JP2000106210A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP2000106210A
JP2000106210A JP10274821A JP27482198A JP2000106210A JP 2000106210 A JP2000106210 A JP 2000106210A JP 10274821 A JP10274821 A JP 10274821A JP 27482198 A JP27482198 A JP 27482198A JP 2000106210 A JP2000106210 A JP 2000106210A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
organic electrolyte
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10274821A
Other languages
Japanese (ja)
Other versions
JP3921836B2 (en
Inventor
Kenji Nakai
賢治 中井
Yuichi Takatsuka
祐一 高塚
Manabu Ochita
学 落田
Yasushi Uraoka
靖 浦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP27482198A priority Critical patent/JP3921836B2/en
Publication of JP2000106210A publication Critical patent/JP2000106210A/en
Application granted granted Critical
Publication of JP3921836B2 publication Critical patent/JP3921836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent igniting and to enhance safety by housing a positive elec trode, using a lithium nickel composite oxide as an active material and a lithium ion movable organic electrolyte in a sealed container, and including a specified range at weight percent of vinylene carbonate in the organic electrolyte. SOLUTION: An electrode group, prepared by winding strip-shaped positive electrode and negative electrode via a separator 5, is put in a battery can 6, the terminal of a negative electrode current collector 3 is welded to the bottom, and an electrolyte is poured into the battery can 6. A positive tab terminal 8 is welded to a positive electrode current collector 1 and a positive electrode cap 7. The battery can 6 is sealed with the positive electrode cap 7 via an insulating gasket 9. A lithium nickel composite oxide represented by the general formula LiNixCoyOz (0.7<=x<=0.9, 0.1<=y<=0.3, x+y=1, 0.001<=z<=0.02) is used as a positive active material 2. In the electrolyte, as a solute 0.75-2.5 mol/1 LiPF6 is contained, and in addition, 1-20 wt.% vinylene carbonate is contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解液二次電池
の安全性の向上に関するものである。
The present invention relates to improving the safety of an organic electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される有機電解
液二次電池は、高エネルギー密度であるため、VTR一
体型カメラ、ノート型パソコン、携帯電話などのポータ
ブル機器に使用されている。なお、負極に金属リチウム
を用いたリチウム二次電池は、充電時にデンドライト状
のリチウムイオンの負極に析出し、正極と内部短絡を起
こすなどの問題点がある。そこで、リチウムイオンの吸
蔵・放出が可能な炭素材料を負極に用いたリチウムイオ
ン二次電池が普及している。
2. Description of the Related Art Organic electrolyte secondary batteries typified by lithium secondary batteries have a high energy density and are therefore used in portable devices such as VTR-integrated cameras, notebook computers and mobile phones. Note that a lithium secondary battery using metal lithium for the negative electrode has problems such as precipitation of dendritic lithium ions on the negative electrode during charging, causing an internal short circuit with the positive electrode. Therefore, lithium ion secondary batteries using a carbon material capable of occluding and releasing lithium ions for a negative electrode have become widespread.

【0003】最近では、前記したリチウムイオン二次電
池の高容量化が強く要求されている。その要望に応じる
べく、正極活物質材料及び負極活物質材料の高容量化が
急ピッチで進められている。そして、正極活物質の容量
として、従来から使用されていた145〜150mAh/g程度の
コバルト酸リチウム(LiCoO2)に替わり、180〜200mAh/g
程度のニッケル酸リチウム(LiNiO2)の開発が積極的に進
められている。なお、LiNiO2は充放電を繰り返すと結晶
構造が崩壊しやすいため、サイクル寿命が短いという問
題点がある。この問題点を解決するために、結晶構造中
のLiサイトやNiサイトの一部を、1種類以上の他の金属
元素で置換する方法が提案されており、サイクル寿命特
性の向上に効果が得られている。例えば特開平9-17430
号公報、特開平10-27610号公報及び特開平8-185863号公
報では、第1の置換元素としてSr、Mg、Baに代表される
ようなアルカリ土類金属、第2の置換元素としてCoに代
表されるような、Ni以外の遷移金属元素で置換すること
により、充放電サイクル特性が向上することが開示され
ている。
Recently, there has been a strong demand for higher capacity lithium ion secondary batteries. In order to meet the demand, the capacity of the positive electrode active material and the negative electrode active material has been rapidly increased. Then, as the capacity of the positive electrode active material, instead of lithium cobalt oxide of about 145~150mAh / g which has been used conventionally (LiCoO 2), 180~200mAh / g
The development of lithium nickelate (LiNiO 2 ) has been actively pursued. Note that LiNiO 2 has a problem that the cycle life is short because the crystal structure is likely to collapse when charge and discharge are repeated. In order to solve this problem, a method has been proposed in which part of the Li site or Ni site in the crystal structure is replaced with one or more other metal elements, which is effective in improving the cycle life characteristics. Have been. For example, JP-A-9-17430
JP-A-10-27610 and JP-A-8-185863 disclose, as a first substitution element, an alkaline earth metal such as Sr, Mg, and Ba, and Co as a second substitution element. It is disclosed that charge / discharge cycle characteristics are improved by substitution with a transition metal element other than Ni, as typified by Ni.

【0004】一方、放電特性、保存特性及び充放電サイ
クル寿命特性等の向上を目的とし、特開平4-95362号公
報、特開平4-169075号公報、特開平6-84542号公報、特
開平8-96852号公報等では電解液中にビニレンカーボネ
ート(以下、VCと略す)を添加することが開示されて
おり、効果が認められている。
On the other hand, for the purpose of improving the discharge characteristics, storage characteristics, charge / discharge cycle life characteristics, etc., JP-A-4-95362, JP-A-4-69075, JP-A-6-84542, and JP-A-8-84542 JP-96852 discloses the addition of vinylene carbonate (hereinafter abbreviated as VC) to an electrolytic solution, and its effect has been recognized.

【0005】しかしながら、正極にLiNiO2を使用した有
機電解液二次電池は、LiCoO2を使用したものに比べて、
充電状態の電池を火中に投入した場合などの過酷な加熱
試験や、釘刺し試験などにおいて発火しやすく、安全性
の点で劣るという問題点がある。
[0005] However, the organic electrolyte secondary battery using LiNiO 2 for the positive electrode has a larger size than that using LiCoO 2 .
There is a problem that fire is likely to occur in a severe heating test such as when a charged battery is thrown into a fire, a nail penetration test, and the like, and safety is poor.

【0006】[0006]

【発明が解決しようとする課題】本発明はリチウムニッ
ケル複合酸化物を正極用活物質に用いた場合において、
発火しにくく、安全性の高い有機電解液二次電池を提供
するものである。
DISCLOSURE OF THE INVENTION The present invention relates to the use of a lithium nickel composite oxide as a positive electrode active material,
An object of the present invention is to provide a highly safe organic electrolyte secondary battery that does not easily ignite.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために、第一の発明では一般式LiNixCoySrzO2(0.7≦x
≦0.9、0.1≦y≦0.3、x+y≒1、0.001≦z≦0.02)で
示されるリチウムイオンの吸蔵・放出が可能なリチウム
ニッケル複合酸化物を活物質とする正極と、リチウムイ
オンの吸蔵・放出が可能な負極と、リチウムイオンの移
動が可能な有機電解液とが密閉容器内に収納されてお
り、該密閉容器には所定圧力よりも高い内部圧力で作動
する弁機構を有する有機電解液二次電池において、前記
有機電解液にはビニレンカーボネートを1〜20重量%
含有することを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, in the first invention, a general formula LiNi x Co y Sr z O 2 (0.7 ≦ x
≤ 0.9, 0.1 ≤ y ≤ 0.3, x + y ≒ 1, 0.001 ≤ z ≤ 0.02) A positive electrode using a lithium nickel composite oxide capable of occluding and releasing lithium ions as an active material, and occluding and releasing lithium ions And a negative electrode capable of moving lithium ions, and an organic electrolytic solution capable of moving lithium ions are housed in a closed container, and the closed container has an organic electrolytic solution having a valve mechanism that operates at an internal pressure higher than a predetermined pressure. In the secondary battery, the organic electrolyte contains vinylene carbonate in an amount of 1 to 20% by weight.
It is characterized by containing.

【0008】第二の発明では、前記有機電解液の溶質と
して、0.75〜2.5mol/lのLiPF6を含有することを特徴と
する。
The second invention is characterized in that the organic electrolyte contains 0.75-2.5 mol / l of LiPF 6 as a solute.

【0009】第三の発明では、前記正極に燐酸リチウム
を0.5〜5重量%含有することを特徴とする。
A third invention is characterized in that the positive electrode contains 0.5 to 5% by weight of lithium phosphate.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図1は本発明を実施した円筒形リチウム二次電池
の断面図である。 1.リチウムニッケル複合酸化物の調製 以下において、原材料として市販されている高純度試薬
を用いた。水酸化リチウム(LiOH)、水酸化ニッケル(Ni
(OH)2)及び水酸化コバルト(Co(OH)2)を混合する。この
混合物に水酸化ストロンチウム・8水和物(Sr(OH)2・8H2
O)、または水酸化マグネシウム(Mg(OH)2)のいずれかを
混合した後、アルミナ製の皿に充填し、600℃の酸素気
流中で10時間保持して予備焼成をする。そして、室温ま
で冷却した後、自動乳鉢で粉砕し、二次粒子の凝集を解
きほぐした。この粉末を予備焼成に用いた、アルミナ製
の皿に充填し、750℃の酸素気流中に12時間保持して本
焼成をし、室温まで冷却する。そして、自動乳鉢で粉砕
し、篩にかけ、粒径70μm以上の粒子は除去した。前記
した原材料の配合比を変えることで、以下に示す12種類
の組成の異なるリチウムニッケル複合酸化物を得た。な
お、作成したリチウムニッケル複合酸化物の組成比はI
CP分析によって、ほぼ所望の組成比になっていること
を確認した。
Embodiments of the present invention will be described below. FIG. 1 is a sectional view of a cylindrical lithium secondary battery embodying the present invention. 1. Preparation of lithium nickel composite oxide In the following, a commercially available high-purity reagent was used as a raw material. Lithium hydroxide (LiOH), nickel hydroxide (Ni
(OH) 2 ) and cobalt hydroxide (Co (OH) 2 ). Strontium hydroxide octahydrate to the mixture (Sr (OH) 2 · 8H 2
After mixing either O) or magnesium hydroxide (Mg (OH) 2 ), the mixture is filled in an alumina dish, and is pre-baked by keeping it in an oxygen gas stream at 600 ° C. for 10 hours. Then, after cooling to room temperature, the mixture was pulverized in an automatic mortar to disaggregate the secondary particles. This powder is filled in an alumina dish used for preliminary firing, and is main-baked while being kept in an oxygen stream at 750 ° C. for 12 hours, and cooled to room temperature. Then, the mixture was pulverized in an automatic mortar and sieved to remove particles having a particle size of 70 μm or more. By changing the mixing ratio of the above-mentioned raw materials, lithium nickel composite oxides having the following 12 different compositions were obtained. The composition ratio of the prepared lithium nickel composite oxide was I
By CP analysis, it was confirmed that the desired composition ratio was obtained.

【0011】(正極活物質A)LiNi0.65Co0.35Sr0.002O
2 (正極活物質B)LiNi0.7Co0.3Sr0.002O2 (正極活物質C)LiNi0.8Co0.2Sr0.002O2 (正極活物質D)LiNi0.9Co0.1Sr0.002O2 (正極活物質E)LiNi0.95Co0.05Sr0.002O2 (正極活物質F)LiNi0.9Co0.1Sr0.0005O2 (正極活物質G)LiNi0.9Co0.1Sr0.001O2 (正極活物質H)LiNi0.9Co0.1Sr0.005O2 (正極活物質I)LiNi0.9Co0.1Sr0.01O2 (正極活物質J)LiNi0.9Co0.1Sr0.02O2 (正極活物質K)LiNi0.9Co0.1Sr0.03O2 (正極活物質L)LiNi0.9Co0.1Mg0.002O2 2.正極の作製 前記した正極活物質である各種のリチウムニッケル複合
酸化物、導電剤として平均粒径約0.5μmのグラファ
イト、結着剤としてポリフッ化ビニリデン(商品名:K
F#1120、呉羽化学工業(株)製、以下PVdFと
略す)とを混合した後、後述する所定量のLi3PO4を加え
て、溶媒であるN−メチル−2−ピロリドン(以下、N
MPと略す)に分散させてスラリを作製する。このスラ
リを正極集電体1である厚みが20μmのアルミニウム箔
の両面にロールtoロール法転写により塗布し、乾燥し
た後、プレスして一体化する。正極の厚さは144±4μm
とし、正極活物質層2の密度を約3.2g/cm3 とした。そ
の後、幅が55mm、長さが450mmに切断して短冊状の正極
を作製した。以下、正極活物質、黒鉛、燐酸リチウム及
びPVdFの混合物を正極合剤と呼ぶ。今回、以下に示
す7種類の組成の正極合剤を用いた。
(Positive electrode active material A) LiNi 0.65 Co 0.35 Sr 0.002 O
2 (Positive electrode active material B) LiNi 0.7 Co 0.3 Sr 0.002 O 2 (Positive electrode active material C) LiNi 0.8 Co 0.2 Sr 0.002 O 2 (Positive electrode active material D) LiNi 0.9 Co 0.1 Sr 0.002 O 2 (Positive electrode active material E) LiNi 0.95 Co 0.05 Sr 0.002 O 2 (Positive electrode active material F) LiNi 0.9 Co 0.1 Sr 0.0005 O 2 (Positive electrode active material G) LiNi 0.9 Co 0.1 Sr 0.001 O 2 (Positive electrode active material H) LiNi 0.9 Co 0.1 Sr 0.005 O 2 ( Positive active material I) LiNi 0.9 Co 0.1 Sr 0.01 O 2 (Positive active material J) LiNi 0.9 Co 0.1 Sr 0.02 O 2 (Positive active material K) LiNi 0.9 Co 0.1 Sr 0.03 O 2 (Positive active material L) LiNi 0.9 Co 0.1 Mg 0.002 O 2 2. Preparation of Positive Electrode Various lithium nickel composite oxides as the positive electrode active material, graphite having an average particle size of about 0.5 μm as a conductive agent, and polyvinylidene fluoride as a binder (trade name: K
After mixing F # 112 with Kureha Chemical Industry Co., Ltd., hereinafter abbreviated as PVdF), a predetermined amount of Li 3 PO 4 described below is added, and N-methyl-2-pyrrolidone (hereinafter, N
(Abbreviated as MP) to prepare a slurry. This slurry is applied to both sides of a 20 μm thick aluminum foil serving as the positive electrode current collector 1 by a roll-to-roll method transfer, dried, and then pressed to be integrated. The thickness of the positive electrode is 144 ± 4μm
The density of the positive electrode active material layer 2 was set to about 3.2 g / cm 3 . Thereafter, the resultant was cut into a width of 55 mm and a length of 450 mm to produce a strip-shaped positive electrode. Hereinafter, a mixture of the positive electrode active material, graphite, lithium phosphate, and PVdF is referred to as a positive electrode mixture. This time, the following seven types of positive electrode mixtures were used.

【0012】(正極合剤A)正極活物質:黒鉛:燐酸リ
チウム:PVdF=83:10:0:7 (正極合剤B)正極活物質:黒鉛:燐酸リチウム:PV
dF=82.7:10:0.3:7 (正極合剤C)正極活物質:黒鉛:燐酸リチウム:PV
dF=82.5:10:0.5:7 (正極合剤D)正極活物質:黒鉛:燐酸リチウム:PV
dF=82:10:1:7 (正極合剤E)正極活物質:黒鉛:燐酸リチウム:PV
dF=80:10:3:7 (正極合剤F)正極活物質:黒鉛:燐酸リチウム:PV
dF=78:10:5:7 (正極合剤G)正極活物質:黒鉛:燐酸リチウム:PV
dF=77:10:6:7 3.負極の作製 リチウムイオンの吸蔵、放出が可能な平均粒径20μmの
黒鉛粉末と、結着剤としてPVdFとを重量比で90:
10で混合した後、溶媒であるNMPを適量加えて十分
に混練してスラリにする。このスラリを負極集電体3と
して用いる厚みが10μmの銅箔の両面にロールtoロー
ル法転写により塗布、乾燥後、プレスして一体化する。
負極の厚さは190〜200μmであり、負極活物質層の密度
は約1.4g/cm3である。その後、幅が56mm、長さが490mm
に切断して短冊状の負極を作製した。なお、負極活物質
の放電時の容量が280mAh/gとなるように、正極活物質量
及び負極活物質量のバランスを調整した。
(Positive electrode mixture A) Positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7 (Positive electrode mixture B) Positive electrode active material: graphite: lithium phosphate: PV
dF = 82.7: 10: 0.3: 7 (Positive electrode mixture C) Positive electrode active material: graphite: lithium phosphate: PV
dF = 82.5: 10: 0.5: 7 (Positive electrode mixture D) Positive electrode active material: graphite: lithium phosphate: PV
dF = 82: 10: 1: 7 (Positive electrode mixture E) Positive electrode active material: graphite: lithium phosphate: PV
dF = 80: 10: 3: 7 (Positive electrode mixture F) Positive electrode active material: graphite: lithium phosphate: PV
dF = 78: 10: 5: 7 (Positive electrode mixture G) Positive electrode active material: graphite: lithium phosphate: PV
dF = 77: 10: 6: 7 3. Fabrication of Negative Electrode A graphite powder having an average particle diameter of 20 μm capable of inserting and extracting lithium ions and PVdF as a binder in a weight ratio of 90:
After mixing at 10, an appropriate amount of NMP as a solvent is added and kneaded well to form a slurry. This slurry is applied to both surfaces of a 10 μm thick copper foil used as the negative electrode current collector 3 by a roll-to-roll method transfer, dried, and then pressed to be integrated.
The thickness of the negative electrode is 190 to 200 μm, and the density of the negative electrode active material layer is about 1.4 g / cm 3 . After that, width 56mm, length 490mm
To obtain a strip-shaped negative electrode. Note that the balance between the amount of the positive electrode active material and the amount of the negative electrode active material was adjusted such that the capacity of the negative electrode active material during discharge was 280 mAh / g.

【0013】4.電解液の調整 エチレンカーボネート(EC)とジメチルカーボネート
(DMC)とジエチルカーボネート(DEC)を30:
50:20の体積比で混合した後、溶質として1 Mol/l
(以下、濃度の単位であるmol/lを M と略す)のLiPF6
を溶解させて電解液とする。この電解液に、後述する量
のビニレンカーボネート(VC)を添加する。今回、以
下の13種類の組成の異なる電解液を用いた。
4. Preparation of electrolyte solution Ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed with 30:
After mixing at a volume ratio of 50:20, 1 Mol / l as solute
(Hereinafter, the mol / l which is a unit of concentration abbreviated as M) LiPF 6
Is dissolved to form an electrolytic solution. To this electrolyte solution, vinylene carbonate (VC) in an amount described below is added. This time, the following 13 kinds of electrolyte solutions having different compositions were used.

【0014】(電解液A)EC:DMC=1:1、VC
添加なし、1M LiPF6 (電解液B)EC:DMC=1:1、VC:0.5重量
%、1M LiPF6 (電解液C)EC:DMC=1:1、VC:1重量%、
1M LiPF6 (電解液D)EC:DMC=1:1、VC:5重量%、
1M LiPF6 (電解液E)EC:DMC=1:1、VC:10重量
%、1M LiPF6 (電解液F)EC:DMC=1:1、VC:20重量
%、1M LiPF6 (電解液G)EC:DMC=1:1、VC:25重量
%、1M LiPF6 (電解液H)EC:DMC=1:1、VC:5重量%、
0.5M LiPF (電解液I)EC:DMC=1:1、VC:5重量%、
0.75M LiPF (電解液J)EC:DMC=1:1、VC:5重量%、
1.5M LiPF6 (電解液K)EC:DMC=1:1、VC:5重量%、
2M LiPF6 (電解液L)EC:DMC=1:1、VC:5重量%、
2.5M LiPF6 (電解液M)EC:DMC=1:1、VC:5重量%、
1M LiBF4 5.電池の組立て 作製した短冊状の正極と負極とを、厚さが25μm、幅が5
8mmのポリエチレン多孔膜からなるセパレータ5を介し
て渦巻き状に巻いて電極群を作製する。正極と負極の厚
さの和は345±5μmとした。正極と負極の厚さの和が350
μmを超えると、捲回体の径が大きくなり負極缶6に挿
入できない。一方、正極と負極の厚さの和が340μm未満
では、捲回体の直径が負極缶6の内径よりも小さくな
り、電池としての容量が十分得られないためである。な
お、後述する各種の電池を作製するにあたり、正極活物
質となるリチウムニッケル複合酸化物と、負極活物質と
なる黒鉛の充電容量を実験セルにて予め測定した。そし
て、負極活物質1gあたりの充電容量と正極活物質1g
あたりの充電容量の比率が1.1となるように正極活物
質量と負極活物質量を調整した。
(Electrolyte A) EC: DMC = 1: 1, VC
No addition, 1M LiPF 6 (electrolyte B) EC: DMC = 1: 1, VC: 0.5% by weight, 1M LiPF 6 (electrolyte C) EC: DMC = 1: 1, VC: 1% by weight,
1M LiPF 6 (Electrolyte D) EC: DMC = 1: 1, VC: 5% by weight,
1M LiPF 6 (Electrolyte E) EC: DMC = 1: 1, VC: 10% by weight, 1M LiPF 6 (Electrolyte F) EC: DMC = 1: 1, VC: 20% by weight, 1M LiPF 6 (Electrolyte) G) EC: DMC = 1: 1, VC: 25% by weight, 1M LiPF 6 (electrolyte H) EC: DMC = 1: 1, VC: 5% by weight,
0.5M LiPF 6 (Electrolyte I) EC: DMC = 1: 1, VC: 5% by weight,
0.75M LiPF 6 (Electrolyte J) EC: DMC = 1: 1, VC: 5% by weight,
1.5M LiPF 6 (electrolyte K) EC: DMC = 1: 1, VC: 5% by weight,
2M LiPF 6 (Electrolyte L) EC: DMC = 1: 1, VC: 5% by weight,
2.5M LiPF 6 (Electrolyte M) EC: DMC = 1: 1, VC: 5% by weight,
1M LiBF 4 5. Assembling the battery The strip-shaped positive electrode and the negative electrode thus prepared were put together with a thickness of 25 μm and a width of 5 μm.
An electrode group is formed by spirally winding the film through a separator 5 made of an 8 mm polyethylene porous film. The sum of the thicknesses of the positive electrode and the negative electrode was 345 ± 5 μm. The sum of the thicknesses of the positive and negative electrodes is 350
If it exceeds μm, the diameter of the wound body becomes too large to insert into the negative electrode can 6. On the other hand, if the sum of the thicknesses of the positive electrode and the negative electrode is less than 340 μm, the diameter of the wound body becomes smaller than the inner diameter of the negative electrode can 6, and a sufficient capacity as a battery cannot be obtained. In producing various batteries described below, the charge capacities of a lithium nickel composite oxide serving as a positive electrode active material and graphite serving as a negative electrode active material were measured in advance using an experimental cell. Then, the charge capacity per 1 g of the negative electrode active material and 1 g of the positive electrode active material
The amount of the positive electrode active material and the amount of the negative electrode active material were adjusted such that the charge capacity ratio per unit became 1.1.

【0015】この電極群を電池缶6に挿入し、負極集電
体3の端子を電池缶6の底部に溶接した。電池缶6内
に、前記した電解液のいずれかを5ml注液した。正極タ
ブ端子8の一方を正極集電体1に溶接した後、他の一方
を正極キャップ7に溶接する。正極キャップ7を絶縁性
のガスケット9を介して電池缶6の上部に配置し、この
部分をかしめて密閉する。正極キャップ7内には、電池
の内部圧力の上昇に応じて作動する電流遮断機構(圧力
スイッチ)と、この圧力よりも高い圧力で開放作動する
安全弁が組み込まれている。本実施例では作動圧が9kgf
/cm2の電流遮断機構と、作動圧が20kgf/cm2の安全弁の
2種類を用いた。
The electrode group was inserted into the battery can 6, and the terminal of the negative electrode current collector 3 was welded to the bottom of the battery can 6. 5 ml of any of the above-mentioned electrolytes was injected into the battery can 6. After welding one of the positive electrode tab terminals 8 to the positive electrode current collector 1, the other is welded to the positive electrode cap 7. The positive electrode cap 7 is arranged on the upper part of the battery can 6 via the insulating gasket 9, and this portion is caulked and sealed. In the positive electrode cap 7, a current cutoff mechanism (pressure switch) that operates according to an increase in the internal pressure of the battery and a safety valve that opens and operates at a pressure higher than this pressure are incorporated. In this embodiment, the operating pressure is 9 kgf
/ cm and 2 of the current interrupting mechanism, operating pressure using two kinds of safety valve 20 kgf / cm 2.

【0016】6.電池の試験 作製した有機電解液二次電池は、周囲温度25℃、4.2Vの
定電圧(ただし、制限電流320mA)で8時間充電した後、
1Aの定電流で終止電圧2.5Vまで放電して初期の放電容量
を確認した。充放電サイクル寿命特性試験は、放電と充
電の間に休止時間10分間を設け、前記した条件で行っ
た。
6. Battery test The fabricated organic electrolyte secondary battery was charged at an ambient temperature of 25 ° C and a constant voltage of 4.2V (limited current of 320mA) for 8 hours.
Discharge was performed at a constant current of 1 A to a final voltage of 2.5 V, and the initial discharge capacity was confirmed. The charge / discharge cycle life characteristic test was performed under the above-described conditions with a pause time of 10 minutes between discharge and charge.

【0017】この電池を前記した条件で再び充電した
後、UL1642規格に示されているプロジェクタイル
テストに準拠し、バーナによる加熱試験で合否を判定し
た。すなわち、電池をバーナで加熱し、電池が発火して
も、アルミニウム製の網から電池の部品等の構成物が飛
び出さない状態を合格とした。安全性に劣る電池を、バ
ーナで加熱試験を実施した場合には、電池が破裂して正
極キャップ7や負極缶が網を突き破る可能性が高い。そ
こで今回は、前記した条件で合否を判定するだけでな
く、試験体である電池から1m離れた場所での発火時にお
ける音量を測定した。すなわち、発火時の音量が大きい
電池ほど網を突き破る可能性が高いと考えて、安全性に
劣る電池と判断した。
After recharging the battery under the above-mentioned conditions, a pass / fail judgment was made by a heating test using a burner in accordance with the projectile test shown in the UL1642 standard. That is, the battery was heated with a burner, and even if the battery ignited, a state in which components such as battery components did not protrude from the aluminum net was regarded as acceptable. When a battery with poor safety is subjected to a heating test using a burner, there is a high possibility that the battery will burst and the positive electrode cap 7 and the negative electrode can will break through the net. Therefore, in this case, not only the pass / fail was determined under the above-mentioned conditions, but also the sound volume at the time of ignition at a place 1 m away from the battery as the test body was measured. That is, it is considered that a battery having a higher volume at the time of ignition has a higher possibility of breaking through the net, and thus it is determined that the battery is inferior in safety.

【0018】[0018]

【実施例】(実施例1〜7、比較例1〜5)リチウムニ
ッケル複合酸化物として前記した(正極活物質A〜L)
を用い、正極合剤配合比A(正極活物質:黒鉛:燐酸リ
チウム:PVdF=83:10:0:7、すなわち、正極活物
質層に燐酸リチウムを含まないもの)の正極を作製し
た。また、電解液の組成として、電解液D(EC:DM
C=1:1、VC:5重量%、1M LiPF6)を用いた。
そして、表1に示す仕様の電池を作成し、初期の放電容
量と100サイクル目の容量保持率(初期の放電容量に
対する、100サイクル目の放電容量の百分率)の測定
及びバーナ加熱試験をした。初期の放電容量は、(実施
例3)の電池の放電容量を100とした場合の比較で示
した。
EXAMPLES (Examples 1 to 7 and Comparative Examples 1 to 5) The above-mentioned lithium-nickel composite oxides (positive electrode active materials A to L) were used.
To prepare a positive electrode having a positive electrode mixture mixture ratio A (positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7, that is, a positive electrode active material layer containing no lithium phosphate). As the composition of the electrolytic solution, electrolytic solution D (EC: DM
C = 1: 1, VC: 5% by weight, 1M LiPF 6 ).
Then, batteries having the specifications shown in Table 1 were prepared, and the initial discharge capacity and the capacity retention at the 100th cycle (percentage of the discharge capacity at the 100th cycle with respect to the initial discharge capacity) were measured and a burner heating test was performed. The initial discharge capacity was shown by comparison when the discharge capacity of the battery of Example 3 was set to 100.

【0019】(実施例1〜7)の電池においては、すべ
てバーナ加熱試験に合格し、初期の放電容量と100サ
イクル目の容量保持率が高い。(比較例1)の電池は、
バーナ加熱試験に合格しているものの、実施例3の電池
に対して初期の放電容量が20%低い。したがって、正
極活物質のNiの組成比が0.7未満となると初期の放電
容量が低下することを示している。(比較例2、3)の
電池では、バーナ加熱試験に不合格(×印)であり、1
00サイクル目の容量保持率が低い。(比較例4)の電
池では、バーナ加熱試験に合格しているものの、初期の
放電容量が18%低い。これは、Srの置換量が多いた
め、放電反応を阻害したためと推察している。(比較例
5)の電池では、Sr以外のMg等のアルカリ土類金属で置
換すると、バーナ加熱試験に合格しないことを示してい
る。以上の結果から、一般式LiNixCoySrzO2(0.7≦x≦
0.9、0.1≦y≦0.3、x+y≒1、0.001≦z≦0.02)で示
されるリチウムニッケル複合酸化物を正極活物質に用い
ると安全性の高い電池が得られる。
The batteries of Examples 1 to 7 all passed the burner heating test, and had a high initial discharge capacity and a high capacity retention at the 100th cycle. The battery of (Comparative Example 1)
Despite passing the burner heating test, the initial discharge capacity is 20% lower than the battery of Example 3. Therefore, it shows that when the composition ratio of Ni of the positive electrode active material is less than 0.7, the initial discharge capacity decreases. The batteries of (Comparative Examples 2 and 3) failed the burner heating test (x),
The capacity retention at the 00th cycle is low. Although the battery of Comparative Example 4 passed the burner heating test, the initial discharge capacity was 18% lower. This is presumed to be due to the large amount of Sr substitution, which hindered the discharge reaction. In the battery of (Comparative Example 5), it is shown that the burner heating test does not pass if the alkaline earth metal such as Mg other than Sr is substituted. From the above results, the general formula LiNi x Co y Sr z O 2 (0.7 ≦ x ≦
When a lithium nickel composite oxide represented by 0.9, 0.1 ≦ y ≦ 0.3, x + y ≒ 1, 0.001 ≦ z ≦ 0.02) is used as a positive electrode active material, a highly safe battery can be obtained.

【0020】[0020]

【表1】 [Table 1]

【0021】○:合格、×:不合格 (実施例3、8〜10、比較例6〜8)正極活物質とし
て用いる、リチウムニッケル複合酸化物として正極活物
質D(LiNi0.9Co0.1Sr0.002O2)を用いた。正極の活物質
層として、正極合剤配合比A(正極活物質:黒鉛:燐酸
リチウム:PVdF=83:10:0:7、すなわち、正極活
物質層に燐酸リチウムを含まないもの)を用いた。そし
て電解液中のLiPF6量を1Mとし、表2に示すようにV
C量の異なる電池を作成した。その他の試験条件等は、
前述したものである。
:: passed, ×: failed (Examples 3, 8 to 10, Comparative Examples 6 to 8) Positive electrode active material D (LiNi 0.9 Co 0.1 Sr 0.002 O) as a lithium nickel composite oxide used as a positive electrode active material 2 ) was used. As the active material layer of the positive electrode, a positive electrode mixture mixture ratio A (positive electrode active material: graphite: lithium phosphate: PVdF = 83: 10: 0: 7, that is, a positive electrode active material layer containing no lithium phosphate) was used. . Then, the amount of LiPF 6 in the electrolytic solution was set to 1M, and as shown in Table 2, V
Batteries having different C contents were prepared. Other test conditions
It is as described above.

【0022】(実施例8、3、9、10)の電池は、バ
ーナ加熱試験に合格し、初期の放電容量、100サイク
ル目の容量保持率が高い。(比較例6、7)の電池は、
バーナ加熱試験において不合格である。この理由は、電
解液中にVC添加がないことや、また添加量が少なすぎ
るためと考えられる。(比較例8)の電池は、バーナ加
熱試験に合格しているものの、初期の放電容量が低い。
この理由は、VCの過剰添加によって電解液の導電率が
低下したためと考えられる。
The batteries of Examples 8, 3, 9, and 10 passed the burner heating test and had high initial discharge capacity and high capacity retention at the 100th cycle. The batteries of (Comparative Examples 6 and 7)
Failed in burner heating test. It is considered that the reason for this is that there is no addition of VC in the electrolyte and that the amount of addition is too small. The battery of Comparative Example 8 passed the burner heating test, but had a low initial discharge capacity.
It is considered that the reason for this is that the conductivity of the electrolytic solution was lowered by excessive addition of VC.

【0023】[0023]

【表2】 [Table 2]

【0024】○:合格、×:不合格 (実施例3、11〜16)正極活物質として用いる、リ
チウムニッケル複合酸化物として正極活物質D(LiNi0.9
Co0.1Sr0.002O2)を用いた。正極活物質層を形成する正
極合剤配合比A(正極活物質:黒鉛:燐酸リチウム:P
VdF=83:10:0:7、すなわち、正極活物質層に燐酸
リチウムを含まないもの)を用いた。そして表3に示す
ように、電解液中のVC量を5重量%とし、LiPF6量の
異なる電解液を用いた。その他の試験条件等は、前述し
たものである。
:: passed, ×: failed (Examples 3, 11 to 16) The positive electrode active material D (LiNi 0.9
Co 0.1 Sr 0.002 O 2 ) was used. Positive electrode mixture forming ratio A for forming the positive electrode active material layer (positive electrode active material: graphite: lithium phosphate: P
VdF = 83: 10: 0: 7, that is, a material containing no lithium phosphate in the positive electrode active material layer). Then, as shown in Table 3, the amount of VC in the electrolytic solution was set to 5% by weight, and electrolytic solutions having different LiPF 6 amounts were used. Other test conditions are as described above.

【0025】表3では省略したが、これらの電池はすべ
てバーナ加熱試験に合格した。 (実施例12、3、13、14、15)、すなわち電解
液の溶質がLiPF6を用い、かつLiPF6の濃度が0.75〜
2.5Mの範囲のものが発火時の音量が小さく、初期放
電容量や容量保持率が高い。電解液の溶質にLiBF4を用
いた実施例16の電池では、同濃度のLiPF6を用いた実
施例3に比べて、初期放電容量が若干低いこと、100サイク
ル目の容量保持率の低下が大きく好ましくない。
Although omitted in Table 3, all of these batteries passed the burner heating test. (Example 12,3,13,14,15), i.e. the solute of the electrolyte solution with LiPF 6, and the concentration of LiPF 6 0.75 to
In the range of 2.5M, the volume at the time of ignition is low, and the initial discharge capacity and the capacity retention are high. In the battery of Example 16 using LiBF 4 as the solute of the electrolyte, the initial discharge capacity was slightly lower and the capacity retention at the 100th cycle was lower than that of Example 3 using LiPF 6 of the same concentration. Large and undesirable.

【0026】[0026]

【表3】 [Table 3]

【0027】(実施例3、17〜22)正極活物質とし
て用いる、リチウムニッケル複合酸化物として正極活物
質D(LiNi0.9Co0.1Sr0.002O2)を用い、正極合剤に添加
する燐酸リチウムの配合比を表4に示す変えた、7種類
の仕様の電池を作成した。なお、電解液D(EC:DM
C=1:1、VC:5重量%、1M LiPF6)を用いた。そ
の他の試験条件等は、前述したものである。
(Example 3, 17 to 22) A positive electrode active material D (LiNi 0.9 Co 0.1 Sr 0.002 O 2 ) was used as a lithium nickel composite oxide used as a positive electrode active material. Batteries of seven kinds of specifications having different mixing ratios as shown in Table 4 were prepared. The electrolyte D (EC: DM
C = 1: 1, VC: 5% by weight, 1M LiPF 6 ) was used. Other test conditions are as described above.

【0028】(実施例3、17〜22)のすべての電池
でバーナ加熱試験に合格した。なお、(実施例18〜2
1)の電池、すなわち正極合剤中の燐酸リチウムの量が
0.5〜5重量%の電池では、初期の放電容量の低下も
少なく、発火時の音量も小さく好ましい。一方、燐酸リ
チウムの量が6重量%の(実施例22)では、初期の放
電容量と100サイクル目の容量保持率の低下が認められた。
All the batteries of (Examples 3, 17 to 22) passed the burner heating test. (Examples 18 to 2)
In the battery of 1), that is, a battery in which the amount of lithium phosphate in the positive electrode mixture is 0.5 to 5% by weight, the decrease in the initial discharge capacity is small and the volume at the time of ignition is small, which is preferable. On the other hand, when the amount of lithium phosphate was 6% by weight (Example 22), reductions in the initial discharge capacity and the capacity retention at the 100th cycle were observed.

【0029】[0029]

【表4】 [Table 4]

【0030】本発明において、正極合剤中の導電剤とし
てグラファイト、および負極活物質の炭素材として黒鉛
を用いた実施例を示したが、これらに材料に限定される
ものではない。
In the present invention, examples have been shown in which graphite is used as the conductive agent in the positive electrode mixture and graphite is used as the carbon material of the negative electrode active material, but the materials are not limited to these.

【0031】[0031]

【発明の効果】本発明による電池では、初期の放電容量
や100サイクル目の容量保持率が高く、火中投下など
の加熱時において、安全性の高い有機電解液二次電池を
提供できる点で優れている。
The battery according to the present invention has a high initial discharge capacity and a high capacity retention rate at the 100th cycle, and can provide a highly safe organic electrolyte secondary battery at the time of heating such as dropping into a fire. Are better.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した円筒形有機電解液二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a cylindrical organic electrolyte secondary battery embodying the present invention.

【符号の説明】[Explanation of symbols]

1:正極集電体、 2:正極活物質、 3:負極集電体、
4:負極活物質、5:セパレータ、 6:電池缶、
7:正極キャップ、 8:正極タブ端子、9:ガスケッ
ト。
1: positive electrode current collector, 2: positive electrode active material, 3: negative electrode current collector,
4: negative electrode active material, 5: separator, 6: battery can,
7: positive electrode cap, 8: positive electrode tab terminal, 9: gasket.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦岡 靖 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H012 AA01 BB02 5H029 AJ05 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 BJ27 DJ02 DJ08 EJ03 HJ01 HJ02 HJ15  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Yasushi Uraoka 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H012 AA01 BB02 5H029 AJ05 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 BJ27 DJ02 DJ08 EJ03 HJ01 HJ02 HJ15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式LiNixCoySrzO2(0.7≦x≦0.9、0.1
≦y≦0.3、x+y≒1、0.001≦z≦0.02)で示されるリ
チウムイオンの吸蔵・放出が可能なリチウムニッケル複
合酸化物を活物質とする正極と、リチウムイオンの吸蔵
・放出が可能な負極と、リチウムイオンの移動が可能な
有機電解液が密閉容器内に収納されており、該密閉容器
には所定圧力よりも高い内部圧力で作動する弁機構を有
する有機電解液二次電池において、前記有機電解液には
ビニレンカーボネートを1〜20重量%含有することを
特徴とする有機電解液二次電池。
(1) The general formula LiNi x Co y Sr z O 2 (0.7 ≦ x ≦ 0.9, 0.1
≤ y ≤ 0.3, x + y ≒ 1, 0.001 ≤ z ≤ 0.02) A positive electrode using a lithium nickel composite oxide capable of occluding and releasing lithium ions as an active material, and a negative electrode capable of occluding and releasing lithium ions An organic electrolyte solution capable of moving lithium ions is contained in a sealed container, and the sealed container has an organic electrolyte secondary battery having a valve mechanism that operates at an internal pressure higher than a predetermined pressure. An organic electrolyte secondary battery comprising 1 to 20% by weight of vinylene carbonate in the organic electrolyte.
【請求項2】前記有機電解液の溶質として、0.75〜2.5m
ol/lのLiPF6を含有することを特徴とする請求項1記載
の有機電解液二次電池。
2. The method according to claim 1, wherein the solute of the organic electrolyte is 0.75 to 2.5 m.
The organic electrolyte secondary battery according to claim 1, characterized in that it contains LiPF 6 in ol / l.
【請求項3】前記正極に燐酸リチウムを0.5〜5重量
%含有することを特徴とする請求項1又は2記載の有機
電解液二次電池。
3. The organic electrolyte secondary battery according to claim 1, wherein the positive electrode contains 0.5 to 5% by weight of lithium phosphate.
JP27482198A 1998-09-29 1998-09-29 Organic electrolyte secondary battery Expired - Fee Related JP3921836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27482198A JP3921836B2 (en) 1998-09-29 1998-09-29 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27482198A JP3921836B2 (en) 1998-09-29 1998-09-29 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000106210A true JP2000106210A (en) 2000-04-11
JP3921836B2 JP3921836B2 (en) 2007-05-30

Family

ID=17547048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27482198A Expired - Fee Related JP3921836B2 (en) 1998-09-29 1998-09-29 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3921836B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045193A1 (en) * 1999-12-15 2001-06-21 Danionics A/S Non-aqueous electrochemical cell
EP1160905A2 (en) * 2000-05-26 2001-12-05 Sony Corporation Nonaqueous electrolyte secondary battery
EP1280220A1 (en) * 2000-04-17 2003-01-29 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
WO2009107786A1 (en) * 2008-02-29 2009-09-03 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2019079745A (en) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 Lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045193A1 (en) * 1999-12-15 2001-06-21 Danionics A/S Non-aqueous electrochemical cell
EP1280220A1 (en) * 2000-04-17 2003-01-29 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
EP1280220A4 (en) * 2000-04-17 2006-10-25 Ube Industries Non-aqueous electrolyte and lithium secondary battery
EP1160905A2 (en) * 2000-05-26 2001-12-05 Sony Corporation Nonaqueous electrolyte secondary battery
EP1160905A3 (en) * 2000-05-26 2003-06-04 Sony Corporation Nonaqueous electrolyte secondary battery
US7014954B2 (en) 2000-05-26 2006-03-21 Sony Corporation Nonaqueous electrolyte secondary battery including vinylene carbonate and an antioxidant in the electrolyte
WO2009107786A1 (en) * 2008-02-29 2009-09-03 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8916298B2 (en) 2008-02-29 2014-12-23 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US9083058B2 (en) 2008-02-29 2015-07-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
CN105762402A (en) * 2008-02-29 2016-07-13 三菱化学株式会社 Nonaqueous Electrolytic Solution And Nonaqueous-electrolyte Battery
JP2019079745A (en) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP3921836B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
KR20060094477A (en) Non-aqueous electrolyte secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP2000012030A (en) Nonaqueous electrolyte secondary battery
JPH1092430A (en) Lithium secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH11204094A (en) Non-aqueous electrolytic battery
JP2002289159A (en) Nonaqueous electrolyte secondary battery pack
JP2001023685A (en) Electrolyte and secondary battery using it
JP3921836B2 (en) Organic electrolyte secondary battery
JPH03291862A (en) Lithium secondary cell
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH11214042A (en) Nonaqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3402233B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees