性質の難黒鉛化性炭素材料が得られた。 Non-graphitizable carbon material properties similar to the glass-like carbon material was obtained.

【0052】この難黒鉛化性炭素材料を負極活物質として以下のようにして負極1を作製した。 [0052] A negative electrode was produced 1 as follows the non-graphitizable carbon material as a negative electrode active material.

【0053】炭素材料90重量%、結着剤としてポリフッ化ビニリデン10重量%を混合して負極合剤を調製し、N−メチル−2−ピロリドンに分散させて負極合剤スラリーとした。 [0053] Carbon materials 90% by weight, a mixture of 10 wt% of polyvinylidene fluoride to prepare an anode mixture as a binder, and a negative electrode mixture slurry was dispersed in N- methyl-2-pyrrolidone.

【0054】そして、この負極合剤スラリーを、負極集電体10となる銅箔の両面に塗布、乾燥した後、ローラープレス機で圧縮成型することで帯状負極1を作製した。 [0054] Then, the anode mixture slurry, applied to both sides of a copper foil as a negative electrode current collector 10, dried, to prepare a strip-shaped negative electrode 1 by compression molding with a roller press.

【0055】以上のようにして作製した帯状負極1と正極2を、セパレータとなる厚さ25μmの微多孔性ポリプロピレンフィルムを介して積層し、多数回巻回することで渦巻式電極体を作製した。 [0055] The above manner the strip-shaped negative electrode 1 and positive electrode 2 prepared, are layered with a microporous polypropylene film having a thickness of 25μm as a separator, to produce a spiral type electrode body by wound many times .

【0056】次に、この渦巻式電極体をニッケル鍍金を施した鉄製の電池缶5に収納し、この渦巻式電極体の上下両面に絶縁板4を配置した。 Next, the vortex electrode body was accommodated in the battery can 5 of iron subjected to nickel plating, it was placed an insulating plate 4 on the upper and lower surfaces of the spiral type electrode body. そして、正極2、負極1 Then, the positive electrode 2, the negative electrode 1
の集電を行うために、正極集電体11からアルミニウム製の正極リード13を導出して電流遮断装置を有する安全弁装置8に溶接し、負極集電体10からニッケル製の負極リード12を導出して電池缶5に溶接した。 In order to carry out the collector, welded to the safety valve apparatus 8 having a current interrupting device to derive the aluminum positive electrode lead 13 from the cathode current collector 11, it derives the negative electrode lead 12 made of nickel from the negative electrode current collector 10 It was welded to the battery can 5 to.

【0057】その後、電池缶5の中にプロピレンカーボネート50容量%とメチルエチルカーボネート50容量%の混合溶媒に、LiPF 6を1モルなる濃度で溶解させた電解液を注入した。 [0057] Then, in propylene carbonate 50% by volume and methyl ethyl carbonate 50% by volume of the mixed solvent in the battery can 5 was injected electrolytic solution obtained by dissolving an LiPF 6 at 1 mol becomes concentrations. そして、アスファルトを塗布したガスケット6を介して電池蓋7と電池缶5をかしめることで固定し、直径18mm、高さ65mmの円筒型電池を作製した。 Then, the battery lid 7 and the battery can 5 through the gasket 6 coated with asphalt to fix by caulking to prepare a cylindrical battery having a diameter of 18 mm, height 65 mm.

【0058】 実施例2正極活物質を生成するに際して、芯粒子として平均粒径が15.1μmのLiCoO 2を、微粒子として平均粒径が0.7μmのLiCoO 2を用い、平均粒径が1 [0058] In generating the Example 2 cathode active material, the average particle size of LiCoO 2 of 15.1μm as the core particles, an average particle diameter using a LiCoO 2 of 0.7μm as fine particles, the average particle size of 1
8.4μmの複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。 Except that generated the composite particles of 8.4μm were prepared a cylindrical battery in the same manner as in Example 1.

【0059】 実施例3正極活物質を生成するに際して、芯粒子として平均粒径が30.3μmのLiCoO 2を、微粒子として平均粒径が3.0μmのLiCoO 2を用い、平均粒径が3 [0059] In generating the Example 3 positive electrode active material, the average particle size of LiCoO 2 of 30.3μm as the core particles, an average particle diameter using a LiCoO 2 of 3.0μm as fine particles, average particle size 3
4.0μmの複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。 Except that generated the composite particles of 4.0μm were prepared a cylindrical battery in the same manner as in Example 1.

【0060】 実施例4正極活物質を生成するに際して、芯粒子として平均粒径が30.3μmのLiCoO 2を、微粒子として平均粒径が0.7μmのLiCoO 2を用い、平均粒径が3 [0060] In generating a fourth embodiment the positive electrode active material, the average particle size of LiCoO 2 of 30.3μm as the core particles, an average particle diameter using a LiCoO 2 of 0.7μm as fine particles, average particle size 3
3.4μmの複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。 Except that generated the composite particles of 3.4μm were prepared a cylindrical battery in the same manner as in Example 1.

【0061】 比較例1平均粒径が3.0μmのLiCoO 2を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。 [0061] was prepared in the same manner as in Example 1 cylindrical battery except for using an average grain size Comparative Example 1 is an LiCoO 2 of 3.0μm as a positive electrode active material.

【0062】 比較例2平均粒径が15.1μmのLiCoO 2を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。 [0062] The average particle size Comparative Example 2 was manufactured a cylindrical battery in the same manner as in Example 1 except for using LiCoO 2 of 15.1μm as a positive electrode active material.

【0063】 比較例3平均粒径が30.3μmのLiCoO 2を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。 [0063] The average particle size Comparative Example 3 was manufactured a cylindrical battery in the same manner as in Example 1 except for using LiCoO 2 of 30.3μm as a positive electrode active material.

【0064】このようにして作製した電池について、充電電圧4.20V、充電電流1000mA、充電時間2.5時間なる条件で充電を行い、放電電流1200m [0064] The battery fabricated in this manner performs the charging voltage 4.20 V, charging current 1000 mA, the charge under conditions such that the charging time of 2.5 hours, discharge current 1200m
A、終止電圧2.75Vなる条件で放電を行うといった重負荷放電条件での充放電サイクルを繰り返し行い、初回の放電容量(初期放電容量)と200サイクル目の放電容量の比(容量維持率)を求めた。 A, repeated charge and discharge cycles at heavy load discharge conditions such to discharge at end voltage 2.75V condition: initial discharge capacity (initial discharge capacity) and 200 the ratio of the discharge capacity of the cycle (capacity maintenance ratio) I was asked. 初期放電容量及び容量維持率の測定結果を表1に示す。 Initial discharge capacity and the measurement results of the capacity retention ratio shown in Table 1.

【0065】 [0065]

【表1】 [Table 1]

【0066】表1において、まず微粒子で被覆していないLiCoO 2をそのまま正極活物質として用いた比較例1〜比較例3の電池を比べると、この場合、正極活物質の平均粒径が大きくなる程、重負荷放電条件下での容量維持率が劣化してくることがわかる。 [0066] In Table 1, first, when comparing the batteries of Comparative Examples 1 to 3 using LiCoO 2 that is not coated with particles as it is as the positive electrode active material, in this case, the average particle size of the positive electrode active material is increased degree, it can be seen that the capacity retention rate of the heavy load discharge conditions deteriorates.

【0067】これに対して、微粒子で被覆したLiCo [0067] On the other hand, it was covered with a fine LiCo
2を正極活物質として用いた実施例1〜実施例4を比べると、正極活物質の平均粒径が34.0μmである実施例3の電池や正極活物質の平均粒径が33.4μmである実施例4の電池でも重負荷放電条件下において十分な容量維持率が得られている。 When the O 2 compare Example 1 to Example 4 was used as the positive electrode active material, the average particle size of the battery and the positive electrode active material of Example 3 the average particle diameter of the positive electrode active material is 34.0μm is 33.4μm sufficient capacity retention rate is obtained in the heavy load discharge conditions in the battery of example 4 is.

【0068】このことから、微粒子で被覆されたLiC [0068] LiC Therefore, coated with fine particles
oO 2は、平均粒径が大きいものであっても電池に良好な重負荷サイクル特性を付与でき、電極充填性と重負荷放電特性の両立を可能にするものであることがわかった。 oO 2, even those large average particle diameter can impart good heavy load cycle characteristics to the battery, it was found that those that allow for both the electrode packing property and heavy load discharge characteristics.

【0069】 実施例5次のようにして正極活物質を生成した。 [0069] to produce a positive electrode active material as described in Example 5 following.

【0070】酸化コバルト,酸化ニッケル及び水酸化リチウムをLi/Ni/Co比=1/0.8/0.2となるように混合し、酸素存在雰囲気下、温度750℃で5 [0070] cobalt oxide, nickel oxide and lithium hydroxide were mixed so that Li / Ni / Co ratio = 1 / 0.8 / 0.2, an oxygen-containing atmosphere, at a temperature 750 ° C. 5
時間焼成することで、LiNi 0.8 Co 0.22を生成した。 By baking time, to produce a LiNi 0.8 Co 0.2 O 2.

【0071】このLiNi 0.8 Co 0.22を粉砕することで、平均粒径15.1μmの芯粒子を得た。 [0071] By grinding the LiNi 0.8 Co 0.2 O 2, to obtain a core particle having an average particle size of 15.1μm. そして、 And,
このLiNi 0.8 Co 0.22の芯粒子の表面に、平均粒径が0.7μmのLiCoO 2の微粒子を高速気流中衝撃法によって被覆し、LiNi 0.8 Co 0.22とLiC On the surface of the LiNi 0.8 Co 0.2 O 2 of the core particles, an average particle diameter of 0.7μm of LiCoO 2 particles coated with a high speed air stream impact method, LiNi 0.8 Co 0.2 O 2 and LiC
oO 2の複合粒子を作製した。 to prepare a composite particle of oO 2. なお、この複合粒子の平均粒径は18.6μmであった。 The average particle size of the composite particles was 18.6Myuemu.

【0072】このようにして生成された複合粒子を正極活物質として用いること以外は実施例1と同様にして円筒型電池を作製した。 [0072] was produced cylindrical battery thus the composite particles produced by other than using as a positive electrode active material in the same manner as in Example 1.

【0073】 実施例6次のようにして正極活物質を生成した。 [0073] to produce a positive electrode active material as described in Example 6 following.

【0074】二酸化マンガン1モルと炭酸リチウム0. [0074] Manganese dioxide 1 mol of lithium carbonate 0.
25モルを混合し、空気中、温度850℃で5時間焼成することで、LiMn 24を生成した。 Mixing 25 mol, in air and calcined 5 hours at a temperature 850 ° C., to produce a LiMn 2 O 4.

【0075】このLiMn 24を粉砕することで、平均粒径15.1μmの芯粒子を得た。 [0075] By grinding the LiMn 2 O 4, to obtain a core particle having an average particle size of 15.1μm. そして、このLiM Then, this LiM
24の芯粒子の表面に、平均粒径が0.7μmのLi the surface of the core particle of n 2 O 4, the average particle size is 0.7 [mu] m Li
CoO 2の微粒子を、高速気流中衝撃法によって被覆し、LiMn 24とLiCoO 2の複合粒子を作製した。 The fine particles of CoO 2, covered with a high speed air stream impact method, to produce composite particles of LiMn 2 O 4 and LiCoO 2. なお、複合粒子の平均粒径は18.5μmであった。 The average particle diameter of the composite particles was 18.5.

【0076】このようにして生成された複合粒子を正極活物質として用いること以外は実施例1と同様にして円筒型電池を作製した。 [0076] was produced cylindrical battery thus the composite particles produced by other than using as a positive electrode active material in the same manner as in Example 1.

【0077】 比較例4平均粒径が15.1μmのLiNi 0.8 Co 0.22を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。 [0077] The average particle size Comparative Example 4 was produced cylindrical batteries in the same manner as in Example 1 except for using LiNi 0.8 Co 0.2 O 2 of 15.1μm as a positive electrode active material.

【0078】 比較例5平均粒径が15.1μmのLiMn 24を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。 [0078] The average particle size Comparative Example 5 was produced in the same manner as in Example 1 with cylindrical battery except for the use of LiMn 2 O 4 of 15.1μm as a positive electrode active material.

【0079】以上のようにして作製された電池について、上述と同様にして、重負荷放電条件での初期放電容量,200サイクル目放電容量を測定し、容量維持率を求めた。 [0079] The fabricated battery as described above, in the same manner as described above, the initial discharge capacity with heavy load discharge condition, measuring the 200-th cycle discharge capacity, the capacity retention ratio was obtained. その結果を表2に示す。 The results are shown in Table 2.

【0080】 [0080]

【表2】 [Table 2]

【0081】表2からわかるように、微粒子で被覆されたLiNi 0.8 Co 0.22あるいはLiMn 24を正極活物質として用いた実施例5,実施例6の電池は、微粒子を被覆させていないLiNi 0.8 Co 0.22あるいはLiMn 24をそのまま正極活物質として用いた比較例4,比較例5とそれぞれ比較して、いずれも大きな初期容量が得られ、容量維持率が高い値になっている。 [0081] As can be seen from Table 2, Examples using the LiNi 0.8 Co 0.2 O 2 or LiMn 2 O 4 coated with particulate as the positive electrode active material 5, the batteries of Examples 6, not to cover the fine particles Comparative examples using LiNi 0.8 Co 0.2 O 2 or LiMn 2 O 4 as a positive electrode active material 4, as compared respectively with Comparative example 5, both large initial capacity is obtained, the capacity retention ratio becomes high value there.

【0082】このことから、LiCoO 2に限らず、L [0082] From this, it is not limited to LiCoO 2, L
iNi 0.8 Co 0.22 ,LiMn 24についても、微粒子で被覆することは、正極としての性能を高める上で有効であることがわかった。 For even iNi 0.8 Co 0.2 O 2, LiMn 2 O 4, be covered with fine particles was found to be effective in enhancing the performance of the positive electrode.

【0083】 複合粒子の平均粒径r 1 ,芯粒子の平均粒 [0083] The average particle diameter r 1 of the composite particles, the average particle of the core particles
径r 2及び微粒子の平均粒径r 3の検討正極活物質を生成するに際して、芯粒子,微粒子として表3に示す平均粒径のLiCoO 2を用いて、同表に示す平均粒径の複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。 In generating the considered positive electrode active material of the diameter r 2 and an average particle diameter r 3 of the microparticles, the core particles, with LiCoO 2 of average particle size shown in Table 3 as fine particles, the composite particles having an average particle diameter shown in the Table except that generated in the same manner as in example 1 to prepare a cylindrical battery.

【0084】そして、作製された電池について、上述と同様にして重負荷放電条件での初期放電容量,200サイクル目放電容量を測定し、容量維持率を求めた。 [0084] Then, the fabricated battery, in the same manner as described above initial discharge capacity with heavy load discharge condition, measuring the 200-th cycle discharge capacity, the capacity retention ratio was obtained. その結果を表3に示す。 The results are shown in Table 3.

【0085】 [0085]

【表3】 [Table 3]

【0086】表3に示すように、複合粒子の平均粒径r [0086] As shown in Table 3, the average particle diameter r of the composite particles
1と芯粒子の平均粒径r 2の比r 1 /r 2が1.01未満である実験例6の電池やこの値が2を越える実験例7の電池は、他に比べて容量維持率が低い値になっている。 1 and an average particle size batteries of Experimental Example 7 cells and this value of Example 6 The ratio r 1 / r 2 is less than 1.01 to more than two of r 2 of the core particles, the capacity retention ratio compared to other It is set to a low value. このことから、r 1 /r 2は1.01≦r 1 /r 2 ≦2の範囲内にあるのが望ましいことがわかる。 Therefore, r 1 / r 2 it is seen that that is in the range of 1.01 ≦ r 1 / r 2 ≦ 2 desirable.

【0087】また、r 1 /r 2がこの範囲内であっても、 [0087] In addition, r 1 / r 2 is even within this range,
微粒子の平均粒径r 3と芯粒子の平均粒径r 2の比r 3 Average particle diameter r 3 and the ratio of the average particle diameter r 2 of the core particles r 3 /
2が1/5を越える実験例5の電池も、十分な容量維持率であるとは言えない。 batteries of Experimental Example 5 r 2 exceeds 1/5 also not be said to be sufficient capacity retention.

【0088】したがって、複合粒子を生成するに際しては、r 1 /r 2が1.01≦r 1 /r 2 ≦2の範囲内になり、またr 3 /r 2が1/5以下となるように、芯粒子及び微粒子の平均粒径や高速気流中衝撃法の条件を設定することが好ましいことがわかる。 [0088] Therefore, when generating a composite particle, r 1 / r 2 is within the range of 1.01 ≦ r 1 / r 2 ≦ 2, also to r 3 / r 2 is less than 1/5 a, it can be seen that it is preferable to set the average particle diameter and the high speed air stream impact method conditions of the core particles and fine particles.

【0089】なお、本実施例においては、LiCo [0089] In the present embodiment, LiCo
2 、LiNi 0.8 CO 0.22 、LiMn 24をリチウム含有化合物として用いたが、この他、Li x CoO 2 、L O 2, LiNi 0.8 CO 0.2 O 2, was used LiMn 2 O 4 as a lithium-containing compound, the addition, Li x CoO 2, L
x NiO 2 、Li x Mn 24 、Li x Co 1-yy2 、L i x NiO 2, Li x Mn 2 O 4, Li x Co 1-y M y O 2, L
x Ni 1-y MyO 2 、Li x Mn 1-yy2 (但し、MはTi,V,Cr,Mn,Fe,Al,Co,Ni,C i x Ni 1-y MyO 2 , Li x Mn 1-y M y O 2 ( where, M is Ti, V, Cr, Mn, Fe, Al, Co, Ni, C
u,Zn,Mo,Bi,Bから選ばれた少なくとも一種を表し、xは0<x≦1.2、yは0<y<1である) u, represents Zn, Mo, Bi, at least one selected from B, x is 0 <x ≦ 1.2, y is 0 <y <1)
で表されるリチウム含有化合物を用いた場合でも同様の効果が得られることは実験により確認されている。 In represented the same effect even when using a lithium-containing compound is obtained it has been confirmed by experiments.

【0090】また、本実施例では、正極活物質を円筒型電池に適用したが、角型、扁平型、コイン型、ボタン型の電池に適用した場合でも同様の効果が発揮されるのは勿論である。 [0090] Further, in this embodiment, is applied to the positive electrode active material in the cylindrical battery, prismatic, flat, coin, not only the same effect even when applied to batteries of the button type is exhibited it is.

【0091】 [0091]

【発明の効果】以上の説明からも明らかなように、本発明の正極活物質の製造方法では、所定のリチウム含有化合物からなる芯粒子の表面に、リチウム含有化合物からなる微粒子を被覆する。 As it is clear from the above description, the positive electrode active material manufacturing method of the present invention, the surface of the core particles of a predetermined lithium-containing compound, coating the fine particles of a lithium-containing compound. このようにして製造された正極活物質を非水電解液二次電池に適用すると、正極での電極充填性を高めながら大きな反応面積を確保することができ、エネルギーが高く、重負荷サイクル特性に優れた二次電池が獲得できる。 Applying such a cathode active material prepared in the the non-aqueous electrolyte secondary battery, it is possible to secure a large reaction area while increasing the electrode packing property at the positive electrode, the energy is high, the heavy duty cycle characteristics excellent secondary battery can be acquired.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】芯粒子表面に複合粉末が被覆した状態を示す模式図である。 [1] Composite powder core particle surface is a schematic view showing a state where the coating.

【図2】LiCoO 2芯粒子の粒子構造を示す走査顕微鏡写真である。 2 is a scanning microscopic photograph showing the particle structure of LiCoO 2 core particles.

【図3】LiCoO 2複合粉末の粒子構造を示す走査顕微鏡写真である。 3 is a scanning microscopic photograph showing the particle structure of LiCoO 2 composite powder.

【図4】本発明を適用した非水電解液二次電池の1構成例を示す縦断面図である。 4 is a longitudinal sectional view showing a configuration example of the applied non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

34 芯粒子 35 微粒子 36 複合粉末 34 core particles 35 particles 36 composite powder

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 Li x CoO 2 、Li x NiO 2 、Li x 1. A Li x CoO 2, Li x NiO 2, Li x M
    24 、Li x Co 1-yy2 、Li x Ni 1-yy2 、L n 2 O 4, Li x Co 1-y M y O 2, Li x Ni 1-y M y O 2, L
    x Mn 1-yy2 (但し、Mは、Ti,V,Cr,Mn, x Mn 1-y M y O 2 ( where, M is, Ti, V, Cr, Mn ,
    Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,B Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, B
    から選ばれる少なくとも1種の元素を表し、xは0<x It represents at least one element selected from, x is 0 <x
    ≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆することによって複合粒子を生成することを特徴とする正極活物質の製造方法。 ≦ 1.2, y is the composite particles by a 0 <a surface of either become more core particles of the lithium-containing compound represented by y <1), coated with either more becomes fine particles of the lithium-containing compound method for producing a cathode active material and generates a.
  2. 【請求項2】 複合粒子の平均粒径r 1と芯粒子の平均粒径r 2の比r 1 /r 2が、1.01≦r 1 /r 2 ≦2であることを特徴とする請求項1記載の正極活物質の製造方法。 Wherein the ratio r 1 / r 2 of the mean of the composite particle diameter r 1 and an average particle diameter r 2 of the core particles, characterized in that it is a 1.01 ≦ r 1 / r 2 ≦ 2 wherein the method for producing a positive electrode active material of claim 1, wherein.
  3. 【請求項3】 微粒子の平均粒径r 3と芯粒子の平均粒径r 2の比r 3 /r 2が、1/5以下であることを特徴とする請求項2記載の正極活物質の製造方法。 Wherein the ratio r 3 / r 2 having an average particle diameter r 2 of the average particle diameter r 3 and the core particles of the fine particles, according to claim 2, wherein a is 1/5 or less positive electrode active material Production method.
  4. 【請求項4】 複合粒子に熱処理を施すことを特徴とする請求項1記載の正極活物質の製造方法。 4. A process for producing a positive active material of claim 1, wherein the heat treatment to the composite particles.
  5. 【請求項5】 リチウム金属、リチウム合金またはリチウムをドープ・脱ドープすることが可能な炭素材料を負極活物質とする負極、リチウム含有化合物を正極活物質とする正極及び非水電解液を有してなる非水電解液二次電池において、 正極活物質は、Li x CoO 2 、Li x NiO 2 、Li x 5. A lithium metal, a negative electrode and the negative electrode active material a carbon material capable of doping and dedoping lithium alloys or lithium, a positive electrode and a nonaqueous electrolyte solution for a lithium-containing compound as a positive electrode active material in the non-aqueous electrolyte secondary battery comprising Te, the cathode active material, Li x CoO 2, Li x NiO 2, Li x M
    24 、Li x Co 1-yy2 、Li x Ni 1-yy2 、L n 2 O 4, Li x Co 1-y M y O 2, Li x Ni 1-y M y O 2, L
    x Mn 1-yy2 (但し、Mは、Ti,V,Cr,Mn, x Mn 1-y M y O 2 ( where, M is, Ti, V, Cr, Mn ,
    Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,B Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, B
    から選ばれる少なくとも1種の元素を表し、xは0<x It represents at least one element selected from, x is 0 <x
    ≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆することによって生成された複合粒子であることを特徴とする非水電解液二次電池。 ≦ 1.2, y is 0 <a surface of either become more core particles of the lithium-containing compound represented by y <1) is generated by coating either become more particles of lithium-containing compounds non-aqueous electrolyte secondary battery which is a composite particles.
JP20736095A 1995-07-24 1995-07-24 Cathode active material and a non-aqueous electrolyte secondary battery using the positive electrode active material Expired - Lifetime JP3543437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20736095A JP3543437B2 (en) 1995-07-24 1995-07-24 Cathode active material and a non-aqueous electrolyte secondary battery using the positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20736095A JP3543437B2 (en) 1995-07-24 1995-07-24 Cathode active material and a non-aqueous electrolyte secondary battery using the positive electrode active material

Publications (2)

Publication Number Publication Date
JPH0935715A true true JPH0935715A (en) 1997-02-07
JP3543437B2 JP3543437B2 (en) 2004-07-14

Family

ID=16538450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20736095A Expired - Lifetime JP3543437B2 (en) 1995-07-24 1995-07-24 Cathode active material and a non-aqueous electrolyte secondary battery using the positive electrode active material

Country Status (1)

Country Link
JP (1) JP3543437B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
EP1136446A3 (en) * 2000-03-24 2001-10-24 MERCK PATENT GmbH Coated lithium-mixed oxide particles and method for preparation
JP2002068745A (en) * 2000-08-28 2002-03-08 Nippon Chem Ind Co Ltd Lithium manganese complex oxide composite body, method of producing it, positive-electrode active substance for lithium secondary battery and lithium secondary battery
US6458487B1 (en) 1997-07-25 2002-10-01 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
WO2003049217A1 (en) * 2001-12-06 2003-06-12 Sony Corporation Positive electrode active matter and secondary battery using this
JP2005276609A (en) * 2004-03-24 2005-10-06 Tdk Corp Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide having a gradient in the composition of the metal components
WO2006134850A1 (en) * 2005-06-16 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2007517368A (en) * 2003-12-31 2007-06-28 エルジー・ケム・リミテッド Electrode active material powder and a manufacturing method thereof having the composition of particle size-dependent
JP2007258095A (en) * 2006-03-24 2007-10-04 Sony Corp Positive electrode active material, its manufacturing method, and battery
JP2007273441A (en) * 2006-03-06 2007-10-18 Sony Corp Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007287569A (en) * 2006-04-19 2007-11-01 Gs Yuasa Corporation:Kk Non-aqueous electrolyte secondary battery
US7294435B2 (en) 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US7314684B2 (en) * 2003-03-14 2008-01-01 U Chicago Argonne Llc Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Cathode active material for a lithium secondary battery having a double layer structure, its manufacturing method and a lithium secondary battery using the same
WO2008123011A1 (en) * 2007-03-05 2008-10-16 Toda Kogyo Corporation Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2008539536A (en) * 2005-04-28 2008-11-13 比▲亜▼迪股▲分▼有限公司Byd Company Limited Battery cathode and a lithium ion battery using the battery cathode, and methods for their preparation
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2009076279A (en) * 2007-09-19 2009-04-09 Toyota Motor Corp Manufacturing method of positive active material
JP2009530223A (en) * 2006-03-20 2009-08-27 エルジー・ケム・リミテッド Stoichiometric lithium cobalt oxide and a method for preparation thereof
JP2009530224A (en) * 2006-03-20 2009-08-27 エルジー・ケム・リミテッド High-performance cathode material for lithium batteries
CN101882679A (en) * 2009-05-07 2010-11-10 索尼公司 Active material, battery, and method for manufacturing electrode
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2011060562A (en) * 2009-09-10 2011-03-24 Nec Energy Devices Ltd Lithium ion secondary battery
JP2011086603A (en) * 2009-10-16 2011-04-28 ▲ショウ▼▲ゲン▼科技股▲ふん▼有限公司 Composite electrode active material for lithium battery and method of manufacturing the same
US8236449B2 (en) 2005-07-11 2012-08-07 Panasonic Corporation Lithium ion secondary battery with improved electrode stability and safety
JP2013214493A (en) * 2012-04-03 2013-10-17 Samsung Corning Precision Materials Co Ltd Lithium manganese oxide positive active material for lithium ion secondary battery, and lithium ion secondary battery including the same
US8673499B2 (en) 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
US9577247B2 (en) 2011-09-12 2017-02-21 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290573B (en) 2007-03-30 2015-07-08 索尼株式会社 Cathode active material, cathode and nonaqueous electrolyte battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458487B1 (en) 1997-07-25 2002-10-01 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
EP1136446A3 (en) * 2000-03-24 2001-10-24 MERCK PATENT GmbH Coated lithium-mixed oxide particles and method for preparation
JP2002068745A (en) * 2000-08-28 2002-03-08 Nippon Chem Ind Co Ltd Lithium manganese complex oxide composite body, method of producing it, positive-electrode active substance for lithium secondary battery and lithium secondary battery
US7951490B2 (en) 2001-12-06 2011-05-31 Sony Corporation Positive electrode active matter and secondary battery using this
WO2003049217A1 (en) * 2001-12-06 2003-06-12 Sony Corporation Positive electrode active matter and secondary battery using this
US7374841B2 (en) 2001-12-06 2008-05-20 Sony Corporation Positive electrode active matter and secondary battery using this
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide having a gradient in the composition of the metal components
US7695649B2 (en) 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
US7314684B2 (en) * 2003-03-14 2008-01-01 U Chicago Argonne Llc Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries
US7294435B2 (en) 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007517368A (en) * 2003-12-31 2007-06-28 エルジー・ケム・リミテッド Electrode active material powder and a manufacturing method thereof having the composition of particle size-dependent
US7771877B2 (en) 2003-12-31 2010-08-10 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP4890264B2 (en) * 2003-12-31 2012-03-07 エルジー・ケム・リミテッド Electrode active material powder and a manufacturing method thereof having the composition of particle size-dependent
US8012626B2 (en) 2003-12-31 2011-09-06 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP2011091050A (en) * 2003-12-31 2011-05-06 Lg Chem Ltd Electrode active material powder with size dependent composition and method of manufacturing the same
JP2005276609A (en) * 2004-03-24 2005-10-06 Tdk Corp Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
JP4552475B2 (en) * 2004-03-24 2010-09-29 Tdk株式会社 Composite particles for an electrode, the electrode and the electrochemical device, and a method of manufacturing a composite particles for an electrode, a manufacturing method of preparation and electrochemical device electrode
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Cathode active material for a lithium secondary battery having a double layer structure, its manufacturing method and a lithium secondary battery using the same
JP2008539536A (en) * 2005-04-28 2008-11-13 比▲亜▼迪股▲分▼有限公司Byd Company Limited Battery cathode and a lithium ion battery using the battery cathode, and methods for their preparation
US8026002B2 (en) 2005-04-28 2011-09-27 Byd Company Limited Battery cathode, a lithium ion battery using the same and processes for preparation thereof
US8846249B2 (en) 2005-06-16 2014-09-30 Panasonic Corporation Lithium ion secondary battery
US8673499B2 (en) 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
WO2006134850A1 (en) * 2005-06-16 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
US8236449B2 (en) 2005-07-11 2012-08-07 Panasonic Corporation Lithium ion secondary battery with improved electrode stability and safety
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2007273441A (en) * 2006-03-06 2007-10-18 Sony Corp Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2009530223A (en) * 2006-03-20 2009-08-27 エルジー・ケム・リミテッド Stoichiometric lithium cobalt oxide and a method for preparation thereof
JP2009530224A (en) * 2006-03-20 2009-08-27 エルジー・ケム・リミテッド High-performance cathode material for lithium batteries
JP2007258095A (en) * 2006-03-24 2007-10-04 Sony Corp Positive electrode active material, its manufacturing method, and battery
JP4586991B2 (en) * 2006-03-24 2010-11-24 ソニー株式会社 Cathode active material and method for producing the same, and rechargeable batteries
JP2007287569A (en) * 2006-04-19 2007-11-01 Gs Yuasa Corporation:Kk Non-aqueous electrolyte secondary battery
US8574765B2 (en) 2007-03-05 2013-11-05 Toda Kogyo Corporation Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
WO2008123011A1 (en) * 2007-03-05 2008-10-16 Toda Kogyo Corporation Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2009117369A (en) * 2007-03-05 2009-05-28 Toda Kogyo Corp Li-ni compound oxide particle powder for nonaqueous electrolyte secondary battery, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2009076279A (en) * 2007-09-19 2009-04-09 Toyota Motor Corp Manufacturing method of positive active material
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
CN101882679A (en) * 2009-05-07 2010-11-10 索尼公司 Active material, battery, and method for manufacturing electrode
US8980125B2 (en) 2009-05-07 2015-03-17 Sony Corporation Active material, battery, and method for manufacturing electrode
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
JP2011060562A (en) * 2009-09-10 2011-03-24 Nec Energy Devices Ltd Lithium ion secondary battery
JP2011086603A (en) * 2009-10-16 2011-04-28 ▲ショウ▼▲ゲン▼科技股▲ふん▼有限公司 Composite electrode active material for lithium battery and method of manufacturing the same
US9577247B2 (en) 2011-09-12 2017-02-21 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013214493A (en) * 2012-04-03 2013-10-17 Samsung Corning Precision Materials Co Ltd Lithium manganese oxide positive active material for lithium ion secondary battery, and lithium ion secondary battery including the same

Also Published As

Publication number Publication date Type
JP3543437B2 (en) 2004-07-14 grant

Similar Documents

Publication Publication Date Title
US6878487B2 (en) Active material for battery and method of preparing same
US6749967B2 (en) Positive electrode active material and non-aqueous electrolyte cell
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US20040253518A1 (en) Positive active material and nonaqueous electrolyte secondary battery produced using the same
US20070054190A1 (en) Lithium secondary battery
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
US20060275663A1 (en) Negative electrode active material and nonaqueous electrolyte secondary battery
JP2006134762A (en) Secondary battery
JP2007059213A (en) Nonaqueous electrolyte battery and negative active material
JPH10294100A (en) Lithium ion non-aqueous electrolyte secondary cell
JP2007018883A (en) Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP2000195514A (en) Manufacture of nonaqueous solvent secondary battery
JP2009099523A (en) Lithium secondary battery
JPH11345615A (en) Lithium ion nonaqueous electrolyte secondary battery
JP2005123183A (en) Non-aqueous electrolyte secondary battery and composite batteries
JP2007165108A (en) Nonaqueous electrolyte secondary battery
JP2003168426A (en) Non-aqueous electrolyte secondary battery
JP2010225486A (en) Nonaqueous electrolyte battery
JP2006066341A (en) Nonaqueous electrolyte secondary cell
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2007018882A (en) Nonaqueous electrolyte battery and battery pack
JP2002117833A (en) Nonaqueous electrolyte secondary battery
US20060093920A1 (en) Conductive agent - positive active material composite for lithium secondary battery, method of preparing the same, and positive electrode and lithium secondary battery comprising the same
JPH11185753A (en) Nonaqueous electrolyte lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term