JP2005302382A - Nonaqueous electrolyte secondary battery pack - Google Patents

Nonaqueous electrolyte secondary battery pack Download PDF

Info

Publication number
JP2005302382A
JP2005302382A JP2004113421A JP2004113421A JP2005302382A JP 2005302382 A JP2005302382 A JP 2005302382A JP 2004113421 A JP2004113421 A JP 2004113421A JP 2004113421 A JP2004113421 A JP 2004113421A JP 2005302382 A JP2005302382 A JP 2005302382A
Authority
JP
Japan
Prior art keywords
battery pack
secondary battery
electrolyte secondary
assembled battery
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004113421A
Other languages
Japanese (ja)
Inventor
Katsuyuki Sakurai
勝之 櫻井
Takashi Kishi
敬 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004113421A priority Critical patent/JP2005302382A/en
Publication of JP2005302382A publication Critical patent/JP2005302382A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery pack for absorbing shock and vibration properties applied to a battery pack from the outside. <P>SOLUTION: The nonaqueous electrolyte secondary battery pack comprises: the battery pack in which a plurality of nonaqueous electrolyte secondary batteries are electrically connected one another; an insulating case for accommodating and closing the battery pack; and a gel agent filled into the insulating case so that the gap of the battery pack and that between the battery pack and the inner surface of the case are buried. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、絶縁ケース内に非水電解液二次電池を収納した非水電解液二次電池パックに関する。   The present invention relates to a non-aqueous electrolyte secondary battery pack in which a non-aqueous electrolyte secondary battery is housed in an insulating case.

近年、携帯電話やVTRなどの電子機器の小型化と需要の増大に伴い、これら電子機器の電源である二次電池に対する高容量化が要求されている。また、自動車からの排ガスによる大気汚染が社会問題となっており、電気自動車用電源として軽量で高性能な二次電池を用いることが期待されている。   In recent years, with the downsizing and increasing demand of electronic devices such as mobile phones and VTRs, it is required to increase the capacity of secondary batteries that are power sources of these electronic devices. In addition, air pollution due to exhaust gas from automobiles has become a social problem, and it is expected to use a lightweight and high-performance secondary battery as a power source for electric vehicles.

特に、リチウムイオン二次電池は電池電圧が高く、高いエネルギー密度が得られるため、電池の小型、軽量化が可能である。従って、今後、ポータブル機器用の電源として使用されることが期待される。   In particular, since a lithium ion secondary battery has a high battery voltage and a high energy density, the battery can be reduced in size and weight. Therefore, it is expected to be used as a power source for portable devices in the future.

また、最近では非水電解液二次電池を電気自動車や電動工具、コードレスクリーナなどの電源として適用することが検討されている。このような用途では、従来、複数の二次電池を直列に接続したり、並列に接続し、さらに直列に接続したりして組電池を構成し、この組電池をプラススチック等の樹脂からなる絶縁ケースに収納した電池パックとして使用されている。   Recently, the application of nonaqueous electrolyte secondary batteries as power sources for electric vehicles, power tools, cordless cleaners, and the like has been studied. In such applications, conventionally, a plurality of secondary batteries are connected in series, connected in parallel, and further connected in series to form an assembled battery, and the assembled battery is made of a resin such as plastic. Used as a battery pack housed in an insulating case.

しかしながら、従来の電池パックは絶縁ケースと組電池との間に隙間が存在するため、電気自動車や電動工具、コードレスクリーナなどの電源として使用した場合に衝撃や振動で組電池を構成する複数の二次電池間の接続が外れて組電池として機能しなくなる虞があった。   However, since the conventional battery pack has a gap between the insulating case and the assembled battery, when the battery pack is used as a power source for an electric vehicle, a power tool, a cordless cleaner, or the like, a plurality of two batteries that constitute the assembled battery by impact or vibration are used. There is a possibility that the connection between the secondary batteries is disconnected and the battery does not function as an assembled battery.

このようなことから、特許文献1には樹脂製容器と、この容器内に収納された複数本のニッケル水素二次電池を互いに接続した組電池と、前記容器内面と前記二次電池の間隙にのみ充填された熱伝導率が空気より大きいシリコーングリースのような伝熱性部材とを備え、二次電池の充放電に伴って発生する熱を迅速に放出することが可能なニッケル水素二次電池モジュールが開示されている。
しかしながら、この二次電池モジュールは伝熱部材が前記容器内面と前記二次電池の間隙にのみ充填されているため、衝撃や振動で組電池を構成する複数の二次電池間の接続が外れる虞があった。
特開平5−36392号公報
For this reason, Patent Document 1 discloses a resin container, an assembled battery in which a plurality of nickel-hydrogen secondary batteries housed in the container are connected to each other, and a gap between the container inner surface and the secondary battery. Ni-MH rechargeable battery module, which has a heat conductivity member such as silicone grease filled only with air and has a heat conductivity larger than that of air, and can quickly release heat generated by charging and discharging of the rechargeable battery Is disclosed.
However, in this secondary battery module, since the heat transfer member is filled only in the gap between the inner surface of the container and the secondary battery, the connection between the plurality of secondary batteries constituting the assembled battery may be disconnected due to impact or vibration. was there.
JP-A-5-36392

本発明は、外部から組電池に加わる衝撃、振動性を吸収することが可能な非水電解液二次電池パックを提供するものである。   The present invention provides a non-aqueous electrolyte secondary battery pack capable of absorbing shock and vibration applied to the assembled battery from the outside.

本発明によると、複数の非水電解液二次電池が互いに電気的に接続された組電池と、
前記組電池を収納、密閉するための絶縁ケースと、
前記絶縁ケース内に組電池の隙間および組電池とケース内面の隙間を埋めるように充填されたゲル剤と
を具備したことを特徴とする非水電解液二次電池パックが提供される。
According to the present invention, a battery pack in which a plurality of nonaqueous electrolyte secondary batteries are electrically connected to each other;
An insulating case for storing and sealing the assembled battery;
Provided is a non-aqueous electrolyte secondary battery pack comprising a gel agent filled in the insulating case so as to fill a gap between the assembled battery and a gap between the assembled battery and the inner surface of the case.

本発明は、耐衝撃性、耐振動性に優れた信頼性の高い非水電解液二次電池パックを提供することができる。   The present invention can provide a highly reliable non-aqueous electrolyte secondary battery pack having excellent impact resistance and vibration resistance.

以下、本発明の実施形態に係る非水電解液二次電池パックの一例を図1および図2を参照として詳細に説明する。   Hereinafter, an example of a non-aqueous electrolyte secondary battery pack according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

絶縁ケース1は、例えばABS樹脂のような合成樹脂からなるベースプレート2と、このベースプレート2に例えば超音波融着され、注入口3を有するABS樹脂のような合成樹脂からなる上端封じ矩形筒状のケース本体4とから構成されている。組電池5は、前記絶縁ケース1の内部のベースプレート2上に立設して収納、密閉されている。この組電池5は、例えば12本の非水電解液二次電池(円筒型リチウムイオン二次電池)6を接続板7で2並列6直列に接続することにより構成されている。前記絶縁ケース1内には、ゲル剤8が前記注入口3から注入され、電池4間の隙間および絶縁ケース1内面と組電池4の間の隙間を埋めるように充填されている。なお、前記注入口3はゲル剤の注入後に図示しない栓体で封止される。
前記ゲル剤としては、例えばシリコーンゲルまたはポリウレタンゲル等が用いられる。このシリコーンゲルとしては、ポリオルガノシロキサン、アルファゲルがある。
The insulating case 1 has a base plate 2 made of a synthetic resin such as ABS resin, and an upper end sealed rectangular cylindrical shape made of a synthetic resin such as an ABS resin that is ultrasonically fused to the base plate 2 and has an injection port 3. The case body 4 is constituted. The assembled battery 5 is stood on the base plate 2 inside the insulating case 1 and stored and sealed. The assembled battery 5 is configured by connecting, for example, 12 non-aqueous electrolyte secondary batteries (cylindrical lithium ion secondary batteries) 6 in parallel 6 in series with a connection plate 7. Gel agent 8 is injected into the insulating case 1 from the injection port 3 and filled so as to fill the gap between the batteries 4 and the gap between the inner surface of the insulating case 1 and the assembled battery 4. The injection port 3 is sealed with a plug (not shown) after the gel agent is injected.
As the gel agent, for example, silicone gel or polyurethane gel is used. Examples of the silicone gel include polyorganosiloxane and alpha gel.

前記ゲル剤は、例えば窒化アルミニウム粉末のような良熱伝導性の絶縁粉末をさらに含有されることを許容する。
前記円筒型リチウムイオン二次電池は、例えば次のような構造を有する。負極端子を兼ねるステンレスからなる有底円筒状の容器内には、底部に配置した絶縁体を介して電極群が収納されている。この電極群は、正極、セパレータおよび負極をこの順序で積層した帯状物を負極が外側に位置するように渦巻き上に捲回した構造になっている。前記容器内には、非水電解液が収納されている。中央部に孔が開口されたPTC素子、このPTC素子上に配置された安全弁およびこの安全弁に配置されたガス抜き孔を有する帽子形状の正極端子は、前記容器の上部開口部に絶縁ガスケットを介してかしめて固定されている。正極リードは、その一端が前記正極に、他端が前記PTC素子にそれぞれ接続されている。負極リードは、一端が前記負極に、他端が前記負極端子である容器に接続されている。
The gel is allowed to further contain an insulating powder having good heat conductivity such as aluminum nitride powder.
The cylindrical lithium ion secondary battery has the following structure, for example. In a bottomed cylindrical container made of stainless steel also serving as a negative electrode terminal, an electrode group is housed via an insulator disposed on the bottom. This electrode group has a structure in which a strip in which a positive electrode, a separator, and a negative electrode are laminated in this order is wound on a spiral so that the negative electrode is located outside. A non-aqueous electrolyte is accommodated in the container. A cap-shaped positive electrode terminal having a PTC element having a hole in the center, a safety valve disposed on the PTC element, and a vent hole disposed in the safety valve is provided through an insulating gasket in the upper opening of the container. It is fixed by caulking. The positive electrode lead has one end connected to the positive electrode and the other end connected to the PTC element. One end of the negative electrode lead is connected to the negative electrode, and the other end is connected to a container having the negative electrode terminal.

なお、PTC素子は二次電池の容器内に配置せずに、組電池外部の絶縁ケース内に配置してもよい。   In addition, you may arrange | position a PTC element in the insulation case outside an assembled battery, without arrange | positioning in the container of a secondary battery.

次に、前記正極、負極、セパレータおよび非水電解液を具体的に説明する。   Next, the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution will be specifically described.

1)正極
この正極は、例えば正極活物質、導電剤および結着剤を適当な溶媒に分散させて得られる正極材ペーストを集電体に片側、もしくは両面に所望する大きさより大きな面積に、連続もしくは所望する長さと未塗布部分との交互に塗布し、乾燥して薄板状にしたものを所望する大きさに裁断することにより作製する。
1) Positive electrode This positive electrode is a continuous positive electrode material paste obtained by dispersing a positive electrode active material, a conductive agent and a binder in an appropriate solvent, for example, on a current collector on one side or both sides in a larger area than desired. Alternatively, it is produced by alternately applying a desired length and an unapplied portion, and cutting a dried sheet into a desired size.

前記正極活物質としては、リチウム複合金属酸化物を使用することができる。具体的にはLiCoO2、LiNiO2、LiMnO2、LiMn24などが用いられる.前記結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−6フッ化プロピレンの共重合体、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体、フッ化ビニリデン−ペンタフルオロプロピレンの共重合体、フッ化ビニリデン−クロロトリフルオロエチレンの共重合体、あるいは他のフッ素系のモノマーとフッ化ビニリデンを共重合体させたものを挙げることができる。かかる他のフッ素系モノマーとフッ化ビニリデンとの共重合体としては、テトラフルオロエチレン−フッ化ビニリデンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル(PFA)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−へキサフルオロプロピレン(FEP)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−エチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−エチレン−フッ化ビニリデンの3元共重合体、フッ化ビニル−フッ化ビニリデンの共重合体を挙げることができる。前記結着剤は、これらを単独で使用しても良い。 A lithium composite metal oxide can be used as the positive electrode active material. Specifically such LiCoO 2, LiNiO 2, LiMnO 2 , LiMn 2 O 4 is used. Examples of the binder include polyvinylidene fluoride, a copolymer of vinylidene fluoride-6-propylene fluoride, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6-propylene fluoride, and vinylidene fluoride-pentafluoropropylene. And a copolymer of vinylidene fluoride-chlorotrifluoroethylene, or a copolymer of other fluorine-based monomer and vinylidene fluoride. Examples of such a copolymer of another fluorine-based monomer and vinylidene fluoride include a copolymer of tetrafluoroethylene-vinylidene fluoride and a terpolymer of tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA) -vinylidene fluoride. Polymer, Tetrafluoroethylene-hexafluoropropylene (FEP) -vinylidene fluoride terpolymer, Tetrafluoroethylene-ethylene-vinylidene fluoride copolymer, Chlorotrifluoroethylene-vinylidene fluoride copolymer And a terpolymer of chlorotrifluoroethylene-ethylene-vinylidene fluoride and a copolymer of vinyl fluoride-vinylidene fluoride. These binders may be used alone.

前記結着剤を分散させるための有機溶媒としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、酢酸エチル等が使用される。   As the organic solvent for dispersing the binder, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide, methyl ethyl ketone, tetrahydrofuran, acetone, ethyl acetate and the like are used.

前記導電剤としては、例えばアセチレンブラック、ケッチェンブラック、グラファイト等を挙げることができる。   Examples of the conductive agent include acetylene black, ketjen black, and graphite.

前記結着剤の配合量は、前記活物質と前記結着剤を合わせて100重量部(前記導電剤を含む場合には導電剤も合わせて100重量部)に対して2重量%〜8重量%の範囲にすることが好ましい。   The amount of the binder is 2% to 8% by weight based on 100 parts by weight of the active material and the binder (100 parts by weight of the conductive agent when the conductive agent is included). % Is preferable.

前記導電剤の配合量は、前記活物質100重量部に対して1重量%〜15重量%の範囲にすることが好ましい。   The blending amount of the conductive agent is preferably in the range of 1% by weight to 15% by weight with respect to 100 parts by weight of the active material.

前記有機溶媒の配合量は、前記活物質と前記結着剤を合わせて100重量部(前記導電剤を含む場合には導電剤も合わせて100重量部)に対して65重量%〜150重量%の範囲にすることが好ましい。   The organic solvent is blended in an amount of 65% to 150% by weight based on 100 parts by weight of the active material and the binder (100 parts by weight of the conductive agent when the conductive agent is included). It is preferable to be in the range.

前記ペーストを調製する際に用いる分散装置としては、ボールミル、ビーズミル、ディゾルバー、サンドグラインダー、ロールミル等を使用できる。   As a dispersion apparatus used when preparing the paste, a ball mill, a bead mill, a dissolver, a sand grinder, a roll mill, or the like can be used.

前記集電体としては、例えば厚さ10〜40μmのアルミニウム箔、ステンレス箔、チタン箔等を挙げることができる。   Examples of the current collector include aluminum foil, stainless steel foil, and titanium foil having a thickness of 10 to 40 μm.

2)負極
この負極は、例えばリチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含むもの、軽金属等からなる。中でもリチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含む負極は、前記二次電池のサイクル寿命などの電池特性が向上するために好ましい。
2) Negative electrode The negative electrode is made of, for example, a carbonaceous material that occludes / releases lithium ions or a chalcogen compound, or a light metal. Among these, a negative electrode containing a carbonaceous material or a chalcogen compound that occludes / releases lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved.

前記リチウムイオンを吸蔵・放出する炭素質物としては、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維を用いると電極容量が高くなるため好ましい。   Examples of the carbonaceous material that occludes / releases lithium ions include coke, carbon fiber, pyrolytic vapor phase carbon material, graphite, resin fired body, mesophase pitch-based carbon fiber, or mesophase spherical carbon fired body. . Among them, it is preferable to use mesophase pitch carbon fiber graphitized at 2500 ° C. or higher because the electrode capacity is increased.

前記リチウムイオンを吸蔵・放出するカルコゲン化合物としては、二硫化チタン(TiS2)、二硫化モリブデン(MoS2)、セレン化ニオブ(NbSe2)などを挙げることができる。このようなカルコゲン化合物を負極に用いると、前記二次電池の電圧は降下するものの前記負極の容量が増加するため、前記二次電池の容量が向上される。更に、前記負極はリチウムイオンの拡散速度が大きいため、前記二次電池の急速充放電性能が向上される。 Examples of the chalcogen compound that absorbs and releases lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbSe 2 ). When such a chalcogen compound is used for the negative electrode, although the voltage of the secondary battery drops, the capacity of the negative electrode increases, so that the capacity of the secondary battery is improved. Furthermore, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.

前記軽金属としては、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム金属、リチウム合金などを挙げることができる。   Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, and lithium alloy.

前記結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−6フッ化プロピレンの共重合体、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体、フッ化ビニリデン−ペンタフルオロプロピレンの共重合体、フッ化ビニリデン−クロロトリフルオロエチレンの共重合体、あるいは他のフッ素系のモノマーとフッ化ビニリデンを共重合体させたものを挙げることができる。かかる他のフッ素系モノマーとフッ化ビニリデンとの共重合体としては、テトラフルオロエチレン−フッ化ビニリデンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル(PFA)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−へキサフルオロプロピレン(FEP)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−エチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−エチレン−フッ化ビニリデンの3元共重合体、フッ化ビニル−フッ化ビニリデンの共重合体、スチレンブタジエン共重合体、ニトリルブタジエン共重合体、アクリル系共重合体、ポリアクリル酸、カルボキシルメチルセルロース、メチルセルロースを挙げることができる。   Examples of the binder include polyvinylidene fluoride, a copolymer of vinylidene fluoride-6-propylene fluoride, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6-propylene fluoride, and vinylidene fluoride-pentafluoropropylene. And a copolymer of vinylidene fluoride-chlorotrifluoroethylene, or a copolymer of other fluorine-based monomer and vinylidene fluoride. Examples of such a copolymer of another fluorine-based monomer and vinylidene fluoride include a copolymer of tetrafluoroethylene-vinylidene fluoride and a terpolymer of tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA) -vinylidene fluoride. Polymer, Tetrafluoroethylene-hexafluoropropylene (FEP) -vinylidene fluoride terpolymer, Tetrafluoroethylene-ethylene-vinylidene fluoride copolymer, Chlorotrifluoroethylene-vinylidene fluoride copolymer , Chlorotrifluoroethylene-ethylene-vinylidene fluoride terpolymer, vinyl fluoride-vinylidene fluoride copolymer, styrene butadiene copolymer, nitrile butadiene copolymer, acrylic copolymer, polyacrylic Acid, carboxymethylcellulose, Mention may be made of Le cellulose.

前記結着剤を分散させるための有機溶媒としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、酢酸エチル、水等が使用される。   As an organic solvent for dispersing the binder, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide, methyl ethyl ketone, tetrahydrofuran, acetone, ethyl acetate, water and the like are used.

前記負極(例えば炭素材からなる負極)は、具体的には前記炭素材、導電剤および結着剤を適当な溶媒に分散させて得られる負極材ペーストを集電体に片側、もしくは両面に所望する大きさより大きな面積に、連続もしくは所望する長さと未塗布部分との交互に塗布し、乾燥して薄板状にしたものを所望する大きさに裁断することにより作製する。   The negative electrode (for example, a negative electrode made of a carbon material) is specifically desired on one side or both sides of a negative electrode material paste obtained by dispersing the carbon material, a conductive agent, and a binder in an appropriate solvent. A continuous or desired length and an unapplied portion are alternately applied to an area larger than the size to be formed, and dried and cut into a desired plate size.

前記負極材料、結着剤の配合割合は、負極材料80〜98重量%、結着剤2〜20重量%の範囲であることが好ましい。特に、前記炭素材は負極6を作製した状態で、片面当たりの塗布量として50〜200g/m2の範囲にすることが好ましい。 The mixing ratio of the negative electrode material and the binder is preferably in the range of 80 to 98% by weight of the negative electrode material and 2 to 20% by weight of the binder. In particular, the carbon material is preferably in the range of 50 to 200 g / m 2 as the coating amount per side in the state in which the negative electrode 6 is produced.

前記集電体としては、例えば銅箔、ニッケル箔等を用いることができるが、電気化学的な安定性および捲回時の柔軟性等を考慮すると、銅箔がもっとも好ましい。このときの箔の厚さとしては、8μm以上20μm以下であることが好ましい。   As the current collector, for example, a copper foil, a nickel foil, or the like can be used, but a copper foil is most preferable in view of electrochemical stability and flexibility during winding. In this case, the thickness of the foil is preferably 8 μm or more and 20 μm or less.

3)セパレータ
このセパレータとしては、例えば多孔質フィルム、もしくは不織布を用いることができる。セパレータは、例えばポリオレフィン及びセルロースから選ばれる少なくとも1種類の材料からなることが好ましい。前記ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンを挙げることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため、好ましい。
3) Separator As this separator, for example, a porous film or a nonwoven fabric can be used. The separator is preferably made of at least one material selected from, for example, polyolefin and cellulose. Examples of the polyolefin include polyethylene and polypropylene. Among these, a porous film made of polyethylene, polypropylene, or both is preferable because it can improve the safety of the secondary battery.

4)非水電解液
この非水電解液は、非水溶媒に電解質を溶解した組成を有する。
4) Nonaqueous electrolyte This nonaqueous electrolyte has a composition in which an electrolyte is dissolved in a nonaqueous solvent.

前記非水溶媒としては、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネート、例えばジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート、1,2−ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテル、テトラヒドロフラン(THF)や2−メチルテトラヒドロフラン(2−MeTHF)などの環状エーテルやクラウンエーテル、γ−ブチロラクトン(γ−BL)などの脂肪酸エステル、アセトニトリル(AN)などの窒素化合物、スルホラン(SL)やジメチルスルホキシド(DMSO)などの硫黄化合物などから選ばれる少なくとも1種を用いることができる。   Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC). , 2-dimethoxyethane (DME), chain ethers such as diethoxyethane (DEE), cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF), crown ethers, γ-butyrolactone (γ-BL) ), Nitrogen compounds such as acetonitrile (AN), sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO), and the like.

中でも、EC、PC、γ−BLから選ばれる少なくとも1種からなるものや、EC、PC、γ−BLから選ばれる少なくとも1種とDMC、MEC、DEC、DME、DEE、THF、2−MeTHF、ANから選ばれる少なくとも1種とからなる混合溶媒を用いることが望ましい。また、負極に前記リチウムイオンを吸蔵・放出する炭素質物を含むものを用いる場合に、前記負極を備えた二次電池のサイクル寿命を向上させる観点から、ECとPCとγ−BL、ECとPCとMEC、ECとPCとDEC、ECとPCとDEE、ECとAN、ECとMEC、PCとDMC、PCとDEC、またはECとDECからなる混合溶媒を用いることが望ましい。 Among these, at least one selected from EC, PC, and γ-BL, at least one selected from EC, PC, and γ-BL and DMC, MEC, DEC, DME, DEE, THF, 2-MeTHF, It is desirable to use a mixed solvent composed of at least one selected from AN. Moreover, when using what contains the carbonaceous material which occludes / releases the said lithium ion for a negative electrode, from a viewpoint of improving the cycle life of the secondary battery provided with the said negative electrode, EC and PC, (gamma) -BL, EC and PC It is desirable to use a mixed solvent consisting of EC and MEC, EC and PC and DEC, EC and PC and DEE, EC and AN, EC and MEC, PC and DMC, PC and DEC, or EC and DEC.

前記電解質としては、例えば過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、四塩化アルミニウムリチウム(LiAlCl4)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]などのリチウム塩を挙げることができる。中でもLiPF6、LiBF4、LiN(CF3SO22を用いると、導電性や安全性が向上されるために好ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and lithium trifluorometasulfonate. Examples thereof include lithium salts such as (LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ]. Of these, LiPF 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 are preferable because conductivity and safety are improved.

前記電解質の前記非水溶媒に対する溶解量は、0.5モル/L〜2.0モル/Lの範囲にすることが好ましい。   The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 2.0 mol / L.

前記非水電解質は、一般的に溶液の形態で用いられるが、固体状、例えばゾル状、ゲル状等、または固体状と溶液状の混合形態であってもよい。   The non-aqueous electrolyte is generally used in the form of a solution, but may be in a solid form, for example, a sol form, a gel form, or a mixed form of a solid form and a solution form.

以上、本実施形態に係る電池パックによれば図1および図2に示すように絶縁ケース1と組電池5の間および組電池の複数の二次電池間にゲル剤8が隙間なく充填されているため、例えば電気自動車や電動工具、コードレスクリーナなどの電源として使用した場合の衝撃、振動により、組電池5を構成する複数の二次電池6を接続する接続板7が外れるのを防止することができる。   As described above, according to the battery pack of the present embodiment, as shown in FIGS. 1 and 2, the gel agent 8 is filled between the insulating case 1 and the assembled battery 5 and between the plurality of secondary batteries of the assembled battery without any gaps. Therefore, for example, it is possible to prevent the connection plate 7 connecting the plurality of secondary batteries 6 constituting the assembled battery 5 from being detached due to shock and vibration when used as a power source for an electric vehicle, a power tool, a cordless cleaner, and the like. Can do.

また、組電池5を構成する複数の二次電池6から漏液したり、破裂、ガス噴出を生じたりした場合、絶縁ケース1と組電池5の間にゲル剤8をバッファーとして封入しているため、絶縁ケース1からの漏液、破裂等を抑制することができる。   Further, when liquid leakage from a plurality of secondary batteries 6 constituting the assembled battery 5, rupture, or gas ejection occurs, a gel agent 8 is sealed as a buffer between the insulating case 1 and the assembled battery 5. Therefore, leakage from the insulating case 1, rupture, etc. can be suppressed.

さらに、ゲル剤中に例えば窒化アルミニウム粉末のような良熱伝導性の絶縁粉末をさらに含させることによって、複数の二次電池の短絡を招くことなく、組電池で発生した熱を外部に放出できる。
すなわち、絶縁ケース内に組電池を収納した構造の電池パックにおいて、前記組電池を充放電させると、組電池が発熱し、さらに合成樹脂などからなる絶縁ケースの断熱作用により組電池の温度が上昇する。その結果、組電池が高温下で充放電がなされることになるため、サイクル寿命が短くなる。
このようなことから、良熱伝導性の絶縁粉末をさらに含させたゲル剤を絶縁ケースと組電池の間および組電池の複数の二次電池間に隙間なく充填することによって、組電池の充放電時に発生した熱をゲル剤に分散された良熱伝導性の絶縁粉末を通して絶縁性ケースに伝え、外部に放出できる。また、ゲル剤に分散される良熱伝導性の粉末は絶縁材料からなるため、組電池の複数の二次電池間に介在されても金属のような導電性粉末を用いた場合のような短絡発生を回避できる。
したがって、良熱伝導性の絶縁粉末をさらに含させたゲル剤を用いることによって、絶縁ケース内部で熱がこもることに伴う組電池のサイクル特性の劣化を抑えることが可能で、かつ短絡発生のない安全な非水電解液二次電池パックを提供できる。
なお、本発明の非水電解液二次電池パックにおいて絶縁ケースのケース本体上部に破裂弁を設けてもよい。
以下、本発明の実施例を詳細に説明する。
Furthermore, the heat generated in the assembled battery can be released to the outside without causing a short circuit of a plurality of secondary batteries by further including a good heat conductive insulating powder such as aluminum nitride powder in the gel agent. .
That is, in a battery pack having a structure in which an assembled battery is housed in an insulating case, when the assembled battery is charged / discharged, the assembled battery generates heat, and the temperature of the assembled battery rises due to the heat insulating action of the insulating case made of synthetic resin or the like. To do. As a result, the assembled battery is charged and discharged at a high temperature, so that the cycle life is shortened.
For this reason, charging the assembled battery by filling the gel agent further containing the insulating powder having good heat conductivity between the insulating case and the assembled battery and between the secondary batteries of the assembled battery without any gaps. Heat generated at the time of discharge can be transmitted to the insulating case through the insulating powder with good thermal conductivity dispersed in the gel, and released to the outside. In addition, since the heat conductive powder dispersed in the gel is made of an insulating material, even if it is interposed between a plurality of secondary batteries of an assembled battery, a short circuit such as when using conductive powder such as metal is used. Occurrence can be avoided.
Therefore, it is possible to suppress the deterioration of the cycle characteristics of the assembled battery due to the heat trapping inside the insulating case by using the gel agent further containing the heat conductive insulating powder, and there is no occurrence of a short circuit. A safe non-aqueous electrolyte secondary battery pack can be provided.
In the nonaqueous electrolyte secondary battery pack of the present invention, a rupture valve may be provided on the upper part of the case body of the insulating case.
Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
前述した図1および図2に示すように絶縁ケース1内に組電池5を収納し、この絶縁ケース1内にシリコーンゲル8を組電池5間およびその内面と組電池5の間の隙間を埋めるように充填して非水電解液二次電池パックを組み立てた。前記組電池5を構成する円筒形非水電解液二次電池(単電池)は、以下のような構造のものを用いた。
<正極>
LiCoO2粉末100重量部と、平均粒径50nmのアセチレンブラック2量部および平均粒径1μmの燐片状黒鉛(人造黒鉛)3重量部とをミキサで混合して得た混合物を、結着剤であるポリフッ化ビニリデン5重量部からなる混合物をN−メチルピロリドンに分散させて正極ペーストを作製した。この正極ペーストを集電体としてのアルミニウム箔の両面に塗布し、乾燥後、圧延して正極を作製した。
(Example 1)
As shown in FIGS. 1 and 2, the assembled battery 5 is housed in the insulating case 1, and the silicone gel 8 is filled in the insulating case 1 between the assembled batteries 5 and between the inner surface and the assembled battery 5. Thus, a non-aqueous electrolyte secondary battery pack was assembled. The cylindrical non-aqueous electrolyte secondary battery (single cell) constituting the assembled battery 5 has the following structure.
<Positive electrode>
A binder obtained by mixing 100 parts by weight of LiCoO 2 powder, 2 parts by weight of acetylene black having an average particle diameter of 50 nm and 3 parts by weight of flake graphite (artificial graphite) having an average particle diameter of 1 μm with a mixer A mixture of 5 parts by weight of polyvinylidene fluoride was dispersed in N-methylpyrrolidone to prepare a positive electrode paste. This positive electrode paste was applied to both surfaces of an aluminum foil as a current collector, dried and rolled to produce a positive electrode.

<負極>
メソフェーズピッチを原料としたメソフェーズピッチ炭素繊維を黒鉛化することによりメソフェーズピッチ系炭素繊維を製造した。つづいて、このメソフェーズピッチ系炭素繊維90重量部に対し、天然黒鉛10重量部、炭素材料粉末100重量部に対し、ポリフッ化ビニリデン7重量部からなる混合物をN−メチルピロリドンに分散させてペースト状にした後、集電体基板である銅箔の両面に塗布し、乾燥後、ロールプレスを行い充填密度1.4g/cm3の負極を作製した。
<Negative electrode>
Mesophase pitch carbon fibers were graphitized by graphitizing mesophase pitch carbon fibers made from mesophase pitch. Subsequently, a mixture of 10 parts by weight of natural graphite and 90 parts by weight of carbon material powder with respect to 90 parts by weight of this mesophase pitch-based carbon fiber is dispersed in N-methylpyrrolidone to form a paste. Then, it was applied to both surfaces of a copper foil as a current collector substrate, dried, and then roll-pressed to produce a negative electrode having a packing density of 1.4 g / cm 3 .

<非水電解液>
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)の混合溶媒(混合体積比1:2)に、六フッ化リン酸リチウム(LiPF6)を1M溶解して非水電解液を調製した。
前記正極、ポリエチレン製多孔質フィルムからなるセパレータ(シャットダウン温度135℃)および前記負極をそれぞれこの順序で積層した後、前記負極が外側に位置するように渦巻き状に捲回して電極群を作製した。この電極群および前記非水電解液をステンレス製の有底円筒状容器内にそれぞれ収納して設計定格容量1600mAhの円筒形リチウムイオン二次電池(18650サイズ)を組み立てた。
<Non-aqueous electrolyte>
1M lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2) to prepare a non-aqueous electrolyte.
The positive electrode, a separator made of a polyethylene porous film (shutdown temperature of 135 ° C.), and the negative electrode were laminated in this order, and then wound in a spiral shape so that the negative electrode was located on the outer side to produce an electrode group. The electrode group and the non-aqueous electrolyte were respectively housed in a stainless steel bottomed cylindrical container to assemble a cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1600 mAh.

(実施例2)
ゲル剤としてポリウレタンゲルを用いた以外、実施例1と同様な非水電解液二次電池パックを組み立てた。
(比較例1)
絶縁ケース内に実施例1と同様な構成の12個の二次電池を接続板で接続した組電池を単に収納して非水電解液二次電池パックを組み立てた。
得られた実施例1〜2および比較例1の電池パックをそれぞれ100個用意し、落下試験および振動試験を行った。
(Example 2)
A non-aqueous electrolyte secondary battery pack similar to Example 1 was assembled except that polyurethane gel was used as the gel agent.
(Comparative Example 1)
A non-aqueous electrolyte secondary battery pack was assembled by simply housing an assembled battery in which twelve secondary batteries having the same configuration as in Example 1 were connected to each other by a connection plate in an insulating case.
100 battery packs of the obtained Examples 1 and 2 and Comparative Example 1 were prepared, and a drop test and a vibration test were performed.

(落下試験)
電池パックを高さ2mから落下させた後、電池パックの電圧、インピーダンス測定した。得られた電圧、インピーダンスが所定の範囲にあるものを良、その範囲から外れるものを不良として100個当りの良品率を求めた。その結果を表1に示す。
(振動試験)
電池パックに3方向から周波数200Hzの振動を与え、その周波数から10Hz/分の速度で500Hzまで上げ、その後10Hz/分の速度で200Hzに下げる振動試験を行った、電池パックの電圧、インピーダンス測定した。得られた電圧、インピーダンスが所定の範囲にあるものを良、その範囲から外れるものを不良として100個当りの良品率を求めた。その結果を表1に示す。

Figure 2005302382
(Drop test)
After dropping the battery pack from a height of 2 m, the voltage and impedance of the battery pack were measured. The good voltage rate per 100 pieces was determined by assuming that the obtained voltage and impedance were within a predetermined range, and that the voltage and impedance outside the range were defective. The results are shown in Table 1.
(Vibration test)
A vibration test was performed on the battery pack at a frequency of 200 Hz from three directions, and the vibration test was performed by increasing the frequency from the frequency to 500 Hz at a rate of 10 Hz / min, and then decreasing to 200 Hz at a rate of 10 Hz / min. . The good voltage rate per 100 pieces was determined by assuming that the obtained voltage and impedance were within a predetermined range, and that the voltage and impedance outside the range were defective. The results are shown in Table 1.
Figure 2005302382

前記表1から明らかなように実施例1〜2の二次電池パックは、比較例1の二次電池パックに比べて優れた耐衝撃性を有することがわかる。   As can be seen from Table 1, the secondary battery packs of Examples 1 and 2 have superior impact resistance as compared to the secondary battery pack of Comparative Example 1.

(実施例3)
ゲル剤として平均粒径3μmの窒化アルミニウム(AlN)粉末が70重量%分散されたシリコーンゲルを用いた以外、実施例1と同様な非水電解液二次電池パックを組み立てた。
得られた実施例3および前記比較例1の電池パック10個について、20℃の環境下で1Cレートにて4.2Vの定電流、定電圧の充電を3時間行った後、1Cで3.0Vまで放電した際の放電容量を測定し、10個平均の基準容量を求めた。その後、同様な条件での充放電を500回繰り返し、500サイクル後の放電容量(10個の平均容量)を測定した。このような平均基準容量および500サイクル後の平均容量から下記式に基づいて平均容量維持率を算出した。
平均容量維持率(%)=(500サイクル後の平均容量/平均基準容量)×100
その結果、比較例1の電池パックでは平均容量維持率が60%であったのに対し、実施例3の電池パックでは平均容量維持率が80%と高く、優れた放熱効果を有することがわかる。
(Example 3)
A non-aqueous electrolyte secondary battery pack similar to that in Example 1 was assembled, except that a silicone gel in which 70% by weight of aluminum nitride (AlN) powder having an average particle diameter of 3 μm was dispersed was used as the gel agent.
The obtained 10 battery packs of Example 3 and Comparative Example 1 were charged at a constant current of 4.2 V and a constant voltage at a 1 C rate for 3 hours under an environment of 20 ° C. The discharge capacity at the time of discharging to 0 V was measured, and the average capacity of 10 pieces was obtained. Thereafter, charge / discharge under similar conditions was repeated 500 times, and the discharge capacity after 500 cycles (average capacity of 10 pieces) was measured. The average capacity retention rate was calculated from the average reference capacity and the average capacity after 500 cycles based on the following formula.
Average capacity retention rate (%) = (Average capacity after 500 cycles / Average reference capacity) × 100
As a result, the average capacity retention rate of the battery pack of Comparative Example 1 was 60%, whereas the average capacity retention rate of the battery pack of Example 3 was as high as 80%, indicating an excellent heat dissipation effect. .

本発明によれば、耐衝撃性、耐振動性に優れ、電気自動車や電動工具、コードレスクリーナなどの電源として有用な信頼性の高い非水電解液二次電池パックを提供することができる。   According to the present invention, it is possible to provide a highly reliable nonaqueous electrolyte secondary battery pack that is excellent in impact resistance and vibration resistance and is useful as a power source for an electric vehicle, a power tool, a cordless cleaner, and the like.

本発明の実施形態に係わる非水電解液二次電池パックを示す斜視図。The perspective view which shows the nonaqueous electrolyte secondary battery pack concerning embodiment of this invention. 図1の非水電解液二次電池パックの分解斜視図。The disassembled perspective view of the nonaqueous electrolyte secondary battery pack of FIG.

符号の説明Explanation of symbols

1…絶縁ケース、2…ベースプレート、4…ケース本体、5…組電池、6…非水電解液二次電池、7…接続板、8…ゲル剤。   DESCRIPTION OF SYMBOLS 1 ... Insulation case, 2 ... Base plate, 4 ... Case main body, 5 ... Assembly battery, 6 ... Nonaqueous electrolyte secondary battery, 7 ... Connection board, 8 ... Gel agent.

Claims (2)

複数の非水電解液二次電池が互いに電気的に接続された組電池と、
前記組電池を収納、密閉するための絶縁ケースと、
前記絶縁ケース内に組電池の隙間および組電池とケース内面の隙間を埋めるように充填されたゲル剤と
を具備したことを特徴とする非水電解液二次電池パック。
An assembled battery in which a plurality of nonaqueous electrolyte secondary batteries are electrically connected to each other;
An insulating case for storing and sealing the assembled battery;
A non-aqueous electrolyte secondary battery pack comprising a gel agent filled in the insulating case so as to fill a gap between the assembled battery and a gap between the assembled battery and the inner surface of the case.
前記ゲル剤は、良熱伝導性の絶縁粉末をさらに含有されることを特徴とする請求項1記載の非水電解液二次電池パック。   The non-aqueous electrolyte secondary battery pack according to claim 1, wherein the gel agent further contains an insulating powder having good heat conductivity.
JP2004113421A 2004-04-07 2004-04-07 Nonaqueous electrolyte secondary battery pack Pending JP2005302382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113421A JP2005302382A (en) 2004-04-07 2004-04-07 Nonaqueous electrolyte secondary battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113421A JP2005302382A (en) 2004-04-07 2004-04-07 Nonaqueous electrolyte secondary battery pack

Publications (1)

Publication Number Publication Date
JP2005302382A true JP2005302382A (en) 2005-10-27

Family

ID=35333633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113421A Pending JP2005302382A (en) 2004-04-07 2004-04-07 Nonaqueous electrolyte secondary battery pack

Country Status (1)

Country Link
JP (1) JP2005302382A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105270A1 (en) * 2007-02-26 2008-09-04 Kabushiki Kaisha Toshiba Fuel cell
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2010504623A (en) * 2006-09-25 2010-02-12 エルジー・ケム・リミテッド Connection member for electrical connection of battery cells
JP2010092841A (en) * 2008-07-30 2010-04-22 Chaz Haba Power cell apparatus with three dimensional interconnect
WO2012164923A1 (en) * 2011-05-30 2012-12-06 パナソニック株式会社 Battery block and method for manufacturing same
JP2014022264A (en) * 2012-07-20 2014-02-03 Chia Yuan Li Vehicle battery with four functions of water proof, fire protection, vibration isolation and explosion protection and manufacturing method thereof
KR101381098B1 (en) * 2011-04-13 2014-04-04 박성찬 A battery which is improved damageability and repairability about low-speed impact for the electric vehicle
EP2851992A4 (en) * 2012-09-04 2015-06-03 Panasonic Ip Man Co Ltd Battery block and manufacturing method therefor
CN105576156A (en) * 2016-02-15 2016-05-11 东莞市云帆电子科技有限公司 Battery filled with sealant
CN113228402A (en) * 2019-06-12 2021-08-06 谷歌有限责任公司 Battery assembly for optimized space utilization
DE102021104939A1 (en) 2021-03-02 2022-09-08 Audi Aktiengesellschaft Method for introducing a heat-conducting compound into a battery module and injection arrangement
DE112021001416T5 (en) 2020-03-05 2022-12-15 Murata Manufacturing Co., Ltd. Battery pack, power tool and electric vehicle
CN117239357A (en) * 2023-11-10 2023-12-15 嘉兴模度新能源有限公司 Flexible electric connecting piece, battery row and battery pack

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504623A (en) * 2006-09-25 2010-02-12 エルジー・ケム・リミテッド Connection member for electrical connection of battery cells
WO2008105270A1 (en) * 2007-02-26 2008-09-04 Kabushiki Kaisha Toshiba Fuel cell
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2010092841A (en) * 2008-07-30 2010-04-22 Chaz Haba Power cell apparatus with three dimensional interconnect
JP4649548B2 (en) * 2008-07-30 2011-03-09 ハーバ チャズ Power supply battery device having three-dimensional interconnection structure
KR101381098B1 (en) * 2011-04-13 2014-04-04 박성찬 A battery which is improved damageability and repairability about low-speed impact for the electric vehicle
JP5221820B1 (en) * 2011-05-30 2013-06-26 パナソニック株式会社 Battery block and manufacturing method thereof
WO2012164923A1 (en) * 2011-05-30 2012-12-06 パナソニック株式会社 Battery block and method for manufacturing same
US9236585B2 (en) 2011-05-30 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Battery block and method for manufacturing same
JP2014022264A (en) * 2012-07-20 2014-02-03 Chia Yuan Li Vehicle battery with four functions of water proof, fire protection, vibration isolation and explosion protection and manufacturing method thereof
EP2851992A4 (en) * 2012-09-04 2015-06-03 Panasonic Ip Man Co Ltd Battery block and manufacturing method therefor
US9257684B2 (en) 2012-09-04 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Battery block and manufacturing method therefor
CN105576156A (en) * 2016-02-15 2016-05-11 东莞市云帆电子科技有限公司 Battery filled with sealant
CN113228402A (en) * 2019-06-12 2021-08-06 谷歌有限责任公司 Battery assembly for optimized space utilization
CN113228402B (en) * 2019-06-12 2024-02-06 谷歌有限责任公司 Battery combination for optimized space utilization
DE112021001416T5 (en) 2020-03-05 2022-12-15 Murata Manufacturing Co., Ltd. Battery pack, power tool and electric vehicle
DE102021104939A1 (en) 2021-03-02 2022-09-08 Audi Aktiengesellschaft Method for introducing a heat-conducting compound into a battery module and injection arrangement
CN117239357A (en) * 2023-11-10 2023-12-15 嘉兴模度新能源有限公司 Flexible electric connecting piece, battery row and battery pack
CN117239357B (en) * 2023-11-10 2024-03-26 嘉兴模度新能源有限公司 Flexible electric connecting piece, battery row and battery pack

Similar Documents

Publication Publication Date Title
US7709142B2 (en) Electrolytic solution containing 4-fluoro-1, 3-dioxolane-2-one solvent
KR101568418B1 (en) Anode and secondary battery
JP4992923B2 (en) Nonaqueous electrolyte secondary battery
JP6139194B2 (en) Nonaqueous electrolyte secondary battery
JP2004207120A (en) Nonaqueous electrolyte secondary battery
JP4968225B2 (en) Non-aqueous electrolyte battery
JP2004047180A (en) Nonaqueous electrolytic solution battery
KR20160091864A (en) Nonaqueous electrolyte secondary battery
JP2005071678A (en) Battery
JP2014078535A (en) Negative electrode and battery
JP2004031165A (en) Nonaqueous electrolyte battery
JP2009206092A (en) Nonaqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP4715848B2 (en) battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
WO2013133361A1 (en) Lithium secondary battery pack, and electronic device, charging system, and charging method using same
JP2001176545A (en) Secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2014035807A (en) Battery pack
JP3714259B2 (en) Nonaqueous electrolyte secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2007157538A (en) Battery
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728