JP4115006B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP4115006B2
JP4115006B2 JP24571298A JP24571298A JP4115006B2 JP 4115006 B2 JP4115006 B2 JP 4115006B2 JP 24571298 A JP24571298 A JP 24571298A JP 24571298 A JP24571298 A JP 24571298A JP 4115006 B2 JP4115006 B2 JP 4115006B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
layer
battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24571298A
Other languages
Japanese (ja)
Other versions
JP2000077060A (en
Inventor
泰三 砂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24571298A priority Critical patent/JP4115006B2/en
Publication of JP2000077060A publication Critical patent/JP2000077060A/en
Application granted granted Critical
Publication of JP4115006B2 publication Critical patent/JP4115006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は正極と、リチウムイオンを吸蔵・脱離し得る負極と、非水電解液とを備えたリチウムイオン電池に係り、特に、過充電状態になっても漏液することなく、かつ安全性が確保できる正極構造の改良に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化はめざましく、それに伴い、電源となる電池に対しても小型軽量化の要望が非常に大きい。一次電池の分野では既にリチウム電池等の小型軽量電池が実用化されているが、これらは一次電池であるが故に繰り返し使用できず、その用途は限られたものであった。一方、二次電池の分野では従来より鉛蓄電池、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池等が用いられてきたが、これらは小型軽量化という点で大きな問題点を有している。
【0003】
そこで、小型軽量でかつ高容量で充放電可能な電池としてリチウムイオン電池などの非水電解液二次電池が実用化されるようになり、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられるようになった。
【0004】
リチウムイオン電池は、負極活物質としてリチウムイオンを吸蔵・脱離し得るカーボン系材料を用い、正極活物質として、LiCoO2,LiNiO2,LiMn24,LiFeO2等のリチウム含有遷移金属酸化物を用い、有機溶媒に溶質としてリチウム塩を溶解した非水電解液を用い、電池として組み立てた後、初回の充電により正極活物質から出たリチウムイオンがカーボン粒子内に入って充放電可能となる電池である。
【0005】
このようなリチウムイオン電池にあっては、過充電を行うと、過充電状態になるに伴い、正極からは過剰なリチウムが抽出され、負極ではリチウムの過剰な挿入が生じて、正・負極の両極が熱的に不安定化する。正・負極の両極が熱的に不安定になると、やがては電解液の有機溶媒を分解するように作用し、急激な発熱反応が生じて、電池が異常に発熱するという事態を生じ、電池の安全性が損なわれるという問題を生じた。このような状況は、リチウムイオン電池のエネルギー密度が増加するほど重要な問題となる。
【0006】
このような問題を解決するため、電池温度が上昇するとセパレータが溶融して溶融物でセパレータの微細孔を塞ぐことにより、過電流状態を解消させるようにしたものが、例えば、特開昭60−23954号公報において提案された。この特開昭60−23954号公報において提案されたものにあっては、セパレータ部材として微細孔を有する合成樹脂フィルムを用い、過電流によるジュール熱でフィルム素材の溶融点に達すると、合成樹脂フィルムが有する微細孔を溶融物で塞いで、イオンの移動を阻止させるとともに、合成樹脂フィルムを絶縁体として機能させて電流を遮断させるように作用させる。これにより、電池温度のこれ以上の上昇を防止し、電池の異常発熱を防止して電池の安全性が向上するというものである。
【0007】
【発明が解決しようとする課題】
しかしながら、特開昭60−23954号公報において提案されたものにあっては、正極芯体(正極集電体)に直接正極活物質を充填しているため、過充電状態となって過電流によるジュール熱で電池温度が上昇し、フィルム素材の溶融点に達して、合成樹脂フィルムの微細孔が溶融物で塞がれてイオンの移動が阻止されるまでは、充電電流が流れ続けることとなる。このため、充電電流が大きすぎると、電池温度が急激に上昇し、電解液の有機溶媒が分解されて電池内圧が上昇する。この結果、ガス排出弁が作動して電解液が電池外に漏れ出すという問題を生じた。
そこで、本発明は上記問題点に鑑みてなされたものであり、過充電状態となって電池温度が急激に上昇しても、確実に充電電流を遮断して電池の安全性を確保できるようにすることを目的としてなされたものである。
【0008】
【課題を解決するための手段およびその作用・効果】
このため、本発明のリチウムイオン電池にあっては、正極として、
正極集電体上に少なくとも導電性フィラーと4.5〜5.5Vの電位で分解するポリエチレンオキシド(PEO)およびその誘導体からなる導電層として形成した第1層と、この第1層上に正極活物質と導電剤と結着剤からなる活物質層として形成した第2層を有する二層構造の正極を採用した。
【0010】
このように、第1層に4.5〜5.5Vの電圧で分解するポリエチレンオキシド(PEO)およびその誘導体を用いると、ポリエチレンオキシド(PEO)およびその誘導体は過充電により生じた4.5〜5.5Vの高電位で容易に分解される物質であるので、過充電状態になると容易に分解されてガスを発生する。すると、発生したガスは第1層を構造破壊するとともに、第1層と第2層との界面破壊をするように作用するため、活物質が存在する第2層と正極集電体との電気的接触が遮断されるようになる。このため、ポリエチレンオキシド(PEO)およびその誘導体を用いると、確実に電池の内部抵抗が上昇して、急激な温度上昇を生じることなく、充電電流を遮断することができるようになる。
【0011】
【発明の実施の形態】
以下に、本発明のリチウムイオン電池の好適な実施の形態を図1および図2に基づいて説明する。なお、図1は正極板を示す斜視図であり、図1(a)は本発明の正極板を示し、図1(b)は従来例の正極板を示す。図2は図1の正極板を用いてセパレータを介して負極板を重ね合わせて卷回した渦巻状電極体を外装缶内に収納した状態を示すリチウムイオン電池の断面を示す図である。
1.正極板の作製
(1)実施例
黒鉛、アルミニウム等の導電性フィラー(例えば60重量%)と、ポリエチレンオキシド(PEO)(例えば40重量%)等とを、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、スラリーあるいはペーストとする。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により正極芯体(例えば、厚みが20μmのアルミニウム箔あるいはアルミニウムメッシュ)11の両面に均一に塗布して正極の第1層となる導電層12を形成する。ここで、ポリエチレンオキシド(PEO)は、過充電状態の高電位(例えば、4.5〜5.5V)で酸化分解され、エーテル結合部の主鎖が切断されて、ガスを発生する物質である。
【0012】
一方、LiCoO2からなる正極活物質(例えば90重量%)と、アセチレンブラック、グラファイト等の炭素系導電剤(例えば5重量%)と、ポリビニリデンフルオライド(PVDF)よりなる結着剤(例えば5重量%)等とを、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、活物質スラリーあるいは活物質ペーストとする。これらの活物質スラリーあるいは活物質ペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により第1層となる導電層12の両面に均一に塗布して、第2層となる活物質層13を塗布した正極板を形成する。
【0013】
この後、第1層となる導電層12と第2層となる活物質層13とを塗布した正極板を乾燥機中を通過させて、スラリーあるいはペースト作製に必要であった有機溶剤を除去して乾燥させる。乾燥後、この乾燥正極板をロールプレス機により圧延して、厚みが0.17mmで二層構造の実施例の正極板10とする。
(2)比較例
LiCoO2からなる正極活物質(例えば90重量%)と、アセチレンブラック、グラファイト等の炭素系導電剤(例えば5重量%)と、ポリビニリデンフルオライド(PVDF)よりなる結着剤(例えば5重量%)等とを、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、活物質スラリーあるいは活物質ペーストとする。
【0014】
これらの活物質スラリーあるいは活物質ペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により正極芯体(例えば、厚みが20μmのアルミニウム箔あるいはアルミニウムメッシュ)21の両面に均一に塗布して、活物質層22を塗布した正極板を形成する。この後、活物質層22を塗布した正極板を乾燥機中を通過させて、スラリーあるいはペースト作製に必要であった有機溶剤を除去して乾燥させる。乾燥後、この乾燥正極板をロールプレス機により圧延して、厚みが0.17mmで一層構造の比較例の正極板20とする。
2.負極板の作製
一方、天然黒鉛(d=3.36Å)よりなる負極活物質とポリビニリデンフルオライド(PVDF)よりなる結着剤等とを、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、スラリーあるいはペーストとする。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により負極芯体(例えば、厚みが20μmの銅箔)の両面の全面にわたって均一に塗布して、活物質層を塗布した負極板を形成する。
【0015】
この後、活物質層を塗布した負極板を乾燥機中を通過させて、スラリーあるいはペースト作製に必要であった有機溶剤を除去して乾燥させる。この後、この乾燥負極板をロールプレス機により圧延して、厚みが0.14mmの負極板30とする。
3.電極体の作製
(1)実施例
上述のようにして作製した実施例の正極板10と負極板30とを、有機溶媒との反応性が低く、かつ安価なポリオレフィン系樹脂からなる微多孔膜、好適にはポリエチレン製微多孔膜(例えば、厚みが0.025mm)40を間にし、かつ、各極板10,30の幅方向の中心線を一致させて重ね合わせる。この後、図示しない巻き取り機により卷回する。この後、最外周をテープ止めして実施例の渦巻状電極体aとする。なお、角形電池の場合は、プレス機で角形外装缶に挿入できるような形に成形して角形状電極体とする。
(2)比較例
上述のようにして作製した比較例の正極板20と負極板30とを、有機溶媒との反応性が低く、かつ安価なポリオレフィン系樹脂からなる微多孔膜、好適にはポリエチレン製微多孔膜(例えば、厚みが0.025mm)40を間にし、かつ、各極板20,30の幅方向の中心線を一致させて重ね合わせる。この後、図示しない巻き取り機により卷回する。この後、最外周をテープ止めして比較例の渦巻状電極体bとする。なお、角形電池の場合は、プレス機で角形外装缶に挿入できるような形に成形して角形状電極体とする。
4.リチウムイオン電池の作製
ついで、図2に示すように、上述のようにして作製した電極体a,bの上下にそれぞれ絶縁板51を配置した後、1枚板からプレス加工により円筒状に成形した負極端子を兼ねるスチール製の外装缶50の開口部より、これらの電極体a,bをそれぞれ挿入する。ついで、電極体a,bの負極板30より延出する負極集電タブ30aを外装缶50の内底部に溶接するとともに、電極体の正極板10(20)より延出する正極集電タブ10a(20a)を封口体60の底板64の底部とを溶接する。
【0016】
なお、封口体60は、逆皿状(キャップ状)に形成されたステンレス製の正極キャップ61と、皿状に形成されたステンレス製の底板64とから構成される。正極キャップ61は、電池外部に向けて膨出する凸部62と、この凸部62の底辺部を構成する平板状のフランジ部63とからなり、凸部62の角部には図示しないガス抜き孔を設けている。一方、底板64は、電池内部に向けて膨出する凹部65と、この凹部65の底辺部を構成する平板状のフランジ部66とからなる。凹部65の中央部には図示しないガス抜き孔が設けられている。そして、これらの正極キャップ61の凸部62と底板64の凹部65との間には、電池内部のガス圧が上昇して所定の圧力以上になると変形するガス排出弁67が収容されている。
【0017】
ついで、外装缶50の開口部にエチレンカーボネート(EC)40重量部とジエチルカーボネート(DEC)60重量部よりなる混合溶媒に、電解質塩として1MLiPF6を添加混合した電解液を注入した後、外装缶50の開口部にポリプロピレン(PP)製の外装缶用絶縁ガスケット52を介して封口体60を載置し、外装缶50の開口部の上端部を封口体60側にカシメて液密に封口して、公称容量1350mAhの実施例の円筒形リチウムイオン電池Aおよび比較例の円筒形リチウムイオン電池Bをそれぞれ100個ずつ作製する。
5.試験
a.過充電試験
上述のように作製した各100個ずつのリチウムイオン電池A,Bを1350mA(1C)の充電々流で電池電圧が4.1Vになるまで充電し、その後、4.1Vの定電圧で3時間充電して満充電状態とする。このように満充電されたリチウムイオン電池A,Bの各正・負極端子間に、1350mA(1C)、2700mA(2C)、4050mA(3C)、5400mA(4C)の充電電流を流して過充電を行い、過充電開始から所定の時間(例えば3時間)経過後の漏液個数を測定すると、下記の表1に示すような結果となった。
【0018】
【表1】

Figure 0004115006
上記表1より明らかなように、実施例の電池Aは漏液個数が0個であったのに対して、比較例の電池Bは3C以上の高率充電においては漏液個数が増大したことが分かる。これは、比較例の電池Bのように正極活物質が正極芯体に直接接触していると、3C以上の高率充電になると過電流によるジュール熱で電池温度が急激に上昇して、樹脂製のセパータの溶融点に達して、セパレータの微細孔が溶融物で塞がれてイオンの移動が阻止されるまでは、充電電流が流れ続けて、やがてはガス排出弁67が作動して、電解液が電池外に漏れ出したためと考えられる。
【0019】
一方、実施例の電池Aのように正極10が導電層12と活物質層13との二層構造となっていると、正極活物質が直接正極芯体11に接触していないため、3C以上の高率充電となって、過充電により高電位となった場合には、ポリエチレンオキシド(PEO)は、過充電状態の高電位(例えば、4.5〜5.5V)で酸化分解されて、エーテル結合部の主鎖が切断されてガスを発生する。
【0020】
すると、発生したガスが第1層となる導電層12を構造破壊するとともに、導電層12と活物質層13との界面破壊をするように作用するため、活物質が存在する第2層となる活物質層13と正極芯体(正極集電体)11との電気的接触が遮断されるようになる。この結果、電池の内部抵抗が上昇するため、急激な温度上昇を生じることなく、充電電流を遮断することができるようになったと考えられる。
【0021】
上述したように、本発明においては、第1層となる導電層12に過充電状態での高電位で分解する物質(エーテル結合部を有する結着剤)を備えているので、過充電により高電位(例えば、4.5〜5.5V)となった場合には、エーテル結合部の主鎖が切断されるポリエチレンオキシド(PEO)あるいはその誘導体が高電位(例えば、4.5〜5.5V)により分解されてガスを発生して、電池の内部抵抗が上昇して充電電流を遮断することができるようになる。
【0022】
なお、上述の実施形態においては、過充電状態の高電位(例えば、4.5〜5.5V)により分解されてガスを発生する高分子結着剤として、ポリエチレンオキシド(PEO)のような主鎖にエーテル結合部を有する高分子結着剤を用いる例について説明したが、側鎖にエーテル結合部を有する高分子結着剤を用いても、その側鎖のエーテル結合部が高電位(例えば、4.5〜5.5V)により分解されてガスを発生するため、同様な効果を得ることができる。
【0023】
なお、上述の実施形態においては、負極活物質として天然黒鉛(d=3.36Å)を用いる例について説明したが、天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等が好適である。
【0024】
また、上述の実施形態においては、正極活物質としてLiCoO2を用いる例について説明したが、LiCoO2以外に、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物、例えば、LiNiO2、LiCoXNi(1-X)2、LiCrO2、LiVO2、LiMnO2、αLiFeO2、LiTiO2、LiScO2、LiYO2、LiMn24等が好ましいが、特に、LiNiO2、LiCoXNi(1-X)2を単独で用いるかあるいはこれらの二種以上を混合して用いるのが好適である。
【0025】
さらに、電解液としては、有機溶媒に溶質としてリチウム塩を溶解したイオン伝導体であって、イオン伝導率が高く、正・負の各電極に対して化学的、電気化学的に安定で、使用可能温度範囲が広くかつ安全性が高く、安価なものであれば使用することができる。例えば、上記した有機溶媒以外に、プロピレンカーボネート(PC)、スルフォラン(SL)、テトラハイドロフラン(THF)、γブチロラクトン(GBL)等あるいはこれらの混合溶媒が好適である。また、溶質としては電子吸引性の強いリチウム塩を使用し、上記したLiPF6以外に、例えば、LiBF4、LiClO4、LiAsF6、LiCF3SO3、Li(CF3SO22N、Li(C25SO22N、LiC49SO3等が好適である。
【図面の簡単な説明】
は図1の正極板を用いてセパレータを介して負極板を重ね合わせて卷回した渦巻状電極体を外装缶内に収納した状態を示すリチウムイオン電池の断面を示す図である。
【図1】 正極板を示す斜視図であり、図1(a)は本発明の正極板を示し、図1(b)は従来例の正極板を示す。
【図2】 図1の正極板を用いてセパレータを介して負極板を重ね合わせて卷回した渦巻状電極体を外装缶内に収納した状態を示すリチウムイオン電池の断面を示す図である。
【符号の説明】
10…正極板、11…正極芯体、12…導電層(第1層)、13…活物質層(第2層)、10a…正極集電タブ、20…正極板、21…正極芯体、22…活物質層、20a…正極集電タブ、30…負極板、30a…負極集電タブ、40…セパレータ、50…外装缶、51…スペーサ、52…絶縁ガスケット、60…封口体、67…ガス排出弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium ion battery including a positive electrode, a negative electrode capable of occluding and desorbing lithium ions, and a non-aqueous electrolyte, and in particular, it does not leak even in an overcharged state and has safety. The present invention relates to an improvement in positive electrode structure that can be secured.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices have been remarkably reduced in size and weight, and accordingly, there is a great demand for reduction in size and weight of a battery serving as a power source. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put into practical use. However, since these are primary batteries, they cannot be used repeatedly, and their applications are limited. On the other hand, in the field of secondary batteries, lead storage batteries, nickel-cadmium storage batteries, nickel-hydrogen storage batteries, and the like have been conventionally used, but these have great problems in terms of reduction in size and weight.
[0003]
Therefore, non-aqueous electrolyte secondary batteries such as lithium ion batteries have come into practical use as small, lightweight, high-capacity chargeable / dischargeable batteries, and portable electronic devices such as small video cameras, mobile phones, and notebook computers.・ It has been used for communication equipment.
[0004]
A lithium ion battery uses a carbon-based material capable of inserting and extracting lithium ions as a negative electrode active material, and a lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 as a positive electrode active material. A battery that uses a non-aqueous electrolyte solution in which a lithium salt is dissolved as a solute in an organic solvent and is assembled as a battery, and then lithium ions emitted from the positive electrode active material by the first charge enter the carbon particles and can be charged and discharged. It is.
[0005]
In such a lithium ion battery, when overcharging is performed, excessive lithium is extracted from the positive electrode and excessive insertion of lithium occurs in the negative electrode as the overcharged state occurs. Both poles become thermally unstable. When both the positive and negative electrodes become thermally unstable, it eventually acts to decompose the organic solvent in the electrolyte, causing a sudden exothermic reaction and causing the battery to generate abnormally heat. The problem was that safety was compromised. Such a situation becomes more important as the energy density of the lithium ion battery increases.
[0006]
In order to solve such a problem, when the battery temperature rises, the separator melts and the fine pores of the separator are closed with the melt, thereby eliminating the overcurrent state. It was proposed in the publication No. 23594. In the one proposed in Japanese Patent Application Laid-Open No. 60-23594, when a synthetic resin film having fine holes is used as a separator member and the melting point of the film material is reached by Joule heat due to overcurrent, the synthetic resin film The micropores of the film are closed with a melt to prevent the movement of ions, and the synthetic resin film functions as an insulator so as to block the current. This prevents the battery temperature from rising further, prevents abnormal battery heat generation, and improves battery safety.
[0007]
[Problems to be solved by the invention]
However, in the one proposed in Japanese Patent Application Laid-Open No. 60-23954, the positive electrode core (positive electrode current collector) is directly filled with the positive electrode active material, so that the overcharged state is caused by the overcurrent. The battery temperature rises due to Joule heat, and the charging current continues to flow until the melting point of the film material is reached and the pores of the synthetic resin film are blocked by the melt and the movement of ions is prevented. . For this reason, when the charging current is too large, the battery temperature rapidly increases, the organic solvent of the electrolytic solution is decomposed, and the battery internal pressure increases. As a result, there was a problem that the gas discharge valve was activated and the electrolyte leaked out of the battery.
Therefore, the present invention has been made in view of the above problems, and even when the battery temperature is suddenly increased due to an overcharged state, the charging current can be reliably cut off to ensure the safety of the battery. It was made for the purpose of doing.
[0008]
[Means for solving the problems and their functions and effects]
For this reason, in the lithium ion battery of the present invention, as the positive electrode ,
A first layer formed as a conductive layer comprising at least a conductive filler, polyethylene oxide (PEO) decomposed at a potential of 4.5 to 5.5 V and a derivative thereof on a positive electrode current collector , and a positive electrode on the first layer A two-layered positive electrode having a second layer formed as an active material layer composed of an active material, a conductive agent, and a binder was employed.
[0010]
Thus, when polyethylene oxide (PEO) and its derivatives that decompose at a voltage of 4.5 to 5.5 V are used in the first layer , polyethylene oxide (PEO) and its derivatives are generated by overcharge. Since it is a substance that is easily decomposed at a high potential of 5.5 V , it is easily decomposed to generate gas when it is overcharged. Then, the generated gas structurally destroys the first layer and acts to break the interface between the first layer and the second layer, so that the electric current between the second layer in which the active material exists and the positive electrode current collector is present. Contact is blocked. For this reason, when polyethylene oxide (PEO) and its derivatives are used, the internal resistance of the battery is reliably increased, and the charging current can be cut off without causing a rapid temperature increase.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the lithium ion battery of the present invention will be described with reference to FIGS. 1 is a perspective view showing a positive electrode plate, FIG. 1 (a) shows a positive electrode plate of the present invention, and FIG. 1 (b) shows a conventional positive electrode plate. FIG. 2 is a cross-sectional view of a lithium ion battery showing a state in which a spiral electrode body obtained by stacking and winding a negative electrode plate through a separator using the positive electrode plate of FIG. 1 is housed in an outer can.
1. Preparation of positive electrode plate (1) Examples Conductive fillers such as graphite and aluminum (for example, 60% by weight), polyethylene oxide (PEO) (for example, 40% by weight), and the like in an organic solvent made of N-methylpyrrolidone, etc. The dissolved material is mixed to obtain a slurry or paste. The slurry or paste is applied to both surfaces of the positive electrode core (for example, an aluminum foil or an aluminum mesh having a thickness of 20 μm) 11 by using a die coater, a doctor blade or the like in the case of a slurry, or by a roller coating method in the case of a paste The conductive layer 12 which becomes the first layer of the positive electrode is formed by uniformly coating. Here, polyethylene oxide (PEO) is a substance that generates gas by being oxidatively decomposed at a high potential in an overcharged state (for example, 4.5 to 5.5 V), and the main chain of the ether bond is cleaved. .
[0012]
On the other hand, a positive electrode active material (for example, 90% by weight) made of LiCoO 2 , a carbon-based conductive agent (for example, 5% by weight) such as acetylene black or graphite, and a binder (for example, 5%) made of polyvinylidene fluoride (PVDF). (% By weight) and the like dissolved in an organic solvent made of N-methylpyrrolidone or the like is mixed to obtain an active material slurry or an active material paste. These active material slurries or active material pastes are applied uniformly on both surfaces of the conductive layer 12 as the first layer by using a die coater, a doctor blade or the like in the case of a slurry, or by a roller coating method in the case of a paste. Then, the positive electrode plate coated with the active material layer 13 to be the second layer is formed.
[0013]
Thereafter, the positive electrode plate coated with the conductive layer 12 as the first layer and the active material layer 13 as the second layer is passed through the dryer to remove the organic solvent necessary for slurry or paste preparation. And dry. After drying, this dry positive electrode plate is rolled by a roll press to obtain a positive electrode plate 10 having a thickness of 0.17 mm and having a two-layer structure.
(2) Comparative Example A positive electrode active material (for example, 90% by weight) made of LiCoO 2 , a carbon-based conductive agent (for example, 5% by weight) such as acetylene black and graphite, and a binder made of polyvinylidene fluoride (PVDF). (For example, 5% by weight) or the like dissolved in an organic solvent made of N-methylpyrrolidone is mixed to obtain an active material slurry or an active material paste.
[0014]
These active material slurries or active material pastes, in the case of slurry using a die coater, a doctor blade, etc., in the case of paste, a positive electrode core (for example, an aluminum foil or aluminum mesh having a thickness of 20 μm) by a roller coating method or the like The positive electrode plate with the active material layer 22 applied thereon is formed by uniformly applying to both surfaces of 21. Thereafter, the positive electrode plate coated with the active material layer 22 is passed through a dryer to remove the organic solvent necessary for slurry or paste preparation and dry. After drying, this dry positive electrode plate is rolled by a roll press to obtain a positive electrode plate 20 having a thickness of 0.17 mm and having a single layer structure.
2. Production of negative electrode plate On the other hand, a negative electrode active material made of natural graphite (d = 3.36 mm) and a binder made of polyvinylidene fluoride (PVDF) dissolved in an organic solvent made of N-methylpyrrolidone, etc. To make a slurry or paste. These slurries or pastes are uniformly applied over the entire surface of the negative electrode core (for example, a copper foil having a thickness of 20 μm) by using a die coater, a doctor blade or the like in the case of slurry, or by a roller coating method in the case of paste. The negative electrode plate which apply | coated and applied the active material layer is formed.
[0015]
Thereafter, the negative electrode plate coated with the active material layer is passed through a dryer to remove the organic solvent necessary for slurry or paste preparation and dry. Then, this dry negative electrode plate is rolled by a roll press to obtain a negative electrode plate 30 having a thickness of 0.14 mm.
3. Production of Electrode Body (1) Example A microporous membrane made of a polyolefin-based resin having a low reactivity with an organic solvent and an inexpensive positive electrode plate 10 and negative electrode plate 30 of an example produced as described above, Preferably, the microporous membranes made of polyethylene (for example, the thickness is 0.025 mm) 40 are sandwiched therebetween, and the electrode plates 10 and 30 are overlapped with the center lines in the width direction being matched. Then, it winds with the winder which is not illustrated. Thereafter, the outermost periphery is taped to obtain the spiral electrode body a of the example. In the case of a prismatic battery, the prismatic battery is molded into a shape that can be inserted into a prismatic outer can with a press machine.
(2) Comparative Example The positive electrode plate 20 and the negative electrode plate 30 of the comparative example prepared as described above are microporous films made of a polyolefin-based resin that is low in reactivity with an organic solvent and inexpensive, preferably polyethylene. A microporous membrane (for example, thickness of 0.025 mm) 40 is interposed therebetween, and the electrode plates 20 and 30 are overlapped with the center line in the width direction being coincident. Then, it winds with the winder which is not illustrated. Thereafter, the outermost periphery is taped to obtain a spiral electrode body b of a comparative example. In the case of a prismatic battery, the prismatic battery is molded into a shape that can be inserted into a prismatic outer can with a press machine.
4). Next, as shown in FIG. 2, the insulating plates 51 are respectively disposed above and below the electrode bodies a and b produced as described above, and then formed into a cylindrical shape by pressing from a single plate. These electrode bodies a and b are inserted from the opening of the steel outer can 50 that also serves as the negative electrode terminal. Next, the negative electrode current collecting tab 30a extending from the negative electrode plate 30 of the electrode bodies a and b is welded to the inner bottom portion of the outer can 50, and the positive electrode current collecting tab 10a extending from the positive electrode plate 10 (20) of the electrode body. (20a) is welded to the bottom of the bottom plate 64 of the sealing body 60.
[0016]
In addition, the sealing body 60 is comprised from the stainless steel positive electrode cap 61 formed in the reverse dish shape (cap shape), and the stainless steel baseplate 64 formed in the dish shape. The positive electrode cap 61 includes a convex portion 62 that bulges toward the outside of the battery and a flat flange portion 63 that forms the bottom side of the convex portion 62, and a gas vent (not shown) is provided at a corner of the convex portion 62. A hole is provided. On the other hand, the bottom plate 64 includes a concave portion 65 that bulges toward the inside of the battery, and a flat-plate-like flange portion 66 that constitutes the bottom side portion of the concave portion 65. A gas vent hole (not shown) is provided at the center of the recess 65. A gas discharge valve 67 is housed between the convex portion 62 of the positive electrode cap 61 and the concave portion 65 of the bottom plate 64. The gas discharge valve 67 is deformed when the gas pressure inside the battery rises and exceeds a predetermined pressure.
[0017]
Next, an electrolyte solution in which 1 M LiPF 6 was added and mixed as an electrolyte salt into a mixed solvent composed of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC) was poured into the opening of the outer can 50, The sealing body 60 is placed in the opening portion 50 through the insulating gasket 52 for exterior can made of polypropylene (PP), and the upper end portion of the opening portion of the exterior can 50 is caulked to the sealing body 60 side to seal it in a liquid-tight manner. 100 cylindrical lithium ion batteries A of the example having a nominal capacity of 1350 mAh and 100 cylindrical lithium ion batteries B of the comparative example are produced.
5. Test a. Overcharge test Each of the 100 lithium ion batteries A and B produced as described above was charged with a 1350 mA (1 C) charging current until the battery voltage reached 4.1 V, and then a constant voltage of 4.1 V. Charge for 3 hours until fully charged. Overcharging is performed by flowing a charging current of 1350 mA (1 C), 2700 mA (2 C), 4050 mA (3 C), and 5400 mA (4 C) between the positive and negative terminals of the lithium ion batteries A and B fully charged in this way. When the number of leaks after a predetermined time (for example, 3 hours) from the start of overcharge was measured, the results shown in Table 1 below were obtained.
[0018]
[Table 1]
Figure 0004115006
As is clear from Table 1 above, the number of leaks was 0 in the battery A of the example, whereas the number of leaks increased in the battery B of the comparative example at a high rate charge of 3C or higher. I understand. This is because, when the positive electrode active material is in direct contact with the positive electrode core body as in the battery B of the comparative example, the battery temperature rapidly rises due to Joule heat due to overcurrent when charging at a high rate of 3C or more, and the resin The charging current continues to flow until the melting point of the manufactured separator is reached and the fine pores of the separator are blocked by the melt and the movement of ions is stopped. This is probably because the electrolyte leaked out of the battery.
[0019]
On the other hand, when the positive electrode 10 has a two-layer structure of the conductive layer 12 and the active material layer 13 as in the battery A of the example, the positive electrode active material is not in direct contact with the positive electrode core body 11, so In the case of a high rate of charging, and when it becomes a high potential due to overcharging, polyethylene oxide (PEO) is oxidatively decomposed at a high potential in an overcharged state (eg, 4.5 to 5.5 V) The main chain of the ether bond is broken to generate gas.
[0020]
Then, the generated gas structurally destroys the conductive layer 12 that becomes the first layer and acts to cause interface destruction between the conductive layer 12 and the active material layer 13, so that it becomes the second layer in which the active material exists. Electrical contact between the active material layer 13 and the positive electrode core (positive electrode current collector) 11 is interrupted. As a result, since the internal resistance of the battery is increased, it is considered that the charging current can be interrupted without causing a rapid temperature increase.
[0021]
As described above, in the present invention, the conductive layer 12 serving as the first layer is provided with a substance that decomposes at a high potential in an overcharged state (a binder having an ether bond). When the potential (for example, 4.5 to 5.5 V) is reached, polyethylene oxide (PEO) or a derivative thereof whose main chain at the ether bond is cleaved has a high potential (for example, 4.5 to 5.5 V). ) To generate gas, and the internal resistance of the battery increases to cut off the charging current.
[0022]
In the above-described embodiment, a main binder such as polyethylene oxide (PEO) is used as a polymer binder that is decomposed by a high potential in an overcharged state (for example, 4.5 to 5.5 V) to generate gas. Although an example using a polymer binder having an ether bond portion in the chain has been described, even if a polymer binder having an ether bond portion in the side chain is used, the ether bond portion of the side chain has a high potential (for example, , 4.5 to 5.5 V) to generate gas, and the same effect can be obtained.
[0023]
In the above-described embodiment, an example in which natural graphite (d = 3.36 mm) is used as the negative electrode active material has been described. However, in addition to natural graphite, a carbon-based material capable of inserting and extracting lithium ions, for example, graphite Carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof is preferable.
[0024]
In the above-described embodiment, an example in which LiCoO 2 is used as the positive electrode active material has been described. However, in addition to LiCoO 2 , a lithium-containing transition metal compound that can accept lithium ions as a guest, for example, LiNiO 2 , LiCo X Ni ( 1-X) O 2 , LiCrO 2 , LiVO 2 , LiMnO 2 , αLiFeO 2 , LiTiO 2 , LiScO 2 , LiYO 2 , LiMn 2 O 4, etc. are preferred, and in particular, LiNiO 2 , LiCo X Ni (1-X) It is preferable to use O 2 alone or a mixture of two or more of these.
[0025]
Furthermore, the electrolyte is an ionic conductor in which a lithium salt is dissolved as a solute in an organic solvent, has high ionic conductivity, is chemically and electrochemically stable for both positive and negative electrodes, and is used. If the possible temperature range is wide, the safety is high, and the cost is low, it can be used. For example, in addition to the organic solvent described above, propylene carbonate (PC), sulfolane (SL), tetrahydrofuran (THF), γ-butyrolactone (GBL), or a mixed solvent thereof is suitable. Further, a lithium salt having a strong electron-withdrawing property is used as the solute. In addition to LiPF 6 described above, for example, LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, LiC 4 F 9 SO 3 and the like are suitable.
[Brief description of the drawings]
FIG. 2 is a view showing a cross section of a lithium ion battery showing a state in which a spiral electrode body obtained by stacking and winding a negative electrode plate through a separator using the positive electrode plate of FIG. 1 is housed in an outer can.
FIG. 1 is a perspective view showing a positive electrode plate, FIG. 1 (a) shows a positive electrode plate of the present invention, and FIG. 1 (b) shows a positive electrode plate of a conventional example.
2 is a cross-sectional view of a lithium ion battery showing a state in which a spiral electrode body obtained by stacking and winding a negative electrode plate through a separator using the positive electrode plate of FIG. 1 is housed in an outer can.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Positive electrode plate, 11 ... Positive electrode core, 12 ... Conductive layer (1st layer), 13 ... Active material layer (2nd layer), 10a ... Positive electrode current collection tab, 20 ... Positive electrode plate, 21 ... Positive electrode core, 22 ... Active material layer, 20a ... Positive electrode current collecting tab, 30 ... Negative electrode plate, 30a ... Negative electrode current collecting tab, 40 ... Separator, 50 ... Exterior can, 51 ... Spacer, 52 ... Insulating gasket, 60 ... Sealing body, 67 ... Gas discharge valve

Claims (1)

正極と、リチウムイオンを吸蔵・脱離し得る負極と、非水電解液とを備えたリチウムイオン電池であって、
前記正極として、正極集電体上に少なくとも導電性フィラーと4.5〜5.5Vの電位で分解するポリエチレンオキシド(PEO)およびその誘導体からなる導電層として形成した第1層と、この第1層上に正極活物質と導電剤と結着剤からなる活物質層として形成した第2層を有する二層構造の正極を採用したことを特徴とするリチウムイオン電池。
A lithium ion battery comprising a positive electrode, a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte,
As the positive electrode , a first layer formed on a positive electrode current collector as a conductive layer composed of at least a conductive filler, polyethylene oxide (PEO) that decomposes at a potential of 4.5 to 5.5 V, and a derivative thereof; 2. A lithium ion battery comprising a two-layered positive electrode having a second layer formed as an active material layer comprising a positive electrode active material, a conductive agent and a binder on the layer .
JP24571298A 1998-08-31 1998-08-31 Lithium ion battery Expired - Fee Related JP4115006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24571298A JP4115006B2 (en) 1998-08-31 1998-08-31 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24571298A JP4115006B2 (en) 1998-08-31 1998-08-31 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2000077060A JP2000077060A (en) 2000-03-14
JP4115006B2 true JP4115006B2 (en) 2008-07-09

Family

ID=17137690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24571298A Expired - Fee Related JP4115006B2 (en) 1998-08-31 1998-08-31 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP4115006B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000109B2 (en) * 2005-07-13 2012-08-15 日本曹達株式会社 Binder for electrode preparation, electrode and polymer battery
CN114361384B (en) * 2021-12-31 2024-03-26 远景动力技术(江苏)有限公司 Negative electrode, electrochemical device, and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof

Also Published As

Publication number Publication date
JP2000077060A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP4236308B2 (en) Lithium ion battery
JP3113652B1 (en) Lithium secondary battery
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2983205B1 (en) Non-aqueous secondary battery
JP5087433B2 (en) Bipolar lithium ion rechargeable battery
KR100826814B1 (en) Solid electrolyte cell
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
JP3080609B2 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
KR100587437B1 (en) Nonaqueous Secondary Battery
US6660433B2 (en) Lithium secondary battery and battery device comprising same
JP2963898B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP4798729B2 (en) Lithium ion secondary battery
JP4245429B2 (en) Battery with spiral electrode group
JP2008251187A (en) Sealed battery
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP3332781B2 (en) Lithium ion battery
JP2928779B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2007172879A (en) Battery and its manufacturing method
JP4115006B2 (en) Lithium ion battery
KR20130131983A (en) Secondary battery comprising apparatus for preventing overcharge
JP4420484B2 (en) Sealed battery
KR100659860B1 (en) Electrode for a rechargeable battery and the battery employing the same
KR101308248B1 (en) Can type Lithium rechargeable battery
JP2004139809A (en) Sealed battery
JP2000260468A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees