JPH08162114A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08162114A
JPH08162114A JP6329643A JP32964394A JPH08162114A JP H08162114 A JPH08162114 A JP H08162114A JP 6329643 A JP6329643 A JP 6329643A JP 32964394 A JP32964394 A JP 32964394A JP H08162114 A JPH08162114 A JP H08162114A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
battery
limn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6329643A
Other languages
Japanese (ja)
Inventor
Takaaki Iguchi
隆明 井口
Koji Kuwana
宏二 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAAGEO P SHINGU RES LAB KK
KAAGEO P-SHINGU RES LAB KK
Original Assignee
KAAGEO P SHINGU RES LAB KK
KAAGEO P-SHINGU RES LAB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAAGEO P SHINGU RES LAB KK, KAAGEO P-SHINGU RES LAB KK filed Critical KAAGEO P SHINGU RES LAB KK
Priority to JP6329643A priority Critical patent/JPH08162114A/en
Publication of JPH08162114A publication Critical patent/JPH08162114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a lithium secondary battery capable of restraining increase in the contact resistance between a positive electrode active material and conductive agent caused by charge/discharge operation of a battery and having an improved cycle characteristic without decrease in capacity. CONSTITUTION: A positive electrode active material used for a positive electrode 1 of lithium secondary battery is composed of composite powder in which Lia MbO2 layer is formed on the surface of LixMnyO2 , powder, where M is one or two kind or more of elements selected from transition metal elements such as Cr, Fe, Co, Ni.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極活物質に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】従来、リチウム二次電池の正極活物質と
して高エネルギー密度化の観点から一般式LiAO2
表すことのできるリチウムコバルト酸化物やリチウムニ
ッケル酸化物などの層状化合物や、LiMn24および
LiMnO2を含む一連のリチウムマンガン酸化物が正
極材料として使用されている。
2. Description of the Related Art Conventionally, layered compounds such as lithium cobalt oxide and lithium nickel oxide, which can be represented by the general formula LiAO 2 , have been used as a positive electrode active material for lithium secondary batteries, and LiMn 2 O. A series of lithium manganese oxides including 4 and LiMnO 2 have been used as positive electrode materials.

【0003】しかし、リチウムコバルト酸化物やリチウ
ムニッケル酸化物は、その主要元素であるコバルトが高
価で且つ資源的な問題があったり、リチウムニッケル酸
化物は合成方法の困難さから材料のコストメリットがな
いなどの問題があり、低コスト化への要望からマンガン
酸化物系の開発が強く要求されている。
[0003] However, lithium cobalt oxide and lithium nickel oxide have a problem in that cobalt, which is the main element, is expensive and has a resource problem, and that lithium nickel oxide has a material cost advantage due to the difficulty of the synthesis method. Since there is a problem such as the lack of a manganese oxide, there is a strong demand for the development of manganese oxide based on the demand for cost reduction.

【0004】しかし、一般的なLiMnO2およびLi
Mn24を含む一連のリチウムマンガン複合酸化物は、
電子抵抗が大きいことや、充放電に伴う粒子の膨脹収縮
による粒子破壊から電子伝導を担う導電剤との接触が不
十分となることなどの問題から十分な電子伝導を確保す
る必要があり、電極構成において導電剤量および導電剤
の種類に規制が生じるためエネルギー密度が低下する。
あるいは充放電の繰り返しに伴い結晶格子の歪みや、粒
子破壊による粒子間での電子伝導およびリチウムイオン
の拡散が遮断される部位が生じるなどの要因で、サイク
ル特性も良くないという問題があった。
However, common LiMnO 2 and Li
A series of lithium manganese composite oxides containing Mn 2 O 4 are:
It is necessary to secure sufficient electron conduction due to problems such as high electron resistance and insufficient contact with the conductive agent that is responsible for electron conduction due to particle destruction due to expansion and contraction of particles during charging and discharging. Since the amount of conductive agent and the type of conductive agent are restricted in the configuration, the energy density is lowered.
There is also a problem that the cycle characteristics are not good due to distortion of the crystal lattice due to repeated charging and discharging, and a part where electron conduction between particles and diffusion of lithium ions are blocked due to particle destruction.

【0005】これらの問題に対する方策としてLix
y2中のマンガンを他元素により置換することによ
り、活物質自身の電子伝導性および充放電に伴う粒子歪
みの低減を試みる検討が盛んに行われており、実際に活
物質自身の性能向上に効果があることが知られている
(特開平4−141954号公報)。
As a measure against these problems, Li x M
By substituting manganese in n y O 2 with another element, attempts to reduce the electronic conductivity of the active material itself and particle distortion due to charge / discharge have been actively conducted, and the performance of the active material itself has been actually investigated. It is known that there is an effect on the improvement (JP-A-4-141954).

【0006】[0006]

【発明が解決しようとする課題】しかし、例えばスピネ
ル構造を有するLiMn24はマンガンの一部を他元素
に置換することによりサイクル特性が向上するが、一方
では粒子の電子抵抗が十分に低減できないことで正極電
極中の導電剤が多量に必要になる。あるいは他元素置換
することによりスピネル構造において4V付近の電位で
充放電に関与する価数変化を行う元素種がないため、そ
の分充放電反応に関与しないリチウムイオンが生じ、逆
効果として容量が低下するなどといった問題が依然残さ
れている。
However, for example, LiMn 2 O 4 having a spinel structure improves the cycle characteristics by substituting a part of manganese with another element, but on the other hand, the electron resistance of the particles is sufficiently reduced. Since this is not possible, a large amount of conductive agent is required in the positive electrode. Alternatively, since there is no elemental species that changes the valence involved in charging / discharging at a potential near 4 V in the spinel structure by substituting another element, lithium ions that do not participate in the charging / discharging reaction are generated correspondingly, and the capacity decreases as an adverse effect. There are still problems such as doing.

【0007】[0007]

【課題を解決するための手段】上記の問題点を解決する
手段として本発明は、リチウム二次電池の正極活物質を
LixMny2とLiab2(ここでMはCr,Fe,
Co,Niなどの遷移金属元素の中から選ばれた1種ま
たは2種以上の元素である)との複合体粉末で構成した
ものである。
The present invention as means for solving the above problems BRIEF SUMMARY OF THE INVENTION may, a positive electrode active material of a lithium secondary battery Li x Mn y O 2 and Li a M b O 2 (where M is Cr , Fe,
It is a composite powder with one or more elements selected from transition metal elements such as Co and Ni).

【0008】前記複合体粉末は、LixMny2(ここ
でx,yはそれぞれ0<x≦1.15,0.85≦y≦
1.30である)粉末の表面にLiab2(ここで
a,bはそれぞれ0<a≦1.15,0.85≦b≦
1.30である)層が形成されたものである。
The composite powder is Li x Mn y O 2 (where x and y are 0 <x ≦ 1.15 and 0.85 ≦ y ≦, respectively).
1.30) on the surface of the powder Li a M b O 2 (where a and b are 0 <a ≦ 1.15 and 0.85 ≦ b ≦, respectively).
1.30) is formed.

【0009】上記正極活物質中、LixMny2のx,
y値は0<x≦1.15,0.85≦y≦1.30の範
囲であり、一連のリチウムマンガン複合酸化物に対して
有効であり、また、Liab2中の他元素Mは4V付
近の電位で充放電反応に関与するCr,Fe,Co,N
iのリチウム複合酸化物が良く、特にLiCoO2,L
iNiO2が良い。
In the positive electrode active material, x of Li x Mn y O 2 ,
The y value is in the range of 0 <x ≦ 1.15, 0.85 ≦ y ≦ 1.30, which is effective for a series of lithium manganese composite oxides, and other than Li a M b O 2. The element M is Cr, Fe, Co, N which participates in the charge / discharge reaction at a potential near 4V.
i is preferably a lithium composite oxide, especially LiCoO 2 , L
iNiO 2 is good.

【0010】本発明の複合体粉末を得るためには、例え
ばスピネル構造を有するLiMn24粒子の表面にLi
CoO2層を有する複合体を例にとると、一般的な方法
(例えば炭酸リチウムLi2CO3と三酸化二マンガンM
23をモル比1+x:2で混合し、800℃程度で焼
成する)で合成されたLi1+xMn24を用い、これを
粉砕した粉体をxモルのコバルトを含有する硝酸コバル
トCo(NO3)2水溶液中に分散させ十分攪拌した後、水
を蒸発させる。この粉末を300〜400℃程度の比較
的低温で再度焼成することによりLiMn24結晶構造
中にコバルトが拡散することなくLiMn24粒子表面
にLiCoO2の表面層を形成することができる。
In order to obtain the composite powder of the present invention, for example, LiMn 2 O 4 particles having a spinel structure are formed on the surface of LiMn 2 O 4 particles.
Taking a composite having a CoO 2 layer as an example, a general method (for example, lithium carbonate Li 2 CO 3 and dimanganese trioxide M) is used.
n 2 O 3 was mixed at a molar ratio of 1 + x: 2 and calcined at about 800 ° C.) was used to synthesize Li 1 + x Mn 2 O 4 and the powder was crushed to contain x mol of cobalt. After dispersion in a cobalt nitrate Co (NO 3 ) 2 aqueous solution and thorough stirring, water is evaporated. By recalcining this powder at a relatively low temperature of about 300 to 400 ° C., a surface layer of LiCoO 2 can be formed on the surface of the LiMn 2 O 4 particles without the diffusion of cobalt in the LiMn 2 O 4 crystal structure. .

【0011】[0011]

【作用】本発明による正極活物質を使用したリチウム二
次電池は、一連のリチウムマンガン複合酸化物、あるい
はリチウムマンガン複合酸化物中マンガンの一部を異種
元素置換した正極活物質を使用したものに比較して、粒
子表面がLiab2で被覆されており、電子伝導性が
良好で、且つ電池の充放電に伴う粒子の膨脹収縮による
粒子破壊が抑制されることや、表面層を形成しているL
iCoO2などが電池の反応に寄与するため他元素で置
換したものと比較して容量の低下が起こらないため著し
く電池の性能が向上する。
The lithium secondary battery using the positive electrode active material according to the present invention has a series of lithium manganese composite oxides or a positive electrode active material in which a part of manganese in the lithium manganese composite oxide is replaced with a different element. In comparison, the particle surface is coated with Li a M b O 2 , the electron conductivity is good, and the particle destruction due to the expansion and contraction of the particle due to the charge and discharge of the battery is suppressed, and the surface layer is Forming L
Since iCoO 2 or the like contributes to the reaction of the battery, the capacity of the battery does not decrease as compared with the case where it is replaced with another element, and thus the battery performance is remarkably improved.

【0012】[0012]

【実施例】以下、本発明をスピネル構造LiMn24
例にとり、複合元素としてコバルトを使用した実施例に
基づいて説明する。
EXAMPLES The present invention will be described below by taking an example of LiMn 2 O 4 having a spinel structure and using cobalt as a composite element.

【0013】実施例1 炭酸リチウムLi2CO3と三酸化二マンガンMn23
Li:Mn=1.0+x:2.0のモル比となるよう混
合し、800℃で熱処理することにより合成したLi
1+xMn24をxモルのコバルトを有するコバルト塩水
溶液に拡散し十分攪拌し、水を蒸発させた後、粒子を3
00〜400℃程度の比較的低温で再度焼成することに
よりLiMn24−LiCoO2複合体粉末を得た。
Example 1 Lithium carbonate Li 2 CO 3 and dimanganese trioxide Mn 2 O 3 were mixed in a molar ratio of Li: Mn = 1.0 + x: 2.0 and heat-treated at 800 ° C. to synthesize. Li
1 + x Mn 2 O 4 was dispersed in an aqueous cobalt salt solution containing x mol of cobalt, stirred sufficiently, and water was evaporated.
It was obtained LiMn 2 O 4 -LiCoO 2 composite powder by calcining again at a relatively low temperature of about 00-400 ° C..

【0014】上記の方法で得られた複合体粉末を正極活
物質に使用し、図1の断面図で示すコイン型リチウム二
次電池を作製した。
The composite powder obtained by the above method was used as a positive electrode active material to prepare a coin-type lithium secondary battery shown in the sectional view of FIG.

【0015】まず、正極1は、上記正極活物質粉末を使
用し、これに導電剤としてアセチレンブラック、粘着剤
としてポリテトラフルオロエチレン粉末を80:16:
4の重量比で混練し、これをローラープレスにより厚み
0.5mmのシート状に成形した後、直径16mmの円
形に打ち抜いたものを正極集電体6を介して正極缶4に
圧着して用いた。
First, for the positive electrode 1, the above positive electrode active material powder is used, and acetylene black is used as a conductive agent and polytetrafluoroethylene powder is used as an adhesive in 80:16:
The mixture was kneaded in a weight ratio of 4 and formed into a sheet having a thickness of 0.5 mm by a roller press, and then punched into a circle having a diameter of 16 mm, which was pressed to the positive electrode can 4 through the positive electrode current collector 6. I was there.

【0016】負極2は、厚み0.3mmのリチウム箔を
直径15mmの円形に打ち抜き、負極集電体7を介して
負極缶5に圧着して用いた。
The negative electrode 2 was used by punching out a lithium foil having a thickness of 0.3 mm into a circular shape having a diameter of 15 mm and press-bonding it to the negative electrode can 5 via the negative electrode current collector 7.

【0017】一方、セパレータ3にはポリプロピレン製
微多孔膜を用い、電解液にはプロピレンカーボネートと
ジエチルカーボネートの混合溶媒(体積比1:1)にL
iClO4を1mol/l溶解したものを使用した。
On the other hand, a polypropylene microporous membrane is used for the separator 3, and the electrolyte is L in a mixed solvent of propylene carbonate and diethyl carbonate (volume ratio 1: 1).
A solution of iClO 4 dissolved in 1 mol / l was used.

【0018】上記正極1、負極2、セパレータ3、電解
液、および絶縁パッキング8を用いて直径20mm、厚
さ1.6mmのコイン型リチウム電池を作製した。この
電池をA1とする。
A coin type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced using the positive electrode 1, the negative electrode 2, the separator 3, the electrolytic solution and the insulating packing 8. This battery is designated as A1.

【0019】実施例2 上記実施例1にて合成した正極活物質を使用し、正極電
極として正極活物質:導電剤:結着剤の重量比率を9
0:6:4とした以外は、実施例1と全く同様にして本
発明電池A2を作製した。
Example 2 The positive electrode active material synthesized in the above Example 1 was used, and the weight ratio of positive electrode active material: conductive agent: binder was 9 for the positive electrode.
Battery A2 of the present invention was produced in exactly the same manner as in Example 1 except that the ratio was set to 0: 6: 4.

【0020】比較例1 炭酸リチウムLi2CO3と三酸化二マンガンMn23
Li:Mn=1.0:2.0のモル比となるよう秤量、
混合し、800℃程度で熱処理することによりLiMn
24正極活物質を得た。この正極活物質を使用する以外
は、実施例1と全く同様にして比較例電池B1を作製し
た。
Comparative Example 1 Lithium carbonate Li 2 CO 3 and dimanganese trioxide Mn 2 O 3 were weighed so as to have a molar ratio of Li: Mn = 1.0: 2.0,
By mixing and heat treating at about 800 ° C., LiMn
A 2 O 4 positive electrode active material was obtained. Comparative Example Battery B1 was prepared in exactly the same manner as Example 1 except that this positive electrode active material was used.

【0021】比較例2 比較例1で合成されたLiMn24正極活物質を使用
し、正極電極として正極活物質:導電剤:結着剤の重量
比率を90:6:4とした以外は、実施例1と全く同様
にして比較例電池B2を作製した。
Comparative Example 2 The LiMn 2 O 4 positive electrode active material synthesized in Comparative Example 1 was used, and the weight ratio of positive electrode active material: conductive agent: binder was 90: 6: 4 as the positive electrode. A comparative battery B2 was manufactured in exactly the same manner as in Example 1.

【0022】比較例3 炭酸リチウムLi2CO3と三酸化二マンガンMn23
よび水酸化コバルトCo(OH)2をLi:Mn:Co=
1.0:1.9:0.1のモル比となるよう秤量、混合
し、800℃程度で熱処理することによりLiMn1.9
Co0.14正極活物質を得た。この正極活物質を使用す
る以外は、実施例1と全く同様にして比較例電池B3を
製作した。
Comparative Example 3 Li: Mn: Co = lithium carbonate Li 2 CO 3 , dimanganese trioxide Mn 2 O 3 and cobalt hydroxide Co (OH) 2
LiMn 1.9 was obtained by weighing and mixing so as to obtain a molar ratio of 1.0: 1.9: 0.1, and heat-treating at about 800 ° C.
A Co 0.1 O 4 positive electrode active material was obtained. Comparative Example Battery B3 was produced in exactly the same manner as Example 1 except that this positive electrode active material was used.

【0023】比較例4 比較例3で合成されたLiMn1.9Co0.14正極活物
質を使用し、正極活物質:導電剤:結着剤の重量比率を
90:6:4とした以外は、実施例1と全く同様にして
比較例電池B4を作製した。
COMPARATIVE EXAMPLE 4 Except that the LiMn 1.9 Co 0.1 O 4 positive electrode active material synthesized in Comparative Example 3 was used and the weight ratio of positive electrode active material: conductive agent: binder was 90: 6: 4. Comparative Example Battery B4 was prepared in exactly the same manner as in Example 1.

【0024】この様にして作製した電池A1,A2,B
1,B2,B3,B4についての容量−サイクル特性を
図2,3示す。
Batteries A1, A2, B produced in this way
2 and 3 show the capacity-cycle characteristics for 1, B2, B3 and B4.

【0025】図2から本発明電池A1は比較例電池B
1,B3に比較して初期容量が高く、サイクル特性が向
上していることが分かる。
From FIG. 2, the battery A1 of the present invention is the comparative battery B.
It can be seen that the initial capacity is higher and the cycle characteristics are improved as compared with 1 and B3.

【0026】また、図3から本発明電池A2は比較例電
池B2,B4に比較してサイクル初期からの容量低下は
観測されず、サイクル特性は良好であることが分かる。
Further, it can be seen from FIG. 3 that the battery A2 of the present invention has good cycle characteristics as compared with the batteries B2 and B4 of the comparative example, with no decrease in capacity observed from the beginning of the cycle.

【0027】図2からLiMn24中のマンガンの一部
をコバルトで置換することにより、サイクル特性が向上
していることが明らかであるが、初期容量がコバルトに
よる置換量により低下していることが分かる。一方、本
発明にあるようにLiMn24の粒子表面をLiCoO
2層で被覆したLiMn24−LiCoO2複合酸化物
は、初期容量を低下させることなくサイクル特性を向上
することができる。このことは、LiMn24粒子表面
に被覆されたLiCoOが電池の充放電反応に関与す
る為であると推察される。
It is clear from FIG. 2 that the cycle characteristics are improved by substituting a part of manganese in LiMn 2 O 4 with cobalt, but the initial capacity is lowered by the substitution amount by cobalt. I understand. On the other hand, as in the present invention, the surface of the LiMn 2 O 4 particles is coated with LiCoO 2.
The LiMn 2 O 4 —LiCoO 2 composite oxide coated with two layers can improve the cycle characteristics without lowering the initial capacity. It is speculated that this is because LiCoO 2 coated on the surface of the LiMn 2 O 4 particles participates in the charge / discharge reaction of the battery.

【0028】また、図3から本発明の正極活物質は、正
極電極中の導電剤の重量分率が実用電池に近いレベルに
おいて容量−サイクル特性が良好であり、LiMn24
やマンガンをコバルトで一部置換したLiMn2-xCox
4の比較電池B2,B4と比較すると明らかである。
このことは、LiMn24の粒子表面をLiCoO2
被膜しているため、LiMn24の本質にあるような導
電剤との接触抵抗が低減されたためと考えられる。ま
た、粒子表面を被覆したLiCoO2中を電子がスムー
ズに流れると考えられ、よって活物質粒子の電気化学的
反応が速やかに行われるものと推測される。
From FIG. 3, the positive electrode active material of the present invention has good capacity-cycle characteristics at a level where the weight fraction of the conductive agent in the positive electrode is close to that of a practical battery, and LiMn 2 O 4
LiMn 2-x Co x partially replaced with manganese and cobalt
It is clear when compared with the comparative batteries B2 and B4 of O 4 .
It is considered that this is because the particle surface of LiMn 2 O 4 is coated with LiCoO 2 , and the contact resistance with the conductive agent, which is the essence of LiMn 2 O 4 , is reduced. In addition, it is considered that electrons smoothly flow through LiCoO 2 coating the particle surface, and it is speculated that the electrochemical reaction of the active material particles is promptly performed.

【0029】以上、本発明についてスピネル構造を有す
るLiMn24を例にとり、複合元素としてコバルトを
使用し説明したが、本発明はLixMny2(ここで
x,yはそれぞれ0<x≦1.15,0.85≦y≦
1.30である)で表わすことができる一連のリチウム
マンガン複合酸化物に対して有効であり、さらに複合元
素としてはCr,Fe,Niなどの遷移金属元素に対し
ても有効である。
The present invention has been described above using LiMn 2 O 4 having a spinel structure as an example and using cobalt as a complex element. However, the present invention is described as Li x Mn y O 2 (where x and y are 0 < x ≦ 1.15, 0.85 ≦ y ≦
It is effective for a series of lithium manganese composite oxides that can be represented by 1.30), and is also effective as a composite element for transition metal elements such as Cr, Fe, and Ni.

【0030】[0030]

【発明の効果】本発明の電池において、正極活物質であ
るリチウムマンガン複合酸化物の粒子表面にLiab
2層が形成されているため、電池の充放電に伴う正極活
物質と導電剤との接触抵抗の増大を抑制でき、且つ容量
を低下させることなくサイクル特性を向上させることが
可能となり、全体として電池のエネルギー密度を向上す
ることができる。
INDUSTRIAL APPLICABILITY In the battery of the present invention, Li a M b O is formed on the surface of particles of lithium manganese composite oxide which is a positive electrode active material.
Since two layers are formed, it is possible to suppress an increase in contact resistance between the positive electrode active material and the conductive agent due to charge and discharge of the battery, and it is possible to improve cycle characteristics without lowering the capacity, and as a whole. The energy density of the battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例電池に係るコイン型リチウム二
次電池の断面図である。
FIG. 1 is a cross-sectional view of a coin type lithium secondary battery according to an example battery of the present invention.

【図2】実施例A1、比較例B1,B3電池の容量−サ
イクル特性を示す図である。
FIG. 2 is a diagram showing capacity-cycle characteristics of batteries of Example A1 and Comparative Examples B1 and B3.

【図3】実施例A2、比較例B2,B4電池の容量−サ
イクル特性を示す図である。
FIG. 3 is a diagram showing capacity-cycle characteristics of Example A2 and Comparative Examples B2 and B4 batteries.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode current collector 7 Negative electrode current collector 8 Insulation packing

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質がLixMny2とLiab
2(ここでMはCr,Fe,Co,Niなどの遷移金
属元素の中から選ばれた1種または2種以上の元素であ
る)との複合体粉末からなるリチウム二次電池。
1. A positive electrode active material Li x Mn y O 2 and Li a M b
A lithium secondary battery comprising a composite powder with O 2 (where M is one or more elements selected from transition metal elements such as Cr, Fe, Co and Ni).
【請求項2】 前記複合体粉末は、LixMny2(こ
こでx,yはそれぞれ0<x≦1.15,0.85≦y
≦1.30である)粉末の表面にLiab2(ここで
a,bはそれぞれ0<a≦1.15,0.85≦b≦
1.30である)層が形成してなるものである請求項1
記載のリチウム二次電池。
Wherein said composite powder is, Li x Mn y O 2 (where x, y respectively 0 <x ≦ 1.15,0.85 ≦ y
≦ 1.30) on the surface of the powder Li a M b O 2 (where a and b are 0 <a ≦ 1.15 and 0.85 ≦ b ≦, respectively).
1.30) is formed to form a layer.
The lithium secondary battery described.
JP6329643A 1994-12-02 1994-12-02 Lithium secondary battery Pending JPH08162114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329643A JPH08162114A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329643A JPH08162114A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08162114A true JPH08162114A (en) 1996-06-21

Family

ID=18223639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329643A Pending JPH08162114A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08162114A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (en) * 1995-08-11 1997-02-25 Sony Corp Positive active material and nonaqueous electrolytic secondary battery using the same
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
KR100303540B1 (en) * 1998-10-30 2001-12-01 김순택 Cathode active material for lithium secondary battery and its manufacturing method
JP2001338639A (en) * 2000-05-25 2001-12-07 Sony Corp Non-aqueous electrolyte battery
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2002068745A (en) * 2000-08-28 2002-03-08 Nippon Chem Ind Co Ltd Lithium manganese complex oxide composite body, method of producing it, positive-electrode active substance for lithium secondary battery and lithium secondary battery
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
WO2002061865A3 (en) * 2001-01-31 2002-10-03 Kerr Mcgee Chemical Llc Stabilized spinel battery cathode material and methods
US6686096B1 (en) 2000-01-27 2004-02-03 New Billion Investments Limited Rechargeable solid state chromium-fluorine-lithium electric battery
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide with gradient in composition of metal components
JP2008539536A (en) * 2005-04-28 2008-11-13 比▲亜▼迪股▲分▼有限公司 Battery positive electrode, lithium ion battery employing the battery positive electrode, and method for producing the same
JP2009193686A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2009266433A (en) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd Positive electrode active substance for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using the same
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (en) * 1995-08-11 1997-02-25 Sony Corp Positive active material and nonaqueous electrolytic secondary battery using the same
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
US6458487B1 (en) 1997-07-25 2002-10-01 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
JP4503824B2 (en) * 1997-07-25 2010-07-14 株式会社東芝 Cathode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
KR100303540B1 (en) * 1998-10-30 2001-12-01 김순택 Cathode active material for lithium secondary battery and its manufacturing method
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
US6686096B1 (en) 2000-01-27 2004-02-03 New Billion Investments Limited Rechargeable solid state chromium-fluorine-lithium electric battery
JP2001338639A (en) * 2000-05-25 2001-12-07 Sony Corp Non-aqueous electrolyte battery
JP2002068745A (en) * 2000-08-28 2002-03-08 Nippon Chem Ind Co Ltd Lithium manganese complex oxide composite body, method of producing it, positive-electrode active substance for lithium secondary battery and lithium secondary battery
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
WO2002061865A3 (en) * 2001-01-31 2002-10-03 Kerr Mcgee Chemical Llc Stabilized spinel battery cathode material and methods
AU2002245277B2 (en) * 2001-01-31 2006-03-09 Tronox Llc Stabilized spinel battery cathode material and methods
US6558844B2 (en) 2001-01-31 2003-05-06 Wilmont F. Howard, Jr. Stabilized spinel battery cathode material and methods
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide with gradient in composition of metal components
US7695649B2 (en) 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2008539536A (en) * 2005-04-28 2008-11-13 比▲亜▼迪股▲分▼有限公司 Battery positive electrode, lithium ion battery employing the battery positive electrode, and method for producing the same
US8026002B2 (en) 2005-04-28 2011-09-27 Byd Company Limited Battery cathode, a lithium ion battery using the same and processes for preparation thereof
JP2009193686A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2009266433A (en) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd Positive electrode active substance for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JP2903469B1 (en) Method for producing anode material for lithium ion battery
WO2018163519A1 (en) Positive electrode active material and battery
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
CN103155240A (en) Positive electrode active material for use in nonaqueous electrolyte secondary cells, manufacturing method thereof, and nonaqueous electrolyte secondary cell using said positive electrode active material
JPH05242891A (en) Non-aqueous battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JP2000195514A (en) Manufacture of nonaqueous solvent secondary battery
JPH08162114A (en) Lithium secondary battery
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP4062169B2 (en) Positive electrode material for lithium secondary battery
KR101531776B1 (en) Positive active material, process for producing same, and lithium secondary battery including same
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JP3503688B2 (en) Lithium secondary battery
JP2004265749A (en) Lithium secondary battery
JPWO2020027158A1 (en) Positive electrode active material for lithium ion secondary batteries, manufacturing method of positive electrode active material for lithium ion secondary batteries, lithium ion secondary batteries
JP6730777B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
JP2020129498A (en) Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2021006129A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2020129499A (en) Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2020123440A (en) Positive electrode active material for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
TWI822958B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery