JP4420484B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP4420484B2
JP4420484B2 JP08550899A JP8550899A JP4420484B2 JP 4420484 B2 JP4420484 B2 JP 4420484B2 JP 08550899 A JP08550899 A JP 08550899A JP 8550899 A JP8550899 A JP 8550899A JP 4420484 B2 JP4420484 B2 JP 4420484B2
Authority
JP
Japan
Prior art keywords
battery
sealing plate
convex portion
gasket
internal gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08550899A
Other languages
Japanese (ja)
Other versions
JP2000277067A (en
Inventor
拓磨 森下
雅統 大木
修一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08550899A priority Critical patent/JP4420484B2/en
Publication of JP2000277067A publication Critical patent/JP2000277067A/en
Application granted granted Critical
Publication of JP4420484B2 publication Critical patent/JP4420484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部に発電要素が収納された有底円筒状の外装缶と、この外装缶の開口部に外部ガスケットを介してかしめ固定された封口体とを有すると共に、この封口体は上記外装缶側から順に封止板と内部ガスケットとを有し、この内部ガスケットを介して上記封止板により端子キャップと防爆弁とが挟持される構造の密閉型電池に関する。
【0002】
【従来の技術】
近年、LiCoO2 等のリチウム含有複合酸化物を正極材料とする一方、金属リチウム又はリチウムイオンを吸蔵、放出し得る合金又は炭素材料を負極材料とするリチウムイオン電池が、高容量化が可能な電池として注目されている。このようにリチウムイオン電池は優れた性能を有するということから、円筒型形状の密閉型電池等に用いられている。
【0003】
ここで、上記リチウムイオン電池の具体的な構造は、図5に示すように、内部に発電要素30が収納された有底円筒状の外装缶31と、この外装缶31の開口部に外部ガスケット33を介してかしめ固定された封口体32とを有すると共に、この封口体32は上記外装缶31側から順に封止板34と内部ガスケット35とを有し、この内部ガスケット35を介して上記封止板34により端子キャップ36、防爆弁37及びPTC素子38が挟持される構造となっている。
【0004】
しかしながら、上記従来の電池では、封口体32のかしめ固定時に外装缶31の開口端部を電池内部方向(図中A方向)に押圧する必要があり、これに伴って封止板34も電池内部方向に押圧されるので、封止板34が電池内部方向に変形し(たわみ)、封止板34と内部ガスケット35との間に隙間40が形成される。このため、封止板34に形成されたガス抜き孔41から進入した電解液が、隙間40を通って電池外に大量に排出されて、電池外に存在する保護回路等を破損するおそれがある。加えて、内部ガスケット35と防爆弁37との間にも隙間が形成されることがあるため、電解液がこの隙間を通って封口体32内に進入して、封口体32内のPTC素子38を破損するおそれもある。このような不都合は、電池の保存温度が大きく変化するような場合に、特に生じやすくなる。なぜなら、低温では内部ガスケット35は収縮し、高温では内部ガスケット35は膨張するため、このようなことを繰り返すと、内部ガスケット35が徐々に劣化するからである。
【0005】
【発明が解決しようとする課題】
本発明は、以上の事情に鑑みなされたものであって、例え電池の保存温度が大きく変化するような場合であっても、封止板と内部ガスケットとの間及び防爆弁と内部ガスケットとの間に隙間が形成されるのを抑制することにより、電解液が電池外に排出されたり、封口体内に進入したりするのを防止し、これによって、保護回路やPTC素子の破損を抑制することができる密閉型電池の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1記載の発明は、内部に発電要素が収納された有底円筒状の外装缶と、この外装缶の開口部に外部ガスケットを介してかしめ固定された封口体とを有すると共に、この封口体は上記外装缶側から順に封止板と内部ガスケットとを有し、この内部ガスケットを介して上記封止板により端子キャップと防爆弁とが挟持される構造の密閉型電池において、上記封止板、電池外部及び/又は内部方向に出っ張り、上記封止板の中心を囲む円周状の凸部を備え、上記内部ガスケットは、上記封止板の凸部が電池外部方向に出っ張る凸部である場合には、上記内部ガスケットの電池内部側に、この封止板の凸部と接する位置において、この凸部に対応した凹部が設けられ、上記封止板の凸部が電池内部方向に出っ張る凸部である場合には、上記内部ガスケットの電池内部側に、この凸部に対応した凸部が設けられ、上記封止板と上記内部ガスケットとの間に隙間が形成されないようになされていることを特徴とする
【0007】
このように、封止板に電池外部及び/又は内部方向に出っ張る凸部が形成されていれば、封止板のたわみ強度が飛躍的に向上するので、封口体をかしめ固定する際に、封止板が電池内部方向に押圧された場合であっても、封止板が電池内部方向にたわむのが抑制される。したがって、例え電池の保存温度が大きく変化するような場合であっても、封止板と内部ガスケットとの間及び防爆弁と内部ガスケットとの間に隙間が形成されず、この結果、電解液が電池外に排出されたり、封口体内に進入したりするのを防止できるので、保護回路やPTC素子の破損が抑制される。
また、内部ガスケットが電池外部及び/又は内部方向に出っ張る封止板の凸部の形状に対応するように構成されていなければ、以下の不都合を生じる場合がある。
即ち、凸部が電池外部方向に出っ張る場合には、内部ガスケットに対する押圧力が大き過ぎるため、内部ガスケットの弾性力が十分に発揮されず、しかも内部ガスケットが大きく変形して防爆弁の作動部と接触するため、防爆弁が誤作動するおそれがある。一方、凸部が電池内部方向に出っ張る場合には、内部ガスケットに対する押圧力が小さすぎるため(或いは、押圧力が全く働かないため)、内部ガスケットの弾性力が十分に発揮されない(或いは、弾性力が全く発揮されない)。 これに対して、内部ガスケットが凸部の形状に対応するように構成されていれば、内部ガスケットに適切な押圧力が加えられるため、内部ガスケットの弾性力が十分に発揮されると共に、内部ガスケットが大きく変形しないので、防爆弁が誤作動することもない。したがって、安全性の向上を図りつつ、前記の効果が一層発揮される。
【0011】
また、請求項記載の発明は、請求項記載の発明において、上記封止板の厚みに対する上記凸部の高さ割合が50%以上であることを特徴とする。
このように規制するのは、凸部の高さ割合が50%未満になると、凸部が小さすぎて凸部形成効果が十分に発揮されないからである。
また、請求項記載の発明は、請求項1又は2記載の発明において、上記凸部が複数個形成されていることを特徴とする。
このような構成であれば、上記の効果が一層発揮される。
【0012】
【発明の実施の形態】
本発明の実施の形態を、図1〜図4に基づいて、以下に説明する。
図1は本発明の一例に係るリチウムイオン電池の分解斜視図、図2は本発明電池に用いる封口体の拡大半断面図、図3は本発明電池に用いる他の例に係る封口体の拡大半断面図、図4は本発明電池に用いる更に他の例に係る封口体の拡大半断面図である。
【0013】
図1に示すように、本発明の一例に係るリチウムイオン電池は、有底円筒状の外装缶5を有しており、この外装缶5内には、アルミニウムから成る芯体にLiCoO2 を主体とする活物質層が形成された正極1と、銅から成る芯体に黒鉛を主体とする活物質層が形成された負極2と、これら両電極1・2を離間するセパレータ3とから成る渦巻き状の発電要素4が収納されている。また、上記外装缶5内には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とが体積比で4:6の割合で混合された混合溶媒に、LiPF6 が1M(モル/リットル)の割合で溶解された電解液が注入されている。更に、上記外装缶5の開口部には、ポリプロピレン(PP)から成る絶縁性の外部ガスケット25を介して、封口体6がかしめ固定されており、これによって電池が封口される。
【0014】
ここで、上記封口体6は、図2に示すように、アルミニウム合金から成り且つガス抜き穴23を有する封止板9(厚みL1 =0.40mm)を有している。この封止板9におけるかしめ代14と上記ガス抜き穴23との間には、電池外部方向に出っ張る凸部9a(高さL2 =0.05mmであり、封止板の厚みに対する凸部の高さ割合〔L2 /L1 ×100〕は12.5%)が形成されており、これにより封止板9のたわみ強度を向上させている。
【0015】
また、封止板9には、PPから成る絶縁性の内部ガスケット15を介して、アルミニウム合金から成ると共に中央部が略半円球状を成す防爆弁8と、PTC素子12と、ガス抜き穴24が設けられた端子キャップ7とがかしめ固定されている。上記内部ガスケット15における上記封止板9の凸部9aに対応する位置では、当該凸部9aの形状に対応するように、凹部15aが形成されている。この凹部15aにより、内部ガスケット15に適切な押圧力が加えられて、内部ガスケット15の弾性力が十分に発揮されると共に、内部ガスケット15が大きく変形しないので、防爆弁8の誤作動を防止しうる。
【0016】
上記防爆弁8は、封口体内部20と電池本体部26(発電要素4が収納されている部位)とを区切るものであり、通常状態では、封止板9と電気的に接続される一方(図中、実線で示す)、過充電時等の異常時に電池内部の圧力が所定値(10〜20kgf/cm2 )以上になった場合には、封止板9から剥がれて、これにより充電が中止される(図中、二点鎖線で示す)。
【0017】
尚、前記外装缶5には、負極2と電気的に接続された負極集電タブ13が接続される一方、前記封口体6の封止板9には正極集電タブ10が接続され、これにより、電池内で生じる化学的エネルギーを電気的エネルギーに変換することができる。更に前記発電要素4の上下両端部近傍には、電池内でのショートを防止するための絶縁板16・17が配置されている。
【0018】
ここで、上記構造の非水電解質電池を、以下のようにして作製した。
先ず、正極活物質としてのLiCoO2 を90重量%と、導電剤としてのカーボンブラックを5重量%と、結着剤としてのポリフッ化ビニリデンを5重量%と、溶剤としてのN−メチル−2−ピロリドン(NMP)溶液とを混合してスラリーを調製した後、正極集電タブ10の溶接部位を除き、上記スラリーを正極集電体としてのアルミニウム箔(厚み:20μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した後、所定の幅及び長さになるように切断し、更にアルミニウム製の正極集電タブ10(幅:3mm)を溶接した。
【0019】
これと並行して、負極活物質としての黒鉛粉末を95重量%と、結着剤としてのポリフッ化ビニリデンを5重量%と、溶剤としてのNMP溶液とを混合してスラリーを調製した後、負極集電タブ13の溶接部位を除き、上記スラリーを負極集電体としての銅箔(厚み:16μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した後、所定の幅及び長さになるように切断し、更にニッケル製の負極集電タブ13(幅:3mm)を溶接した。
【0020】
次に、上記正極1と負極2とをポリエチレン製微多孔膜から成るセパレータ3(厚み:25μm)を介して巻回して発電要素4を作製した後、この発電要素4を絶縁板16と共に外装缶5内に挿入し、更に負極集電タブ13を外装缶5の缶底に溶接した。
【0021】
その後、防爆弁8、PTC素子12、及び端子キャップ7を、内部ガスケット15を介して封止板9にかしめ固定して、封口体内部20を封止した。しかる後、正極集電タブ10を封口板6に溶接すると共に、ECとDMCとが体積比で4:6の割合で混合された混合溶媒に、LiPF6 が1M(モル/リットル)の割合で溶解された電解液を外装缶5内に注入した後、外部ガスケット25を介して、封口板6を外装缶5の開口端部にかしめ固定することにより、円筒形の電池を作製した。
【0022】
尚、封止板9の凸部9aは、上記実施の形態に示すように電池外部方向に出っ張るような形状に限定するものではなく、例えば、図3に示すように、電池内部方向に出っ張るような形状であっても良い。但し、この場合には、内部ガスケット15における凸部9aに対応する位置においては、当該凸部9aの形状に対応するように、凸部15bを形成するのが望ましい。
【0023】
また、凸部9aは1つに限定するものではなく、例えば、図4に示すように、2つ以上設けても良く、更に電池外部方向に出っ張るような形状のものと電池内部方向に出っ張るような形状のものとを並設しても良いことは勿論である。
加えて、封止板9の材質としては上記アルミニウム合金に限定するものではなく、金属アルミニウム、鉄、ステンレス等を用いることも可能である。
【0024】
また、本発明は上記リチウムイオン電池に限定するものではなく、電解液の漏れを確実に防止する必要性のある電池であれば適用しうることは勿論である。
但し、本発明を上記リチウムイオン電池に適用する場合には、正極材料としては上記LiCoO2 の他、例えば、LiNiO2 、LiMn2 4 或いはこれらの複合体等が好適に用いられ、また負極材料としては上記炭素材料の他、リチウム金属、リチウム合金、或いは金属酸化物(スズ酸化物等)等が好適に用いられる。更に、電解液の溶媒としては上記のものに限らず、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトンなどの比較的比誘電率が高い溶液と、ジエチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン、2−メトキシテトラヒドロフラン、ジエチルエーテル等の低粘度低沸点溶媒とを適度な比率で混合した溶媒を用いることができる。また、電解液の電解質としては、上記LiPF6 の他、LiAsF6 、LiClO4 、LiBF4 、LiCF3 SO3 等を用いることができる。
【0025】
【実施例】
〔実施例1〕
実施例1としては、上記発明の実施の形態に示す方法と同様の方法にて作製した電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
【0026】
〔実施例2〕
封止板9の凸部9aの高さL2 を0.10mm(封止板の厚みに対する凸部の高さ割合〔L2 /L1 ×100〕は25%)とした他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
【0027】
〔実施例3〕
封止板9の凸部9aの高さL2 を0.20mm(封止板の厚みに対する凸部の高さ割合〔L2 /L1 ×100〕は50%)とした他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A3と称する。
【0028】
〔比較例〕
封止板9に凸部9aを形成しない他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Xと称する。
【0029】
〔実験〕
上記本発明電池A1〜A3及び比較電池Xについて、ヒートショック環境試験機にて100サイクル保存した後、かしめ部からの電解液リーク数と封口体内部への電解液浸透数とを調べたので、それらの結果を表1に示す。
尚、ヒートショック環境試験は、1時間毎に1サイクル、高温側70℃、低温側−30℃という条件で、各電池を保存することにより行った。また、試料数は、各電池50個とした。
【0030】
【表1】

Figure 0004420484
【0031】
上記表1から明らかなように、比較電池Xではかしめ部からの電解液リーク数と封口体内部への電解液浸透数とが多いのに対して、本発明電池A1〜A3ではかしめ部からの電解液リーク数と封口体内部への電解液浸透数とが減少しており、特に本発明電池A3では極めて減少(或いは全く無い)ことが認められた。
【0032】
したがって、封止板には、電池外部及び/又は内部方向に出っ張る凸部が設けられていることが望ましく、特に、封止板の厚みに対する凸部の高さ割合〔L2 /L1 ×100〕は50%以上であることが望ましいことがわかる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、例え電池の保存温度が大きく変化するような場合であっても、封止板と内部ガスケットとの間及び防爆弁と内部ガスケットとの間に隙間が形成されるのを抑制することができるので、電解液が電池外に排出されたり、封口体内に進入したりするのを防止でき、これによって、保護回路やPTC素子の破損を抑制することができるといった優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の一例に係るリチウムイオン電池の分解斜視図。
【図2】本発明電池に用いる封口体の拡大半断面図。
【図3】本発明電池に用いる他の例に係る封口体の拡大半断面図。
【図4】本発明電池に用いる更に他の例に係る封口体の拡大半断面図。
【図5】従来電池に用いる封口体の拡大半断面図。
【符号の説明】
4:発電要素
5:外装缶
6:封口体
7:端子キャップ
8:防爆弁
9:封止板
9a:凸部
12:PTC素子
15:内部ガスケット
15a:凹部
25:外部ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention has a bottomed cylindrical outer can in which a power generation element is housed, and a sealing body fixed by caulking to an opening of the outer can via an external gasket. The present invention relates to a sealed battery having a structure in which a sealing plate and an internal gasket are provided in order from the can side, and a terminal cap and an explosion-proof valve are sandwiched by the sealing plate via the internal gasket.
[0002]
[Prior art]
In recent years, a lithium-ion battery using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material, and using an alloy or a carbon material capable of occluding and releasing metal lithium or lithium ions as a negative electrode material can increase the capacity. It is attracting attention as. Thus, since lithium ion batteries have excellent performance, they are used for cylindrical sealed batteries and the like.
[0003]
Here, as shown in FIG. 5, the specific structure of the lithium ion battery includes a bottomed cylindrical outer can 31 in which a power generation element 30 is housed, and an external gasket at the opening of the outer can 31. The sealing body 32 includes a sealing plate 34 and an internal gasket 35 in order from the exterior can 31 side, and the sealing body 32 is caulked and fixed via the internal gasket 35. The terminal cap 36, the explosion-proof valve 37, and the PTC element 38 are sandwiched by the stop plate 34.
[0004]
However, in the conventional battery described above, it is necessary to press the opening end of the outer can 31 in the inner direction of the battery (A direction in the figure) when the sealing body 32 is fixed by caulking. Since the sealing plate 34 is pressed in the direction, the sealing plate 34 deforms (bends) toward the inside of the battery, and a gap 40 is formed between the sealing plate 34 and the internal gasket 35. For this reason, there is a possibility that the electrolyte that has entered from the vent hole 41 formed in the sealing plate 34 is discharged in large quantities outside the battery through the gap 40 and damages the protection circuit or the like existing outside the battery. . In addition, since a gap may also be formed between the internal gasket 35 and the explosion-proof valve 37, the electrolyte enters the sealing body 32 through this gap, and the PTC element 38 in the sealing body 32. May be damaged. Such inconvenience is particularly likely to occur when the storage temperature of the battery changes greatly. This is because the internal gasket 35 contracts at a low temperature and the internal gasket 35 expands at a high temperature, and thus the internal gasket 35 gradually deteriorates when this is repeated.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and even if the storage temperature of the battery is greatly changed, between the sealing plate and the internal gasket and between the explosion-proof valve and the internal gasket. By suppressing the formation of gaps between them, the electrolyte is prevented from being discharged out of the battery or entering the sealing body, thereby preventing damage to the protective circuit and the PTC element. It is an object to provide a sealed battery that can be used.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention includes a bottomed cylindrical outer can in which a power generation element is housed, and an opening in the outer can via an external gasket. The sealing body has a sealing plate and an internal gasket in order from the outer can side, and a terminal cap and an explosion-proof valve are connected to the sealing plate by the sealing plate via the internal gasket. in the sealed battery of the structure is sandwiched, the sealing plate ledge outside the battery and / or internal direction, provided with a circumferential projection portion surrounding the center of the sealing plate, the inner gasket, the sealing When the convex portion of the stop plate is a convex portion protruding in the battery external direction, a concave portion corresponding to the convex portion is provided on the inner side of the battery of the internal gasket at a position in contact with the convex portion of the sealing plate. The convex part of the sealing plate is inside the battery. When the protrusion protrudes in the direction, a protrusion corresponding to the protrusion is provided on the battery inner side of the inner gasket so that no gap is formed between the sealing plate and the inner gasket. It is characterized by being made. [0007]
In this way, if the sealing plate is formed with a protruding portion that protrudes outside and / or inside the battery, the bending strength of the sealing plate is dramatically improved. Even when the stop plate is pressed in the battery inner direction, the sealing plate is suppressed from being bent in the battery inner direction. Therefore, even if the storage temperature of the battery changes greatly, no gap is formed between the sealing plate and the internal gasket and between the explosion-proof valve and the internal gasket. Since it is possible to prevent the battery from being discharged outside the battery or entering the sealed body, damage to the protective circuit and the PTC element is suppressed.
Further, if the internal gasket is not configured to correspond to the shape of the convex portion of the sealing plate protruding in the battery external and / or internal direction , the following inconvenience may occur.
That is, when the convex part protrudes toward the outside of the battery, the pressing force against the internal gasket is too large, so that the elastic force of the internal gasket is not sufficiently exerted, and the internal gasket is greatly deformed and the operation part of the explosion-proof valve Because of contact, the explosion-proof valve may malfunction. On the other hand, when the convex portion protrudes toward the inside of the battery, the pressing force on the internal gasket is too small (or the pressing force does not work at all), so that the elastic force of the internal gasket is not fully exhibited (or the elastic force Is not demonstrated at all). On the other hand, if the internal gasket is configured to correspond to the shape of the convex portion, an appropriate pressing force is applied to the internal gasket, so that the elastic force of the internal gasket is sufficiently exerted, and the internal gasket Will not deform greatly, so the explosion-proof valve will not malfunction. Therefore, the above-described effects are further exhibited while improving safety.
[0011]
The invention described in claim 2 is characterized in that, in the invention described in claim 1 , the height ratio of the convex portion to the thickness of the sealing plate is 50% or more.
The reason for this restriction is that when the height ratio of the convex portion is less than 50%, the convex portion is too small to sufficiently exhibit the convex portion forming effect.
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein a plurality of the convex portions are formed.
With such a configuration, the above effects are further exhibited.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
1 is an exploded perspective view of a lithium ion battery according to an example of the present invention, FIG. 2 is an enlarged half sectional view of a sealing body used in the battery of the present invention, and FIG. 3 is an enlarged view of a sealing body according to another example used in the battery of the present invention. FIG. 4 is an enlarged half sectional view of a sealing body according to still another example used in the battery of the present invention.
[0013]
As shown in FIG. 1, a lithium ion battery according to an example of the present invention has a bottomed cylindrical outer can 5, and in the outer can 5, LiCoO 2 is mainly used as a core made of aluminum. A spiral composed of a positive electrode 1 on which an active material layer is formed, a negative electrode 2 in which an active material layer mainly composed of graphite is formed on a copper core, and a separator 3 that separates the electrodes 1 and 2. The power generation element 4 is housed. Further, in the outer can 5, a ratio of 1 M (mol / liter) of LiPF 6 to a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 4: 6. The electrolytic solution dissolved in is injected. Furthermore, a sealing body 6 is caulked and fixed to the opening of the outer can 5 via an insulating external gasket 25 made of polypropylene (PP), thereby sealing the battery.
[0014]
Here, as shown in FIG. 2, the sealing body 6 has a sealing plate 9 (thickness L 1 = 0.40 mm) made of an aluminum alloy and having a vent hole 23. Between the caulking allowance 14 in the sealing plate 9 and the gas vent hole 23, a convex portion 9a (height L 2 = 0.05 mm, protruding in the direction of the outside of the battery, and the convex portion relative to the thickness of the sealing plate 9 The height ratio [L 2 / L 1 × 100] is 12.5%), which improves the flexural strength of the sealing plate 9.
[0015]
Further, the sealing plate 9 is provided with an explosion-proof valve 8 made of an aluminum alloy and having a substantially semispherical central portion, a PTC element 12 and a gas vent hole 24 through an insulating internal gasket 15 made of PP. The terminal cap 7 provided with is fixed by caulking. At the position corresponding to the convex portion 9a of the sealing plate 9 in the internal gasket 15, a concave portion 15a is formed so as to correspond to the shape of the convex portion 9a. Due to the recess 15a, an appropriate pressing force is applied to the internal gasket 15 so that the elastic force of the internal gasket 15 is sufficiently exerted and the internal gasket 15 is not greatly deformed. sell.
[0016]
The explosion-proof valve 8 separates the inside 20 of the sealing body from the battery body 26 (the part in which the power generation element 4 is housed), and is electrically connected to the sealing plate 9 in a normal state ( If the internal pressure of the battery exceeds a predetermined value (10 to 20 kgf / cm 2 ) at the time of abnormality such as overcharging, the battery is peeled off from the sealing plate 9, and charging is thereby performed. Discontinued (indicated by a two-dot chain line in the figure).
[0017]
In addition, a negative electrode current collecting tab 13 electrically connected to the negative electrode 2 is connected to the outer can 5, while a positive electrode current collecting tab 10 is connected to the sealing plate 9 of the sealing body 6. Thus, chemical energy generated in the battery can be converted into electrical energy. Furthermore, insulating plates 16 and 17 for preventing a short circuit in the battery are disposed near the upper and lower ends of the power generating element 4.
[0018]
Here, the non-aqueous electrolyte battery having the above structure was produced as follows.
First, 90% by weight of LiCoO 2 as a positive electrode active material, 5% by weight of carbon black as a conductive agent, 5% by weight of polyvinylidene fluoride as a binder, and N-methyl-2- 2 as a solvent. After preparing a slurry by mixing with a pyrrolidone (NMP) solution, the above-mentioned slurry was applied to both surfaces of an aluminum foil (thickness: 20 μm) as a positive electrode current collector, except for the welded portion of the positive electrode current collector tab 10. Then, after drying the solvent and compressing to a predetermined thickness with a roller, it was cut so as to have a predetermined width and length, and an aluminum positive electrode current collecting tab 10 (width: 3 mm) was welded.
[0019]
In parallel with this, a slurry was prepared by mixing 95% by weight of graphite powder as a negative electrode active material, 5% by weight of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. The slurry was applied to both sides of a copper foil (thickness: 16 μm) as a negative electrode current collector, except for the welded portion of the current collecting tab 13. Thereafter, the solvent was dried, compressed to a predetermined thickness with a roller, cut to a predetermined width and length, and further, a nickel negative electrode current collecting tab 13 (width: 3 mm) was welded.
[0020]
Next, after the positive electrode 1 and the negative electrode 2 are wound through a separator 3 (thickness: 25 μm) made of a polyethylene microporous film, a power generation element 4 is produced. The negative electrode current collecting tab 13 was further welded to the bottom of the outer can 5.
[0021]
Thereafter, the explosion-proof valve 8, the PTC element 12, and the terminal cap 7 were caulked and fixed to the sealing plate 9 via the internal gasket 15 to seal the sealing body inside 20. Thereafter, the positive electrode current collecting tab 10 is welded to the sealing plate 6, and LiPF 6 is mixed at a ratio of 1 M (mol / liter) in a mixed solvent in which EC and DMC are mixed at a volume ratio of 4: 6. After injecting the dissolved electrolyte solution into the outer can 5, the sealing plate 6 was caulked and fixed to the opening end portion of the outer can 5 via the external gasket 25 to produce a cylindrical battery.
[0022]
In addition, the convex part 9a of the sealing plate 9 is not limited to a shape that protrudes toward the outside of the battery as shown in the above embodiment. For example, the protrusion 9a protrudes toward the inside of the battery as shown in FIG. It may be a simple shape. However, in this case, it is desirable to form the convex portion 15b at the position corresponding to the convex portion 9a in the internal gasket 15 so as to correspond to the shape of the convex portion 9a.
[0023]
Further, the number of the convex portions 9a is not limited to one. For example, as shown in FIG. 4, two or more convex portions 9a may be provided. Of course, it may be arranged in parallel.
In addition, the material of the sealing plate 9 is not limited to the above aluminum alloy, and metallic aluminum, iron, stainless steel, and the like can also be used.
[0024]
Further, the present invention is not limited to the above lithium ion battery, and it is needless to say that the present invention can be applied to any battery that needs to reliably prevent leakage of the electrolyte.
However, when the present invention is applied to the lithium ion battery, as the positive electrode material, for example, LiNiO 2 , LiMn 2 O 4, or a composite thereof is preferably used in addition to the LiCoO 2 , and the negative electrode material In addition to the above carbon material, lithium metal, lithium alloy, metal oxide (such as tin oxide) or the like is preferably used. Further, the solvent of the electrolytic solution is not limited to the above, but a solution having relatively high relative dielectric constant such as propylene carbonate, vinylene carbonate, γ-butyrolactone, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxy A solvent prepared by mixing a low-viscosity low-boiling solvent such as ethane, 1,3-dioxolane, 2-methoxytetrahydrofuran, and diethyl ether in an appropriate ratio can be used. In addition to LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3, etc. can be used as the electrolyte of the electrolytic solution.
[0025]
【Example】
[Example 1]
As Example 1, a battery manufactured by a method similar to the method described in the embodiment of the present invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.
[0026]
[Example 2]
Except that the height L 2 of the convex portion 9a of the sealing plate 9 is 0.10 mm (the height ratio of the convex portion to the thickness of the sealing plate [L 2 / L 1 × 100] is 25%). A battery was produced in the same manner as in Example 1.
The battery thus produced is hereinafter referred to as the present invention battery A2.
[0027]
Example 3
Except that the height L 2 of the convex portion 9a of the sealing plate 9 is 0.20 mm (the height ratio of the convex portion to the thickness of the sealing plate [L 2 / L 1 × 100] is 50%). A battery was produced in the same manner as in Example 1.
The battery thus produced is hereinafter referred to as the present invention battery A3.
[0028]
[Comparative Example]
A battery was fabricated in the same manner as in Example 1 except that the convex portion 9a was not formed on the sealing plate 9.
The battery thus produced is hereinafter referred to as comparative battery X.
[0029]
[Experiment]
About the present invention batteries A1 to A3 and comparative battery X, after storing 100 cycles in a heat shock environment tester, the number of electrolyte leaks from the caulking portion and the number of electrolyte penetration into the sealing body were examined. The results are shown in Table 1.
The heat shock environmental test was performed by storing each battery under the conditions of one cycle every hour, high temperature side 70 ° C., low temperature side −30 ° C. The number of samples was 50 batteries.
[0030]
[Table 1]
Figure 0004420484
[0031]
As is clear from Table 1 above, the comparative battery X has a large number of electrolyte leaks from the caulking portion and the number of electrolytes permeating into the sealing body, whereas the batteries A1 to A3 of the present invention have the number from the caulking portion. The number of electrolyte leaks and the number of electrolytes permeating into the sealing body decreased, and it was confirmed that the number of electrolyte leaks was extremely small (or not at all) particularly in the battery A3 of the present invention.
[0032]
Therefore, it is desirable that the sealing plate be provided with a convex portion protruding in the battery external and / or internal direction, and in particular, the height ratio of the convex portion to the thickness of the sealing plate [L 2 / L 1 × 100. ] Is preferably 50% or more.
[0033]
【The invention's effect】
As described above, according to the present invention, there is a gap between the sealing plate and the internal gasket and between the explosion-proof valve and the internal gasket even if the storage temperature of the battery changes greatly. Since formation can be suppressed, it is possible to prevent the electrolytic solution from being discharged out of the battery or entering the sealing body, thereby preventing damage to the protection circuit and the PTC element. There are excellent effects.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a lithium ion battery according to an example of the present invention.
FIG. 2 is an enlarged half sectional view of a sealing body used in the battery of the present invention.
FIG. 3 is an enlarged half sectional view of a sealing body according to another example used in the battery of the present invention.
FIG. 4 is an enlarged half sectional view of a sealing body according to still another example used in the battery of the present invention.
FIG. 5 is an enlarged half sectional view of a sealing body used in a conventional battery.
[Explanation of symbols]
4: Power generation element 5: Exterior can 6: Sealing body 7: Terminal cap 8: Explosion-proof valve 9: Sealing plate 9a: Convex part 12: PTC element 15: Internal gasket 15a: Concave part 25: External gasket

Claims (3)

内部に発電要素が収納された有底円筒状の外装缶と、この外装缶の開口部に外部ガスケットを介してかしめ固定された封口体とを有すると共に、この封口体は上記外装缶側から順に封止板と内部ガスケットとを有し、この内部ガスケットを介して上記封止板により端子キャップと防爆弁とが挟持される構造の密閉型電池において、
上記封止板、電池外部及び/又は内部方向に出っ張り、上記封止板の中心を囲む円周状の凸部を備え、
上記封止板の凸部が電池外部方向に出っ張る凸部である場合には、上記内部ガスケットの電池内部側に、この封止板の凸部と接する位置において、この凸部に対応した凹部が設けられ、
上記封止板の凸部が電池内部方向に出っ張る凸部である場合には、上記内部ガスケットの電池内部側に、この凸部に対応した凸部が設けられ、
上記封止板と上記内部ガスケットとの間に隙間が形成されないようになされている
ことを特徴とする密閉型電池。
The bottomed cylindrical outer can in which the power generation element is housed, and a sealing body that is caulked and fixed to the opening of the outer can via an external gasket. The sealing body is in order from the outer can side. In a sealed battery having a structure having a sealing plate and an internal gasket, and the terminal cap and the explosion-proof valve are sandwiched by the sealing plate via the internal gasket,
The sealing plate, ledge outside the battery and / or internal direction, provided with a circumferential projection portion surrounding the center of the sealing plate,
When the convex portion of the sealing plate is a convex portion protruding in the battery external direction, a concave portion corresponding to the convex portion is provided on the battery inner side of the internal gasket at a position in contact with the convex portion of the sealing plate. Provided,
When the convex part of the sealing plate is a convex part protruding in the battery internal direction, a convex part corresponding to the convex part is provided on the battery inner side of the internal gasket,
A sealed battery, wherein no gap is formed between the sealing plate and the internal gasket .
上記封止板の厚みに対する上記凸部の高さ割合が50%以上である、請求項1記載の密閉型電池。  The sealed battery according to claim 1, wherein a height ratio of the convex portion to a thickness of the sealing plate is 50% or more. 上記凸部が複数個形成されている、請求項1又は2記載の密閉型電池。  The sealed battery according to claim 1, wherein a plurality of the convex portions are formed.
JP08550899A 1999-03-29 1999-03-29 Sealed battery Expired - Fee Related JP4420484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08550899A JP4420484B2 (en) 1999-03-29 1999-03-29 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08550899A JP4420484B2 (en) 1999-03-29 1999-03-29 Sealed battery

Publications (2)

Publication Number Publication Date
JP2000277067A JP2000277067A (en) 2000-10-06
JP4420484B2 true JP4420484B2 (en) 2010-02-24

Family

ID=13860885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08550899A Expired - Fee Related JP4420484B2 (en) 1999-03-29 1999-03-29 Sealed battery

Country Status (1)

Country Link
JP (1) JP4420484B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426867B1 (en) * 2000-05-05 2002-07-30 Wilson Greatbatch, Ltd. Protection device having tapered ribs and method of assembling a battery with a protection device and an electrical component
US7833647B2 (en) 2004-04-28 2010-11-16 Eveready Battery Company, Inc. Closure vent seal and assembly
US7687189B2 (en) 2004-04-28 2010-03-30 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
KR20060037595A (en) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 Secondary battery
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell

Also Published As

Publication number Publication date
JP2000277067A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US10985400B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3732945B2 (en) Sealed battery
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP4236308B2 (en) Lithium ion battery
JP4854208B2 (en) Sealed battery and manufacturing method thereof
JP2004014395A (en) Battery
JP4097443B2 (en) Lithium secondary battery
JP4798729B2 (en) Lithium ion secondary battery
JP2008251187A (en) Sealed battery
JP4984359B2 (en) Sealed battery and its sealing plate
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP4420484B2 (en) Sealed battery
WO2019107049A1 (en) Cylindrical secondary battery
KR101520148B1 (en) Secondary battery comprising apparatus for preventing overcharge
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2000277063A (en) Sealed battery
JP4248044B2 (en) Non-aqueous electrolyte secondary battery
JP2001283793A (en) Battery
JP2002100408A (en) Flat nonaqueous electrolyte secondary battery
JP3643693B2 (en) Manufacturing method of sealed battery
US20200350634A1 (en) Cylindrical secondary battery
KR100659860B1 (en) Electrode for a rechargeable battery and the battery employing the same
JPH11121040A (en) Lithium secondary battery
JP4827111B2 (en) Flat non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees