JP2002075361A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2002075361A
JP2002075361A JP2000260707A JP2000260707A JP2002075361A JP 2002075361 A JP2002075361 A JP 2002075361A JP 2000260707 A JP2000260707 A JP 2000260707A JP 2000260707 A JP2000260707 A JP 2000260707A JP 2002075361 A JP2002075361 A JP 2002075361A
Authority
JP
Japan
Prior art keywords
lithium
active material
positive electrode
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000260707A
Other languages
Japanese (ja)
Other versions
JP4797230B2 (en
Inventor
Masaya Nakamura
雅也 中村
Jun Hasegawa
順 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000260707A priority Critical patent/JP4797230B2/en
Publication of JP2002075361A publication Critical patent/JP2002075361A/en
Application granted granted Critical
Publication of JP4797230B2 publication Critical patent/JP4797230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery whose positive electrode active material chiefly consists of lithium manganate of spinell structure excellent in the high-temperature cyclic characteristic and high-temperature storing performance while the charge-discharge capacity is well secured. SOLUTION: The amount of positive electrode active material per unit amount of negative electrode active material can be reduced by mixing a material having a higher charge-discharge capacity than the main component of the positive electrode active material as the residue, and accordingly the contraction at charging of the positive electrode active material can be as a whole suppressed, so that there is less risk that the negative electrode active material (carbon material) expands and slackens.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車や携帯
用電子機器のバッテリーとして用いることのできるリチ
ウムイオン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery which can be used as a battery for electric vehicles and portable electronic devices.

【0002】[0002]

【従来の技術】近年、ビデオカメラや携帯型電話機等の
コードレス電子機器の発達はめざましく、これらの電源
用として電池電圧が高く(4V級)、高エネルギー密度
を有したリチウム二次電池が注目されている。また、環
境問題等からは自動車の分野でも電気自動車やハイブリ
ッド自動車の開発がなされており、搭載用の電源として
リチウムイオン二次電池が注目されている。
2. Description of the Related Art In recent years, cordless electronic devices such as video cameras and portable telephones have been remarkably developed, and lithium secondary batteries having a high battery voltage (4V class) and a high energy density have attracted attention as power supplies for these devices. ing. Also, electric vehicles and hybrid vehicles are being developed in the field of automobiles due to environmental problems and the like, and lithium-ion secondary batteries are attracting attention as power sources for mounting.

【0003】この電池に使用される正極活物質に関して
は、4V級の電池電圧を示すLiCoO2、LiNi
2、LiMn24などのリチウム遷移金属複合酸化物
が検討されている。LiCoO2 、LiNiO2 に関し
ては原料が高いという問題がある。それに対しマンガン
酸リチウムLiMn24は合成が容易で、しかも資源が
豊富で非常に安価であることから注目されている。
As for the positive electrode active material used in this battery, LiCoO 2 , LiNi
Lithium transition metal composite oxides such as O 2 and LiMn 2 O 4 have been studied. As for LiCoO 2 and LiNiO 2, there is a problem that the raw materials are high. On the other hand, lithium manganate LiMn 2 O 4 has attracted attention because it is easy to synthesize, has abundant resources and is very inexpensive.

【0004】なお、負極活物質に関しては、充放電に伴
なうLiデンドライトの成長、Li粉末化による容量劣
化を伴なわない材料として、炭素材料が主に検討されて
いる。
With respect to the negative electrode active material, a carbon material has been mainly studied as a material which does not accompany the growth of Li dendrite accompanying charge / discharge and the deterioration of capacity due to powdering of Li.

【0005】しかしLiMn24は正極活物質として使
用した場合に、Liイオンが放出(ディインターカレー
ション)された充電状態において正極の結晶構造が不安
定になり、正極活物質中から組成の一部であるMn3価
がMn4価とMn2価に不均化し、室温下において充放
電容量が著しく低下する(室温下でのサイクル特性が良
くない)という問題があった。
However, when LiMn 2 O 4 is used as a positive electrode active material, the crystal structure of the positive electrode becomes unstable in a charged state where Li ions are released (deintercalated), and the composition of the positive electrode active material is reduced. There was a problem that trivalent Mn was disproportionated to tetravalent Mn and divalent Mn, and the charge / discharge capacity was significantly reduced at room temperature (the cycle characteristics at room temperature were poor).

【0006】このような問題を解決するため、LiMn
24におけるMnの一部を他元素(Fe、Co、Ni、
Al等)にて置換する方法(特開平4−282560、
特開平4−160769、特開平5−28991、特開
平9−213333、特開平9−270259等)、及
びLiで置換する方法(特開平2−270268、特開
平4−123769、特開平7−282798等)によ
り、正極の結晶構造を強化する手法が試みられている。
室温での充放電特性等は、この手法により置換量を増加
していけば、ある程度の改善効果はみられた。
In order to solve such a problem, LiMn is used.
A part of Mn in 2 O 4 is replaced with another element (Fe, Co, Ni,
Al, etc.) (JP-A-4-282560,
JP-A-4-160969, JP-A-5-28991, JP-A-9-213333, JP-A-9-270259, etc., and a method of substitution with Li (JP-A-2-270268, JP-A-4-123969, JP-A-7-282798) Etc.) have been attempted to strengthen the crystal structure of the positive electrode.
The charge-discharge characteristics at room temperature and the like were improved to some extent if the replacement amount was increased by this method.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記各
公報に開示されている組成では、高温環境下においては
顕著(実用化に必要な60℃前後においても)に劣化
し、依然として充放電サイクルに伴う容量の著しい低下
や、保存または貯蔵特性(高温保存後の残存容量及び保
存後に充放電したときの回復容量)の低下を招く。また
置換量を増加すると、別途説明するが充放電容量が大き
く低下してしまう。
However, the compositions disclosed in the above publications are significantly deteriorated (even at about 60 ° C. necessary for practical use) in a high-temperature environment, and are still associated with charge / discharge cycles. This leads to a remarkable decrease in capacity and a decrease in storage or storage characteristics (remaining capacity after high-temperature storage and recovery capacity when charged and discharged after storage). When the replacement amount is increased, the charge / discharge capacity is greatly reduced, which will be described separately.

【0008】また、Mn系正極活物質と負極活物質とし
て炭素材料を組み合わせた系においては、高温環境下に
おいて、Liが挿入(インターカレーション)された炭
素材料と電解液との副反応により、炭素負極表面近傍で
電池反応に対して不活性なLi化合物が生成され、大き
な容量劣化を招く(なお、Li化合物は炭素表面に被膜
として存在する)。このような問題を解決すべく種々の
研究機関において様々な研究が進められているものの、
どのように制御すればよいか未だ解決されていない。
In a system in which a carbon material is combined as a Mn-based positive electrode active material and a negative electrode active material, a side reaction between the carbon material into which Li has been inserted (intercalated) and the electrolytic solution occurs under a high temperature environment. In the vicinity of the carbon negative electrode surface, an inactive Li compound is generated with respect to the battery reaction, resulting in large capacity deterioration (the Li compound is present as a film on the carbon surface). Although various research institutes are conducting various researches to solve such problems,
How to control it has not yet been resolved.

【0009】したがって、本発明は、充放電容量を確保
しながら、高温サイクル特性・高温貯蔵性に優れたスピ
ネル構造のマンガン酸リチウムを主たる正極活物質とし
て用いたリチウムイオン二次電池を提供することを解決
すべき課題とする。
Therefore, the present invention provides a lithium ion secondary battery using lithium manganate having a spinel structure as a main positive electrode active material, which is excellent in high-temperature cycle characteristics and high-temperature storage properties while securing charge / discharge capacity. Is a problem to be solved.

【0010】[0010]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、副反応は、Liが炭素材料中に挿入された充電時
にそのLiが挿入された炭素材料と非水電解液との間で
起こりやすく、その副反応は、反応性の高い炭素表面が
露出した状態で発生しやすいことを見出した。したがっ
て、一度、炭素表面での副反応によって生じた不活性な
Li化合物が、炭素表面上を常に被膜として覆っていれ
ば、それ以上の副反応は低減されると考えられる。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a side reaction between a carbon material into which Li is inserted and a non-aqueous electrolyte during charging when Li is inserted into the carbon material. It has been found that the side reaction easily occurs when the highly reactive carbon surface is exposed. Therefore, once the inactive Li compound generated by the side reaction on the carbon surface always covers the carbon surface as a film, it is considered that the further side reaction is reduced.

【0011】ところが、充電時において、正極側のスピ
ネル型リチウムマンガン複合酸化物はLiイオンの放出
に伴なって結晶格子が大きく収縮し、負極側の炭素材料
はLiイオンの挿入にともない膨張する。そのために、
充電時に負極側の炭素材料はゆるみやすく、そのゆるみ
により炭素材料の巨視的な移動が生じることが推測され
る。この炭素材料の移動により、炭素材料表面に存在し
ていたLi化合物の被膜が機械的に一部取り除かれて反
応性の高い炭素材料表面が露出したり、隣り合う炭素材
料粒子が移動してLi化合物被膜が吸着されていない部
分が露出したり、炭素材料粒子が移動により割裂しLi
化合物被膜が吸着されていない新たな表面が生じたりす
ることで副反応が助長されると考えられる。したがっ
て、この様な副反応を抑制するためには、炭素材料のゆ
るみを軽減すればよい。
However, during charging, the crystal lattice of the spinel-type lithium manganese composite oxide on the positive electrode side largely shrinks with the release of Li ions, and the carbon material on the negative electrode side expands with the insertion of Li ions. for that reason,
During charging, the carbon material on the negative electrode side is likely to be loosened, and it is assumed that the loosened carbon material causes macroscopic movement of the carbon material. Due to this movement of the carbon material, the film of the Li compound existing on the surface of the carbon material is mechanically partially removed to expose the surface of the highly reactive carbon material, or the adjacent carbon material particles move to remove the Li material. The part where the compound film is not adsorbed is exposed, or the carbon material particles are split
It is considered that a side surface is promoted by generating a new surface on which the compound film is not adsorbed. Therefore, in order to suppress such side reactions, it is only necessary to reduce the looseness of the carbon material.

【0012】すなわち、上記課題を解決する本発明のリ
チウムイオン二次電池は、リチウムイオンをドープおよ
び脱ドープ可能な正極活物質をもつ正極と、リチウムイ
オンをドープおよび脱ドープ可能な炭素材料を負極活物
質にもつ負極と、非水電解液とを有するリチウムイオン
二次電池において、前記正極活物質は、スピネル型リチ
ウムマンガン含有複合酸化物からなる主成分と、該スピ
ネル型リチウムマンガン含有複合酸化物よりも単位質量
あたりの充放電容量が多いリチウム含有複合酸化物から
なる残余成分とをもつことを特徴とする。
That is, a lithium ion secondary battery according to the present invention which solves the above-mentioned problems comprises a positive electrode having a positive electrode active material capable of doping and undoping lithium ions, and a negative electrode comprising a carbon material capable of doping and undoping lithium ions. In a lithium ion secondary battery having a negative electrode having an active material and a non-aqueous electrolyte, the positive electrode active material is mainly composed of a spinel-type lithium manganese-containing composite oxide and the spinel-type lithium manganese-containing composite oxide And a residual component composed of a lithium-containing composite oxide having a larger charge / discharge capacity per unit mass than that of a lithium-containing composite oxide.

【0013】つまり、正極活物質の主成分よりも充放電
容量の高い材料を残余成分として混合すれば、単位負極
活物質量あたりの正極活物質量が低減でき、その分、全
体としての正極活物質の充電時の収縮を抑制できるよう
になるので、負極活物質(炭素材料)の膨張・ゆるみの
発生する余地が小さくなる。
That is, if a material having a higher charge / discharge capacity than the main component of the positive electrode active material is mixed as a residual component, the amount of the positive electrode active material per unit amount of the negative electrode active material can be reduced. Since the shrinkage of the material during charging can be suppressed, there is less room for expansion and loosening of the negative electrode active material (carbon material).

【0014】さらに、前記残余成分の単位質量当たりの
充放電容量を前記主成分よりも、1.3倍以上高くする
と、効果がより顕著になるので好ましい。
Further, it is preferable that the charge / discharge capacity per unit mass of the residual component is 1.3 times or more higher than that of the main component, because the effect becomes more remarkable.

【0015】また、上記課題を解決する本発明のリチウ
ムイオン二次電池は、リチウムイオンをドープおよび脱
ドープ可能な正極活物質をもつ正極と、リチウムイオン
をドープおよび脱ドープ可能な炭素材料を負極活物質に
もつ負極と、セパレ−タと、非水電解液とを有するリチ
ウムイオン二次電池において、前記正極活物質は、スピ
ネル型リチウムマンガン含有複合酸化物からなる主成分
と、層状構造リチウム含有複合酸化物からなる残余の成
分とをもつことを特徴とする。
Further, a lithium ion secondary battery according to the present invention for solving the above-mentioned problems comprises a positive electrode having a positive electrode active material capable of doping and undoping lithium ions, and a negative electrode comprising a carbon material capable of doping and undoping lithium ions. In a lithium ion secondary battery having a negative electrode having an active material, a separator, and a non-aqueous electrolyte, the positive electrode active material contains a main component composed of a spinel-type lithium manganese-containing composite oxide, and a layered structure containing lithium. And a residual component comprising a composite oxide.

【0016】つまり、層状構造のリチウム含有複合酸化
物は、遷移金属−酸素−リチウム−酸素−遷移金属とい
った層状構造を有しているので、充電状態でLiが放出
されると酸素層間に強い静電斥力が働き、結晶構造が層
間方向に膨張し、充電時の収縮がスピネル型リチウムマ
ンガン複合酸化物と比較して小さくなることから、この
ような材料を残余成分として混合することにより、全体
としての正極活物質の充電時の収縮を抑制できるように
なるので、負極活物質(炭素材料)の膨張・ゆるみの発
生する余地が小さくなるからである。
That is, since the lithium-containing composite oxide having a layered structure has a layered structure of transition metal-oxygen-lithium-oxygen-transition metal, when Li is released in a charged state, strong static electricity is generated between oxygen layers. Electrostatic repulsion acts, the crystal structure expands in the direction of the interlayer, and the shrinkage during charging becomes smaller than that of the spinel-type lithium manganese composite oxide. This is because the shrinkage of the positive electrode active material during charging can be suppressed, and the room for expansion and loosening of the negative electrode active material (carbon material) is reduced.

【0017】さらに、効果をより確実に発揮するために
は前記正極活物質全体に対する前記残余成分の質量比が
5/100以上であることが好ましい。
Further, in order to more reliably exert the effect, it is preferable that the mass ratio of the residual component to the entire positive electrode active material is 5/100 or more.

【0018】ところで、LiMn24を正極とした電池
で4V級電池電圧での理想的な正極の充電反応は次式で
示される。
By the way, in a battery using LiMn 2 O 4 as a positive electrode, an ideal positive electrode charging reaction at a 4V class battery voltage is represented by the following equation.

【0019】LiMn24 → Li1-xMn24+X
Li++Xe- → Mn24+Li++e- すなわちLiMn24は充電時、結晶中のLiイオン
(Li+)が引き抜かれ、理想的にはMn24(λ−M
nO2)となる。その際、結晶中のMnの価数は3価ま
たは4価であり、Mnの平均酸化価数が3.5(放電状
態)から4価(充電状態)に変わる。なお、放電時は逆
の過程となる。
LiMn 2 O 4 → Li 1-x Mn 2 O 4 + X
Li + + Xe → Mn 2 O 4 + Li + + e − In other words, when LiMn 2 O 4 is charged, Li ions (Li + ) in the crystal are extracted, and ideally Mn 2 O 4 (λ−M
nO 2 ). At that time, the valence of Mn in the crystal is trivalent or tetravalent, and the average oxidation valence of Mn changes from 3.5 (discharged state) to tetravalent (charged state). It should be noted that the reverse process occurs during discharging.

【0020】したがって、LiMn24の理論容量(L
iイオンの引き抜き量に相当)は148mAh/gとな
る(現実にはXが大きくなると結晶内部のイオン伝導性
が低下するので完全には引き抜けない)。
Therefore, the theoretical capacity of LiMn 2 O 4 (L
The i-ion extraction amount is 148 mAh / g (actually, when X is large, the ion conductivity inside the crystal is reduced, so that it is not completely extracted).

【0021】この様な電池反応が容量低下せず維持され
るためには、各酸化途中のLi1-xMn24において活
物質の組成の変化がないこと(組成変化によりMnの酸
化価数の変化可能範囲等が変わると容量が変化する)、
また活物質の結晶内部、表面等でイオン伝導性と電子伝
導性が大きく低下しない必要がある。
In order to maintain such a battery reaction without lowering the capacity, there is no change in the composition of the active material in the Li 1-x Mn 2 O 4 during each oxidation (the oxidation value of Mn due to the change in the composition). The capacity changes when the range in which the number can be changed changes),
In addition, it is necessary that the ionic conductivity and the electron conductivity do not significantly decrease in the crystal, inside the surface, etc. of the active material.

【0022】このような容量劣化の主要因としては正極
活物質中のMnの不均化が挙げられる。すなわち活物質
は結晶格子が収縮した充電に近い状態(LiMn24
Liがある程度抜けた状態)で結晶が歪み不安定化(特
に高温下)し、活物質中のMn3+は2Mn3+→Mn4+
Mn2+のように不均化する。その結果、Mn4+が増加
(Mn3+が減少)し、さらには本来存在しないMn2+
新たに生成し正極活物質表面等に付着したり電解液中へ
溶け出す。この結果、正極活物質自身の組成が変化し
(平均Mn酸化価数が増加)容量低下を招いたり、Mn
2+に起因するMn酸化物等が活物質表面・粒界・欠陥部
分に移動、成長していきLi移動の抵抗となり容量が低
下する。
The main cause of such capacity deterioration is the disproportionation of Mn in the positive electrode active material. That is, the crystal of the active material is distorted and unstable (especially at a high temperature) in a state close to the charging state in which the crystal lattice is contracted (a state in which Li has escaped to some extent in LiMn 2 O 4 ), and Mn 3+ in the active material is 2Mn 3 + → Mn 4+ +
Disproportionate like Mn 2+ . As a result, Mn 4+ increases (Mn 3+ decreases), and Mn 2+ which does not originally exist is newly generated and adheres to the surface of the positive electrode active material or dissolves in the electrolytic solution. As a result, the composition of the positive electrode active material itself changes (the average Mn oxidation valency increases), causing a decrease in capacity,
Mn oxides and the like caused by 2+ move and grow on the active material surface, grain boundaries, and defects, and become resistance to Li movement, resulting in a decrease in capacity.

【0023】なお、この様なMnの不均化が起こる箇所
としては、結晶内部においても起こると考えられるが、
最も起こりやすい箇所としては、結晶歪みが集中しやす
い結晶転移部、組成欠損部、活物質表面などである。
It is considered that such a disproportionation of Mn occurs in the interior of the crystal.
The most frequent locations are a crystal transition portion where crystal strain tends to concentrate, a composition defect portion, an active material surface, and the like.

【0024】Mnの不均化を抑制する手法には、従来か
ら、Li又は他元素で正極活物質中のMnの一部を置換
する(LiMn2-xx4;MはLi又は他元素)方法
がある。すなわち、Mnの一部を他元素で置換すること
により結晶中の電子軌道を変化させ、結晶の骨格を形成
しているMn−O間の結合力を高めることで、結晶構造
を強化することが狙いである。実際に他元素の置換量を
増加させていくと格子定数が小さくなっていることから
(≒Mn−O結合距離が縮み)、Mn−O間の静電エネ
ルギーが増加し結合力が強化されることがわかる。
As a method of suppressing the disproportionation of Mn, conventionally, a part of Mn in the positive electrode active material is replaced with Li or another element (LiMn 2-x M x O 4 ; M is Li or other element). Element) method. That is, by replacing a part of Mn with another element, the electron orbit in the crystal is changed, and the bonding force between Mn-O forming the skeleton of the crystal is increased to strengthen the crystal structure. It is aim. Since the lattice constant becomes smaller as the substitution amount of other elements is actually increased (≒ Mn—O bond distance is shortened), the electrostatic energy between Mn—O increases and the bond strength is strengthened. You can see that.

【0025】なお検討の結果、他元素を置換する効果は
元素種により大きく変わることがわかった。すなわち、
骨格となるMn−O間にどの程度電子を供給できるか、
格子定数に影響を与えるイオン半径がMnに比べて大き
いか、小さいかによって変わると考えられる。尚、置換
量を増加させると、Mn3価よりもイオン半径の小さい
Mn4価が増加し、格子定数をより小さくすることがで
きる。
As a result of the study, it was found that the effect of substituting another element greatly varies depending on the element type. That is,
How much electrons can be supplied between the skeleton Mn-O,
It is considered that the ionic radius affecting the lattice constant changes depending on whether it is larger or smaller than Mn. When the substitution amount is increased, Mn4 valence having an ionic radius smaller than Mn3 valence increases, and the lattice constant can be further reduced.

【0026】しかし上記効果に反して、他元素を置換す
ることにより容量の低下を生じてしまう。
However, contrary to the above effects, the substitution of another element causes a reduction in capacity.

【0027】すなわち、置換する元素の価数により、放
電状態におけるMnの平均酸化価数は3.5より大きく
なるため可動Li量が減少し容量が低下する。さらに、
他元素の置換量が増加するほど、置換元素の価数が小さ
いほどMnの平均酸化価数は増加するため容量低下が大
きい。
That is, depending on the valence of the element to be replaced, the average oxidation valence of Mn in the discharged state becomes larger than 3.5, so that the amount of movable Li decreases and the capacity decreases. further,
As the substitution amount of the other element increases and the valence of the substitution element decreases, the average oxidation valency of Mn increases, so that the capacity decrease is large.

【0028】したがって、他元素を置換する効果(構造
強化)は置換量が増加するほど効果的であるが、それと
ともに容量が大きく低下してしまう(なお、極端に置換
量を増加すると、スピネル結晶構造をもつ単一の組成を
得ることができなくなり合成が難しくなるとともに効果
も低減する)。
Therefore, the effect of replacing other elements (structural enhancement) is more effective as the amount of substitution increases, but the capacity also decreases greatly (when the amount of substitution increases extremely, the A single composition having a structure cannot be obtained, making synthesis difficult and reducing the effect).

【0029】元素種別に考えると、置換元素種としてL
iは劣化抑制効果が他の元素に比べて非常に高いものの
価数は1価であるため、放電状態における酸化価数が大
きくなり容量低下が顕著となる。それに対してAlは、
Liより劣化抑制効果は若干劣るものの、Li以外の他
の元素種に比べるとイオン半径が小さく格子定数低減効
果が高いため、劣化抑制効果も高い。さらに置換元素
(Al)の価数はおおむね3価となるためLi置換に比
べると容量低下を抑制でき、容量を確保しながら特性を
向上するのに最適な置換元素種である(安価でもあ
る)。
Considering the element type, L as a substitution element type
Although i has a very high deterioration suppressing effect as compared with other elements, i has a valence of 1, so that the oxidation valence in the discharged state is large and the capacity is significantly reduced. Al, on the other hand,
Although the effect of suppressing deterioration is slightly inferior to that of Li, the effect of suppressing deterioration is high because the ionic radius is small and the effect of reducing the lattice constant is high as compared with other element types other than Li. Further, since the valence of the substitution element (Al) is substantially trivalent, the reduction in capacity can be suppressed as compared with Li substitution, and the substitution element (Al) is the most suitable substitution element species for improving the characteristics while securing the capacity (it is also inexpensive). .

【0030】したがって、充放電容量を確保しながら高
温サイクル特性・高温貯蔵性を確保するため、Al等に
より、Mnの一部を他元素にて置換することにより可能
な限り結晶構造を強化した上、さらにLiが挿入された
炭素材料と電解液の副反応を抑制することが必要とな
る。
Therefore, in order to secure high-temperature cycle characteristics and high-temperature storability while securing charge / discharge capacity, the crystal structure is strengthened as much as possible by substituting part of Mn with another element by Al or the like. Further, it is necessary to suppress a side reaction between the carbon material into which Li has been inserted and the electrolytic solution.

【0031】そこで、前記主成分は、好ましくはさらに
Al元素をもつリチウムマンガン複合酸化物が、より好
ましくは前記主成分が一般式Li1+xMn2-x-y-zAly
z 4、0.05≧x≧0、0.35≧y≧0.2、
0.15≧z≧0、M:Li、MnおよびAl以外の少
なくとも一種以上の金属元素)で表されるリチウムマン
ガン複合酸化物が望ましい。
Therefore, the main component is preferably further
A lithium manganese composite oxide having an Al element is more preferable.
Preferably, the main component is of the general formula Li1 + xMn2-xyzAly
MzO Four, 0.05 ≧ x ≧ 0, 0.35 ≧ y ≧ 0.2,
0.15 ≧ z ≧ 0, M: small amount other than Li, Mn and Al
Lithium man represented by at least one metal element)
Gunn composite oxides are desirable.

【0032】さらに、前記残余成分が、マンガン・コバ
ルト・ニッケルのうち少なくとも1つを含む層状構造の
リチウム金属含有複合酸化物であることが好ましい。
Further, it is preferable that the residual component is a layered lithium metal-containing composite oxide containing at least one of manganese, cobalt and nickel.

【0033】さらにまた、前記残余成分が、層状構造の
リチウムニッケルコバルト含有複合酸化物であることが
好ましい。
Furthermore, it is preferable that the residual component is a lithium nickel cobalt-containing composite oxide having a layered structure.

【0034】そしてさらに、前記残余成分が、層状構造
のリチウムニッケルコバルトアルミ含有複合酸化物であ
ることが好ましい。
Further, it is preferable that the residual component is a lithium nickel cobalt aluminum-containing composite oxide having a layered structure.

【0035】そして、前記残余成分が、層状構造のリチ
ウム鉄含有複合酸化物であることが好ましい。
Preferably, the remaining component is a layered lithium iron-containing composite oxide.

【0036】また、Mn不均化の起こりやすい主な箇所
は上述したように、正極活物質表面部、及び結晶転位・
組成ずれによる欠陥部等で結晶性の低下している箇所で
ある。したがって、前記主成分の比表面積を0.9m2
/g以下とすることにより、充放電容量を確保しなが
ら、よりMnの不均化を抑え、より優れた高温サイクル
及び高温貯蔵特性を確保することが可能となる。
As described above, the main parts where Mn disproportionation is likely to occur are the surface of the positive electrode active material and the crystal dislocations.
This is a portion where crystallinity is reduced, such as a defect due to a composition deviation. Therefore, the specific surface area of the main component is 0.9 m 2
/ G or less, it is possible to further suppress the disproportionation of Mn and secure more excellent high-temperature cycle and high-temperature storage characteristics while securing the charge / discharge capacity.

【0037】[0037]

【発明の実施の形態】以下に本発明のリチウムイオン二
次電池について実施形態に基づいて説明する。なお、本
発明は、以下の実施形態により限定されるものではな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The lithium ion secondary battery of the present invention will be described below based on embodiments. Note that the present invention is not limited by the following embodiments.

【0038】本発明のリチウムイオン二次電池は、正極
と負極と非水電解液とおよびその他必要に応じた要素か
らなる。本実施形態のリチウム二次電池は、その形状に
は特に制限を受けず、コイン型、円筒型、角型等、種々
の形状の電池として使用できる。本実施形態では、円筒
型のリチウム二次電池に基づいて説明を行う。
The lithium ion secondary battery of the present invention comprises a positive electrode, a negative electrode, a non-aqueous electrolyte, and other necessary elements. The shape of the lithium secondary battery of the present embodiment is not particularly limited, and can be used as batteries of various shapes such as a coin shape, a cylindrical shape, and a square shape. In the present embodiment, description will be given based on a cylindrical lithium secondary battery.

【0039】本実施形態のリチウム二次電池は、正極お
よび負極をシート形状として両者をセパレータを介して
積層し渦巻き型に多数回巻回した巻回体を空隙を満たす
非水電解液とともに所定の円筒状のケース内に収納した
ものである。正極と正極端子部とについて、そして負極
と負極端子部とについては、それぞれ電気的に接合され
ている。リチウム二次電池の各構成要素の組み合わせ方
法は、特に限定されず、たとえば、公知の方法を用いる
ことができる。
In the lithium secondary battery of the present embodiment, the positive electrode and the negative electrode are formed in a sheet shape, both of which are laminated via a separator, and wound in a spiral shape many times. It is housed in a cylindrical case. The positive electrode and the positive electrode terminal are electrically connected to each other, and the negative electrode and the negative electrode terminal are electrically connected to each other. The method of combining the components of the lithium secondary battery is not particularly limited, and for example, a known method can be used.

【0040】正極は、リチウムイオンを充電時には放出
(脱ドープ)し、かつ放電時には吸蔵(ドープ)するこ
とができるリチウム−金属複合酸化物を正極活物質にも
つ。リチウム−金属複合酸化物は、電子とリチウムイオ
ンとの拡散性能に優れるなど活物質の性能に優れる。そ
のため、このようなリチウムおよび遷移金属の複合酸化
物を正極活物質に用いれば、高い充放電効率と良好なサ
イクル特性とが得られる。さらに正極は、正極活物質、
導電材および結着材を混合して得られた正極合材が集電
体に塗布されてなるものを用いることが好ましい。正極
の製造方法は、特に限定されず、たとえば、公知の方法
を用いることができる。
The positive electrode has a lithium-metal composite oxide capable of releasing (undoping) lithium ions during charging and occluding (doping) during discharging, as a positive electrode active material. The lithium-metal composite oxide has excellent performance of the active material, such as excellent diffusion performance of electrons and lithium ions. Therefore, when such a composite oxide of lithium and transition metal is used for the positive electrode active material, high charge / discharge efficiency and good cycle characteristics can be obtained. Further, the positive electrode is a positive electrode active material,
It is preferable to use a material obtained by applying a positive electrode mixture obtained by mixing a conductive material and a binder to a current collector. The method for producing the positive electrode is not particularly limited, and for example, a known method can be used.

【0041】正極活物質は主成分と残余成分とを含む。
主成分と残余成分とを混合する割合としては、正極活物
質全体に対する残余成分の質量比が5/100以上、よ
り好ましくは10/100以上であることが望ましい。
The positive electrode active material contains a main component and a residual component.
As for the mixing ratio of the main component and the residual component, it is desirable that the mass ratio of the residual component to the whole positive electrode active material is 5/100 or more, more preferably 10/100 or more.

【0042】主成分は、スピネル型リチウムマンガン含
有複合酸化物からなる。主成分としては、さらにAl元
素をもつことができ、たとえば、一般式Li1+xMn
2-x-y-zAlyz4、0.05≧x≧0、0.35≧y
≧0.2、0.15≧z≧0、M:Li、MnおよびA
l以外の少なくとも一種以上の金属元素)で表される。
なお、主成分は、スピネル型リチウムマンガン含有複合
酸化物であれば、複数の化合物の混合物であっても良い
し、ある特定の組成をもつ化合物であっても良い。
The main component is a spinel-type lithium manganese-containing composite oxide. The main component may further include an Al element, for example, a general formula Li 1 + x Mn
2-xyz Al y M z O 4, 0.05 ≧ x ≧ 0,0.35 ≧ y
≧ 0.2, 0.15 ≧ z ≧ 0, M: Li, Mn and A
at least one or more metal elements other than 1).
The main component may be a mixture of a plurality of compounds or a compound having a specific composition as long as it is a spinel-type lithium manganese-containing composite oxide.

【0043】また、主成分の比表面積が0.9m2/g
以下であることが好ましい。比表面積は、窒素吸着を利
用したBET法により測定した値である。
The specific surface area of the main component is 0.9 m 2 / g
The following is preferred. The specific surface area is a value measured by a BET method using nitrogen adsorption.

【0044】比表面積の制御方法としては、特に制限さ
れるものではないが、原材料を粉砕及び/又は分級して
制御することが好ましい。なお、比表面積は原材料であ
るマンガン化合物の比表面積に大きく影響を受ける。そ
して、正極活物質を焼成・作製後に粉砕及び/又は分級
してもよい。
Although the method for controlling the specific surface area is not particularly limited, it is preferable to control the raw material by pulverizing and / or classifying the raw material. The specific surface area is greatly affected by the specific surface area of the manganese compound as a raw material. Then, the positive electrode active material may be pulverized and / or classified after firing and production.

【0045】リチウム二次電池用正極活物質の結晶構造
がスピネル構造であるかどうかは、粉末X線回折におけ
るX線回折パターン等により確認できる。
Whether the crystal structure of the positive electrode active material for a lithium secondary battery has a spinel structure can be confirmed by an X-ray diffraction pattern or the like in powder X-ray diffraction.

【0046】残余成分としては、主成分よりも単位質量
あたりの充放電容量が多いリチウム含有複合酸化物また
は層状構造リチウム含有複合酸化物とすることができ
る。残余成分としては、純粋な化合物ばかりでなく複数
の化合物の混合物であっても良い。
As the remaining component, a lithium-containing composite oxide or a layered lithium-containing composite oxide having a larger charge / discharge capacity per unit mass than the main component can be used. The remaining component may be not only a pure compound but also a mixture of a plurality of compounds.

【0047】残余成分として主成分よりも単位質量あた
りの充放電容量が多いリチウム含有複合酸化物を採用す
る場合には、残余成分の単位質量当たりの充放電容量が
主成分よりも1.3倍以上、高いことが好ましく1.5
倍以上高いことがより好ましい。
When a lithium-containing composite oxide having a larger charge / discharge capacity per unit mass than the main component is used as the residual component, the charge / discharge capacity per unit mass of the residual component is 1.3 times that of the main component. Above, preferably 1.5
More preferably, it is at least twice as high.

【0048】残余成分として層状構造リチウム含有複合
酸化物とする場合には、電池の充放電に伴ないLiが出
入り可能であるリチウムマンガン含有複合酸化物・リチ
ウムコバルト含有複合酸化物・リチウムニッケル含有複
合酸化物・リチウムニッケルコバルト含有複合酸化物・
リチウムニッケルコバルトアルミ含有複合酸化物・リチ
ウム鉄含有複合酸化物などが好ましい。そしてマンガン
・コバルト・ニッケルのうち少なくとも1つを含む層状
構造のリチウム金属含有複合酸化物であるか、層状構造
のリチウムニッケルコバルト含有複合酸化物であるか、
層状構造のリチウムニッケルコバルトアルミ含有複合酸
化物であるか、層状構造のリチウム鉄含有複合酸化物で
あるか、これら層状構造リチウム含有複合酸化物の1種
以上の混合物であることがより好ましい。
When the layered structure lithium-containing composite oxide is used as the residual component, lithium manganese-containing composite oxide / lithium cobalt-containing composite oxide / lithium nickel-containing composite, which allows Li to enter and exit as the battery is charged and discharged, Oxide, lithium nickel cobalt-containing composite oxide
Lithium nickel cobalt aluminum-containing composite oxides and lithium iron-containing composite oxides are preferred. And a lithium metal-containing composite oxide having a layered structure containing at least one of manganese, cobalt, and nickel, or a lithium nickel cobalt-containing composite oxide having a layered structure,
More preferably, it is a lithium nickel cobalt aluminum-containing composite oxide having a layered structure, a lithium iron-containing composite oxide having a layered structure, or a mixture of at least one of these layered lithium-containing composite oxides.

【0049】なお、残余成分としては、全体として、主
成分よりも充放電容量が高くなる範囲内において、その
他の一般的なリチウム−金属酸化物を1種以上、混合し
て用いることもできる。たとえば、Li(1-X)NiO2
Li(1-X)MnO2、Li(1-X )Mn24、Li(1-X)Co
2や、各々にLi、Al、そしてCr等の遷移金属を
添加または置換した材料等である。この正極活物質の例
示におけるXは0〜1の数を示す。
The residual components are generally
Within the range where the charge / discharge capacity is higher than the component,
Mix one or more other common lithium-metal oxides
Can also be used. For example, Li(1-X)NiOTwo,
Li(1-X)MnOTwo, Li(1-X )MnTwoOFour, Li(1-X)Co
OTwoAnd transition metals such as Li, Al, and Cr
Materials added or replaced. Examples of this positive electrode active material
X in the following indicates a number of 0 to 1.

【0050】このような正極活物質の製造方法は特に限
定されるものではなく公知の方法を用いることができ
る。
The method for producing such a positive electrode active material is not particularly limited, and a known method can be used.

【0051】また、負極については、リチウムイオンを
充電時には吸蔵し、かつ放電時には放出することができ
る材料である。特に、負極活物質と導電材および結着剤
とを混合して得られた負極合材が集電体に塗布されてな
るものを用いることが好ましい。負極活物質としては、
炭素材料を用いることができる。炭素材料は、出力・回
生密度のバランスを考慮すると、充放電に伴ない電圧変
化が比較的大きいので好ましい。また、炭素材料を負極
活物質に用いれば、高い充放電効率と良好なサイクル特
性とが得られる。負極の製造方法は、特に限定されず、
たとえば、公知の方法を用いることができる。
The negative electrode is a material capable of occluding lithium ions during charging and releasing lithium ions during discharging. In particular, it is preferable to use a material obtained by applying a negative electrode mixture obtained by mixing a negative electrode active material, a conductive material and a binder to a current collector. As the negative electrode active material,
A carbon material can be used. Considering the balance between the output and the regenerative density, the carbon material is preferable because the voltage change accompanying charging and discharging is relatively large. In addition, when a carbon material is used for the negative electrode active material, high charge / discharge efficiency and good cycle characteristics can be obtained. The method for producing the negative electrode is not particularly limited,
For example, a known method can be used.

【0052】非水電解液は、有機溶媒に支持塩を溶解さ
せたものである。
The non-aqueous electrolyte is obtained by dissolving a supporting salt in an organic solvent.

【0053】有機溶媒は、通常リチウム二次電池の電解
液の用いられる有機溶媒であれば特に限定されるもので
はなく、例えば、カーボネート類、ハロゲン化炭化水
素、エーテル類、ケトン類、ニトリル類、ラクトン類、
オキソラン化合物等を用いることができる。特に、プロ
ピレンカーボネート、エチレンカーボネート、1,2−
ジメトキシエタン、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート等及びそれらの
混合溶媒が適当である。
The organic solvent is not particularly limited as long as it is an organic solvent usually used for an electrolyte of a lithium secondary battery, and examples thereof include carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, and the like. Lactones,
An oxolane compound or the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-
Dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like and a mixed solvent thereof are suitable.

【0054】例に挙げたこれらの有機溶媒のうち、特
に、カーボネート類、エーテル類からなる群より選ばれ
た一種以上の非水溶媒を用いることにより、支持塩の溶
解性、誘電率および粘度において優れ、電池の充放電効
率も高いので、好ましい。
By using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers among these organic solvents mentioned in the examples, the solubility, dielectric constant and viscosity of the supporting salt can be improved. It is preferable because it is excellent and the charge and discharge efficiency of the battery is high.

【0055】支持塩は、その種類が特に限定されるもの
ではないが、LiPF6、LiBF4、LiClO4及び
LiAsF6から選ばれる無機塩、該無機塩の誘導体、
LiSO3CF3、LiC(SO3CF32およびLiN
(SO3CF33から選ばれる有機塩、並びに該有機塩
の誘導体の少なくとも1種であることが好ましい。
The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt,
LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN
It is preferably at least one kind of an organic salt selected from (SO 3 CF 3 ) 3 and a derivative of the organic salt.

【0056】この支持塩により、電池性能をさらに優れ
たものとすることができ、かつその電池性能を室温以外
の温度域においてもさらに高く維持することができる。
With this supporting salt, the battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature.

【0057】支持塩の濃度についても特に限定されるも
のではなく、用途に応じ、支持塩および有機溶媒の種類
を考慮して適切に選択することが好ましい。電解液の製
造方法は、特に限定されず、たとえば、公知の方法を用
いることができる。
The concentration of the supporting salt is not particularly limited, either, and it is preferable to appropriately select the concentration in consideration of the type of the supporting salt and the organic solvent depending on the application. The method for producing the electrolytic solution is not particularly limited, and for example, a known method can be used.

【0058】セパレータは、正極および負極を電気的に
絶縁し、電解液を保持する役割を果たすものである。た
とえば、ポリエチレン等の微多孔質膜を用いればよい。
なおセパレータ厚さは、正極と負極との絶縁を担保する
ため、正極および負極の粒径よりもさらに大きいものと
するのが好ましい。セパレータの製造方法は、特に限定
されず、たとえば、公知の方法を用いることができる。
The separator serves to electrically insulate the positive electrode and the negative electrode and hold the electrolyte. For example, a microporous membrane such as polyethylene may be used.
The thickness of the separator is preferably larger than the particle diameters of the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode. The method for producing the separator is not particularly limited, and for example, a known method can be used.

【0059】ケースは、特に限定されるものではなく、
公知の材料、形態で作成することができる。ケースの製
造方法は、特に限定されず、たとえば、公知の方法を用
いることができる。
The case is not particularly limited.
It can be made of a known material and form. The method for manufacturing the case is not particularly limited, and for example, a known method can be used.

【0060】ガスケットは、ケースと正負の両端子部の
間の電気的な絶縁と、ケース内の密閉性とを担保するも
のである。たとえば、電解液にたいして、化学的、電気
的に安定であるポリプロピレンのような高分子等から構
成できる。ガスケットの製造方法は、特に限定されず、
たとえば、公知の方法を用いることができる。
The gasket ensures electrical insulation between the case and both the positive and negative terminals and the hermeticity of the case. For example, it can be composed of a polymer such as polypropylene which is chemically and electrically stable with respect to the electrolytic solution. The method of manufacturing the gasket is not particularly limited,
For example, a known method can be used.

【0061】[0061]

【実施例】(正極活物質の調製)各実施例・比較例に対
し、Li、Mn、Al、Co、NiおよびFeのモル比
が表1になるように、電解二酸化マンガン(MnO2
と炭酸リチウム(Li2CO3)と水酸化リチウム(Li
OH)と酸化リチウム(Li2O)と水酸化アルミニウ
ム(Al(OH)3)と炭酸コバルト(CoCO3)と水
酸化ニッケル(Ni(OH)2)と酸化水酸化鉄(Fe
O(OH))とを混合した。この混合割合は、初期充放
電容量がほぼ同容量になるように活物質の組成を設定し
た。たとえば、Mn系(LiMn24)では主にMnO
2とLi2CO3とを、Co系(LiCoO2)では主にC
oCO3とLi2CO3とを、Ni系(LiNiO2)では
主にNi(OH)2とLiOHとを、Fe系(LiFe
2)では主にFeO(OH)とLi2Oとを混合する。
その後、常法により正極活物質を調製した。
EXAMPLES (Preparation of Positive Electrode Active Material) Electrolytic manganese dioxide (MnO 2 ) was used so that the molar ratio of Li, Mn, Al, Co, Ni and Fe was as shown in Table 1 with respect to each of Examples and Comparative Examples.
And lithium carbonate (Li 2 CO 3 ) and lithium hydroxide (Li
OH), lithium oxide (Li 2 O), aluminum hydroxide (Al (OH) 3 ), cobalt carbonate (CoCO 3 ), nickel hydroxide (Ni (OH) 2 ), and iron oxide hydroxide (Fe
O (OH)). The mixing ratio was determined so that the composition of the active material was set so that the initial charge / discharge capacity was substantially the same. For example, Mn-based (LiMn 2 O 4 ) mainly contains MnO
2 and Li 2 CO 3 , and Co-based (LiCoO 2 ) mainly contains C
oCO 3 and Li 2 CO 3 , Ni-based (LiNiO 2 ) mainly Ni (OH) 2 and LiOH, Fe-based (LiFe
In O 2 ), FeO (OH) and Li 2 O are mainly mixed.
Thereafter, a positive electrode active material was prepared by a conventional method.

【0062】比表面積は電解二酸化マンガンの粒子径を
所定サイズにすることにより実現した。
The specific surface area was realized by setting the particle size of electrolytic manganese dioxide to a predetermined size.

【0063】(リチウムイオン二次電池の作製) 〔正極〕各実施例・比較例において、表1で示す正極活
物質組成・混合比で正極活物質を混合し、混合した正極
活物質を86重量部、導電剤のグラファイトを10重量
部、バインダーのPVDFを4重量部の割合で溶剤のN
−メチル−2ピロリドン中に混合してペーストを作製
し、このペーストをAl箔集電体上に所定の重量、膜厚
で塗布し、乾燥後直径14mmの円板状に打ち抜き、加
圧成形した後、真空乾燥することで正極を製作した。
(Preparation of Lithium Ion Secondary Battery) [Positive Electrode] In each of Examples and Comparative Examples, the positive electrode active materials were mixed at the positive electrode active material compositions and mixing ratios shown in Table 1, and 86 parts by weight of the mixed positive electrode active materials were used. Parts, graphite as a conductive agent at 10 parts by weight, and PVDF as a binder at a ratio of 4 parts by weight in a solvent N.
-Methyl-2-pyrrolidone was mixed to prepare a paste, the paste was applied on an Al foil current collector at a predetermined weight and film thickness, dried, punched into a disk having a diameter of 14 mm, and pressed. Thereafter, the positive electrode was manufactured by vacuum drying.

【0064】〔負極〕メソフェーズ系カーボンを90重
量部、バインダーのPVDFを10重量部の配合でN−
メチル−2ピロリドン中に混合してペーストを作製し、
このペーストをCu箔集電体上に所定の重量、膜厚で塗
布し、乾燥後直径15mmの円板状に打ち抜き、加圧成
形した後、真空乾燥することで負極を製作した。
[Negative electrode] A mixture of 90 parts by weight of mesophase-based carbon and 10 parts by weight of PVDF as a binder,
Mixing into methyl-2-pyrrolidone to make a paste,
This paste was applied on a Cu foil current collector at a predetermined weight and thickness, dried, punched into a disk having a diameter of 15 mm, pressed, and dried under vacuum to produce a negative electrode.

【0065】〔非水電解液〕エチレンカーボネートとジ
エチルカーボネートとを体積比で3:7の割合で混合し
た溶媒に、LiPF6を1モル/リットルの濃度で溶解
させて非水電解液を調製した。
[Non-aqueous electrolyte] LiPF 6 was dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 to prepare a non-aqueous electrolyte. .

【0066】〔電池の組み立て〕上記の正極、負極及び
電解液を使用して、直径20mm、厚み3mmの偏平形
の電池を組み立てた。尚、セパレ−タにはポリエチレン
製の微多孔質膜を使用した。
[Assembly of Battery] A flat battery having a diameter of 20 mm and a thickness of 3 mm was assembled using the above-described positive electrode, negative electrode and electrolyte solution. Incidentally, a polyethylene microporous membrane was used as a separator.

【0067】[0067]

【表1】 [Table 1]

【0068】(正極活物質の特性評価及びリチウム2次
電池の高温特性評価) 〔正極活物質の評価〕実施例・比較例にて得られた正極
活物質の比表面積を評価した。
(Evaluation of Characteristics of Positive Electrode Active Material and Evaluation of High Temperature Characteristics of Lithium Secondary Battery) [Evaluation of Positive Electrode Active Material] The specific surface areas of the positive electrode active materials obtained in Examples and Comparative Examples were evaluated.

【0069】比表面積はN2吸着によるBET法をもち
いて測定した。表1に測定結果を示す。
The specific surface area was measured using the BET method based on N 2 adsorption. Table 1 shows the measurement results.

【0070】〔充放電容量評価〕実施例・比較例にて得
られた電池の充放電容量を評価した。条件としては、室
温にて充電を1.1mA/cm2の一定電流で4.2V
までおこない、その後、4.2Vの定電圧で合計4時間
行った。そして放電は0.5mA/cm2の一定電流で
3Vまでおこない、これを5サイクル繰り返した。表1
に5サイクル目の放電容量を示した。
[Evaluation of Charge / Discharge Capacity] The charge / discharge capacity of the batteries obtained in Examples and Comparative Examples was evaluated. The conditions were as follows: charging at room temperature was performed at 4.2 V at a constant current of 1.1 mA / cm 2.
Thereafter, the test was performed at a constant voltage of 4.2 V for a total of 4 hours. The discharge was performed at a constant current of 0.5 mA / cm 2 up to 3 V, and this was repeated 5 cycles. Table 1
5 shows the discharge capacity at the fifth cycle.

【0071】〔高温サイクル特性評価〕実施例・比較例
にて得られた電池を用い高温サイクル特性の評価をおこ
なった(保存試験より厳しい高温サイクル評価を実施し
た)。条件としては、充放電容量評価した電池を60℃
の恒温槽のなかで、2.2mA/cm2の一定電流で、
電池極間電圧が4.2Vから3Vの間で充放電を繰り返
した。表1に1サイクル目の放電容量に対する400サ
イクル目の放電容量の割合、即ちサイクル後容量維持率
を示した。
[Evaluation of High-Temperature Cycle Characteristics] High-temperature cycle characteristics were evaluated using the batteries obtained in Examples and Comparative Examples (high-temperature cycle evaluations stricter than the storage test were performed). The conditions were as follows: the battery whose charge / discharge capacity was evaluated was 60 ° C.
In a constant temperature bath of 2.2 mA / cm 2 ,
Charge and discharge were repeated when the voltage between the battery electrodes was between 4.2 V and 3 V. Table 1 shows the ratio of the discharge capacity at the 400th cycle to the discharge capacity at the first cycle, that is, the capacity retention rate after the cycle.

【0072】(正極活物質の特性評価結果及びリチウム
2次電池の高温特性評価結果)初期容量評価、高温サイ
クル評価した結果を表1に示す。初期容量はすべての水
準に対し、90mAh/g以上の容量を確保できた。
(Characteristic Evaluation Results of Positive Electrode Active Material and High-Temperature Characteristic Evaluation Results of Lithium Secondary Battery) The results of initial capacity evaluation and high-temperature cycle evaluation are shown in Table 1. As for the initial capacity, a capacity of 90 mAh / g or more was secured for all levels.

【0073】主成分のみの場合(比較例1、2)、他元
素置換することにより性能の向上は見られるが、依然と
して劣化が大きいことを確認した。
When only the main component was used (Comparative Examples 1 and 2), the performance was improved by substituting other elements, but it was confirmed that the deterioration was still large.

【0074】主成分が、他元素置換をおこなっていない
スピネル構造のリチウムマンガン酸化物の場合(比較例
3〜8)、残余成分を混合しても大きな特性向上が確認
できなかった。
In the case where the main component was lithium manganese oxide having a spinel structure in which no other element was substituted (Comparative Examples 3 to 8), no significant improvement in characteristics was confirmed even when the remaining components were mixed.

【0075】スピネル型リチウムマンガン酸化物を混合
した場合(比較例9〜12、実施例1、2)、主成分と
残余成分との充放電容量比(残余成分/主成分)が1.
3倍以上、さらに混合重量比(混合する残余成分/(主
成分+残余成分))が5/100以上の場合、性能が大
きく向上することを確認した。
When the spinel-type lithium manganese oxide was mixed (Comparative Examples 9 to 12, Examples 1 and 2), the charge / discharge capacity ratio of the main component to the residual component (residual component / main component) was 1.
It was confirmed that the performance was greatly improved when the mixing weight ratio (residual component to be mixed / (main component + residual component)) was 3/100 or more and 5/100 or more.

【0076】さらに他元素置換(Al置換)した主成分
に層状構造の化合物を残余成分として混合することによ
り、さらに混合重量比(残余成分/(主成分+残余成
分))が5/100以上の場合、大きく性能が向上でき
ることを確認した。尚、混合重量比(残余成分/(主成
分+残余成分))が10/100以上にすると、混合す
る効果が増大し、大きく性能が向上することを確認でき
た。
Further, by mixing a compound having a layered structure as a residual component with a main component substituted with another element (Al substitution), the mixture weight ratio (residual component / (main component + residual component)) is 5/100 or more. In this case, it was confirmed that the performance could be greatly improved. When the mixing weight ratio (residual component / (main component + residual component)) was 10/100 or more, it was confirmed that the effect of mixing increased and the performance was greatly improved.

【0077】[0077]

【発明の効果】したがって、本発明は、充放電容量を確
保しながら、高温サイクル特性・高温貯蔵性に優れたス
ピネル構造のマンガン酸リチウムを主たる正極活物質と
して用いたリチウムイオン二次電池を提供することがで
きるという効果を有する。
Accordingly, the present invention provides a lithium ion secondary battery using lithium manganate having a spinel structure as a main positive electrode active material having excellent high-temperature cycle characteristics and high-temperature storability while securing charge / discharge capacity. It has the effect that it can be done.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ04 AJ05 AK03 AL06 AM02 AM03 AM04 AM05 AM07 CJ08 DJ17 HJ01 HJ02 HJ19 5H050 AA05 AA07 AA10 BA17 CA07 CA08 CA09 CA30 CB07 DA02 FA19 GA10 HA01 HA02 HA07 HA19  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 5H029 AJ04 AJ05 AK03 AL06 AM02 AM03 AM04 AM05 AM07 CJ08 DJ17 HJ01 HJ02 HJ19 5H050 AA05 AA07 AA10 BA17 CA07 CA08 CA09 CA30 CB07 DA02 FA19 GA10 HA01 HA02 HA07 HA19

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンをドープおよび脱ドープ
可能な正極活物質をもつ正極と、リチウムイオンをドー
プおよび脱ドープ可能な炭素材料を負極活物質にもつ負
極と、非水電解液とを有するリチウムイオン二次電池に
おいて、 前記正極活物質は、スピネル型リチウムマンガン含有複
合酸化物からなる主成分と、該スピネル型リチウムマン
ガン含有複合酸化物よりも単位質量あたりの充放電容量
が多いリチウム含有複合酸化物からなる残余成分とをも
つことを特徴とするリチウムイオン二次電池。
1. A lithium battery comprising: a positive electrode having a positive electrode active material capable of doping and undoping lithium ions; a negative electrode having a carbon material capable of doping and undoping lithium ions as a negative electrode active material; and a nonaqueous electrolyte. In the ion secondary battery, the positive electrode active material is mainly composed of a spinel-type lithium manganese-containing composite oxide and a lithium-containing composite oxide having a larger charge / discharge capacity per unit mass than the spinel-type lithium manganese-containing composite oxide. A lithium ion secondary battery having a residual component composed of a material.
【請求項2】 前記残余成分が、前記主成分よりも、単
位質量当たりの充放電容量が1.3倍以上高い請求項1
に記載のリチウムイオン二次電池。
2. The charge / discharge capacity per unit mass of the residual component is 1.3 times or more higher than that of the main component.
4. The lithium ion secondary battery according to 1.
【請求項3】 リチウムイオンをドープおよび脱ドープ
可能な正極活物質をもつ正極と、リチウムイオンをドー
プおよび脱ドープ可能な炭素材料を負極活物質にもつ負
極と、セパレ−タと、非水電解液とを有するリチウムイ
オン二次電池において、 前記正極活物質は、スピネル型リチウムマンガン含有複
合酸化物からなる主成分と、層状構造リチウム含有複合
酸化物からなる残余の成分とをもつことを特徴とするリ
チウムイオン二次電池。
3. A positive electrode having a positive electrode active material capable of doping and undoping lithium ions; a negative electrode having a carbon material capable of doping and undoping lithium ions as a negative electrode active material; a separator; Wherein the positive electrode active material has a main component comprising a spinel-type lithium manganese-containing composite oxide and a residual component comprising a layered structure lithium-containing composite oxide. Lithium ion secondary battery.
【請求項4】 前記正極活物質全体に対する前記残余成
分の質量比が5/100以上である請求項1〜3のいず
れかに記載のリチウムイオン二次電池。
4. The lithium ion secondary battery according to claim 1, wherein a mass ratio of the residual component to the entire positive electrode active material is 5/100 or more.
【請求項5】 前記主成分は、さらにAl元素をもつ請
求項1〜4のいずれかに記載のリチウムイオン二次電
池。
5. The lithium ion secondary battery according to claim 1, wherein said main component further has an Al element.
【請求項6】 前記主成分が一般式Li1+xMn2-x-y-z
Alyz4、0.05≧x≧0、0.35≧y≧0.
2、0.15≧z≧0、M:Li、MnおよびAl以外
の少なくとも一種以上の金属元素)で表される請求項1
〜5のいずれかに記載のリチウムイオン二次電池。
6. The method according to claim 1, wherein the main component is a general formula Li 1 + x Mn 2-xyz
Al y M z O 4, 0.05 ≧ x ≧ 0,0.35 ≧ y ≧ 0.
2, 0.15 ≧ z ≧ 0, M: at least one or more metal elements other than Li, Mn and Al).
6. The lithium ion secondary battery according to any one of claims 1 to 5.
【請求項7】 前記主成分の比表面積が0.9m2/g
以下である請求項1〜6のいずれかに記載のリチウムイ
オン二次電池。
7. The specific surface area of the main component is 0.9 m 2 / g.
The lithium ion secondary battery according to claim 1, wherein:
【請求項8】 前記残余成分が、マンガン・コバルト・
ニッケルのうち少なくとも1つを含む層状構造のリチウ
ム金属含有複合酸化物である請求項1〜7のいずれかに
記載のリチウムイオン二次電池。
8. The method according to claim 1, wherein the residual component is manganese-cobalt.
The lithium ion secondary battery according to any one of claims 1 to 7, which is a lithium metal-containing composite oxide having a layered structure containing at least one of nickel.
【請求項9】 前記残余成分が、層状構造のリチウムニ
ッケルコバルト含有複合酸化物である請求項1〜7のい
ずれかに記載のリチウムイオン二次電池。
9. The lithium ion secondary battery according to claim 1, wherein the remaining component is a lithium nickel cobalt-containing composite oxide having a layered structure.
【請求項10】 前記残余成分が、層状構造のリチウム
ニッケルコバルトアルミ含有複合酸化物である請求項1
〜7のいずれかに記載のリチウムイオン二次電池。
10. The composite oxide according to claim 1, wherein the residual component is a lithium nickel cobalt aluminum-containing composite oxide having a layered structure.
8. The lithium ion secondary battery according to any one of items 1 to 7.
【請求項11】 前記残余成分が、層状構造のリチウム
鉄含有複合酸化物である請求項1〜7のいずれかに記載
のリチウムイオン二次電池。
11. The lithium ion secondary battery according to claim 1, wherein the residual component is a lithium iron-containing composite oxide having a layered structure.
JP2000260707A 2000-08-30 2000-08-30 Lithium ion secondary battery Expired - Fee Related JP4797230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260707A JP4797230B2 (en) 2000-08-30 2000-08-30 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260707A JP4797230B2 (en) 2000-08-30 2000-08-30 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2002075361A true JP2002075361A (en) 2002-03-15
JP4797230B2 JP4797230B2 (en) 2011-10-19

Family

ID=18748676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260707A Expired - Fee Related JP4797230B2 (en) 2000-08-30 2000-08-30 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4797230B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190300A (en) * 2000-12-21 2002-07-05 Toyota Central Res & Dev Lab Inc Lithium secondary cell
JP2005339886A (en) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007294119A (en) * 2006-04-21 2007-11-08 National Institute Of Advanced Industrial & Technology Single crystal particle of oxide for lithium secondary battery electrode and its manufacturing method, and lithium secondary battery using it
JP2008084743A (en) * 2006-09-28 2008-04-10 Nec Tokin Corp Positive electrode for secondary battery, and secondary battery using the same
JP2009187807A (en) * 2008-02-06 2009-08-20 Nec Tokin Corp Cathode for secondary battery and lithium secondary battery using it
JP2013122927A (en) * 2013-01-29 2013-06-20 Nec Energy Devices Ltd Positive electrode for secondary battery, and lithium secondary battery including the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289662A (en) * 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH07235291A (en) * 1993-12-27 1995-09-05 Haibaru:Kk Secondary battery
JPH08162114A (en) * 1994-12-02 1996-06-21 Kaageo P-Shingu Res Lab:Kk Lithium secondary battery
JPH0945324A (en) * 1995-07-27 1997-02-14 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery
JPH09330719A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Lithium secondary battery
JPH1064516A (en) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd Lithium battery
JPH1092430A (en) * 1996-09-20 1998-04-10 Yuasa Corp Lithium secondary battery
JPH11345614A (en) * 1998-06-01 1999-12-14 Yuasa Corp Nonaqueous electrolyte battery
JP2000012030A (en) * 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000077071A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery
JP2000138072A (en) * 1998-08-28 2000-05-16 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000195513A (en) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000203844A (en) * 1998-05-22 2000-07-25 Toyota Central Res & Dev Lab Inc Lithium-manganese compound oxide as anodic active material for lithium secondary battery, production of the compound oxide, and lithium secondary battery using the same as anodic active material
JP2001015108A (en) * 1999-07-01 2001-01-19 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, its manufacture, and lithium secondary battery
JP2001160395A (en) * 1999-12-03 2001-06-12 Mitsubishi Chemicals Corp Material for positive electrode of lithium secondary battery
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289662A (en) * 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH07235291A (en) * 1993-12-27 1995-09-05 Haibaru:Kk Secondary battery
JPH08162114A (en) * 1994-12-02 1996-06-21 Kaageo P-Shingu Res Lab:Kk Lithium secondary battery
JPH0945324A (en) * 1995-07-27 1997-02-14 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery
JPH09330719A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Lithium secondary battery
JPH1064516A (en) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd Lithium battery
JPH1092430A (en) * 1996-09-20 1998-04-10 Yuasa Corp Lithium secondary battery
JP2000203844A (en) * 1998-05-22 2000-07-25 Toyota Central Res & Dev Lab Inc Lithium-manganese compound oxide as anodic active material for lithium secondary battery, production of the compound oxide, and lithium secondary battery using the same as anodic active material
JPH11345614A (en) * 1998-06-01 1999-12-14 Yuasa Corp Nonaqueous electrolyte battery
JP2000012030A (en) * 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000077071A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery
JP2000138072A (en) * 1998-08-28 2000-05-16 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000195513A (en) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001015108A (en) * 1999-07-01 2001-01-19 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, its manufacture, and lithium secondary battery
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
JP2001160395A (en) * 1999-12-03 2001-06-12 Mitsubishi Chemicals Corp Material for positive electrode of lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190300A (en) * 2000-12-21 2002-07-05 Toyota Central Res & Dev Lab Inc Lithium secondary cell
JP2005339886A (en) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007294119A (en) * 2006-04-21 2007-11-08 National Institute Of Advanced Industrial & Technology Single crystal particle of oxide for lithium secondary battery electrode and its manufacturing method, and lithium secondary battery using it
JP2008084743A (en) * 2006-09-28 2008-04-10 Nec Tokin Corp Positive electrode for secondary battery, and secondary battery using the same
JP2009187807A (en) * 2008-02-06 2009-08-20 Nec Tokin Corp Cathode for secondary battery and lithium secondary battery using it
JP2013122927A (en) * 2013-01-29 2013-06-20 Nec Energy Devices Ltd Positive electrode for secondary battery, and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP4797230B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5479096B2 (en) Method for producing lithium metal phosphate
JP5260821B2 (en) Lithium ion secondary battery
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP5495300B2 (en) Lithium ion secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR20090020882A (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
US9269948B2 (en) Positive electrode active material, process for producing same, and lithium secondary battery using same
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2000200607A (en) Lithium secondary battery
KR101278832B1 (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR100820057B1 (en) Positive active material for a lithium secondary battery, method of preparing the same, and lithium secondary battery coprising the same
JP4797230B2 (en) Lithium ion secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2002056846A (en) Method of manufacturing positive electrode active material for lithium secondary battery, and method of manufacturing lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees