JP3447187B2 - Non-aqueous electrolyte battery and method for manufacturing the same - Google Patents

Non-aqueous electrolyte battery and method for manufacturing the same

Info

Publication number
JP3447187B2
JP3447187B2 JP32012396A JP32012396A JP3447187B2 JP 3447187 B2 JP3447187 B2 JP 3447187B2 JP 32012396 A JP32012396 A JP 32012396A JP 32012396 A JP32012396 A JP 32012396A JP 3447187 B2 JP3447187 B2 JP 3447187B2
Authority
JP
Japan
Prior art keywords
lithium
active material
negative electrode
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32012396A
Other languages
Japanese (ja)
Other versions
JPH10162808A (en
Inventor
俊二 渡邊
信一 高杉
次夫 酒井
謙介 田原
明史 坂田
英晴 小野寺
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP32012396A priority Critical patent/JP3447187B2/en
Priority to US08/978,825 priority patent/US6083644A/en
Priority to DE69716013T priority patent/DE69716013T2/en
Priority to EP97309614A priority patent/EP0845828B1/en
Priority to CN97120801A priority patent/CN1130787C/en
Publication of JPH10162808A publication Critical patent/JPH10162808A/en
Priority to HK98111709A priority patent/HK1010609A1/en
Application granted granted Critical
Publication of JP3447187B2 publication Critical patent/JP3447187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵放出可能な物質を正、負極活物質とし、リチウムイ
オン導電性の非水電解質を用いる非水電解質二次電池に
関するものであり、特に、1.5V前後の電圧で、高エ
ネルギー密度且つ充放電特性が優れ、サイクル寿命が長
く、信頼性の高い新規な二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery that uses a lithium ion conductive non-aqueous electrolyte as a positive and negative electrode active material that can store and release lithium ions, and more particularly, The present invention relates to a novel secondary battery with a voltage of around 1.5 V, high energy density, excellent charge / discharge characteristics, a long cycle life, and high reliability.

【0002】[0002]

【従来の技術】近年、携帯型の電子機器、通信機器等の
著しい発展に伴い、電源としての電池に対し大電流出力
を要求する機器が多種多様に出現し、経済性と機器の小
型軽量化の観点から、高エネルギー密度の二次電池が強
く要望されている。また、機器の低電圧化に伴い、1.
5V前後の高エネルギー密度を有する非水電解質二電池
の研究開発も行われ、一部実用化もされている。従来1.
5V前後の二次電池としては、ニッケル−カドミウム電
池やニッケル−水素電池が用いられているが、容量が小
さく小型化困難である。また、最近では、チタン酸化物
を用いた1.5V電池もでてきている。
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, etc., a wide variety of devices requiring a large current output from a battery as a power source have appeared, which is economical and reduces the size and weight of the device. From the viewpoint of the above, there is a strong demand for secondary batteries with high energy density. In addition, with the decrease in the voltage of equipment, 1.
A non-aqueous electrolyte secondary battery having a high energy density of about 5 V has also been researched and developed, and partially put into practical use. Conventional 1.
A nickel-cadmium battery or a nickel-hydrogen battery is used as a secondary battery of about 5 V, but its capacity is small and it is difficult to miniaturize it. Recently, 1.5V batteries using titanium oxide are also available.

【0003】チタン酸化物、リチウム含有チタン酸化物
を用いた電池は、特開昭57−152669号公報や特
公昭63−8588号公報で検討されている。特公昭6
3−1708号公報では、酸化チタンを用いた負極と、
二酸化マンガンを用いた正極とを組合せた例があるが、
電圧が1Vと低過ぎることや充放電サイクル寿命が短い
ことなどの問題から実用化されていないようである。ま
た、特開平6−275263号公報や特開平7−320
784号では改良したリチウム含有チタン酸化物を負極
に用いた電池が示されている。
Batteries using titanium oxide and lithium-containing titanium oxide have been studied in JP-A-57-152669 and JP-B-63-8588. Tokusho Sho 6
In the Japanese Laid-Open Patent Publication No. 3-1708, a negative electrode using titanium oxide,
There is an example of combining with a positive electrode using manganese dioxide,
It seems that it has not been put to practical use due to problems such as the voltage being too low as 1 V and the charge / discharge cycle life being short. Further, JP-A-6-275263 and JP-A-7-320.
No. 784 discloses a battery using an improved lithium-containing titanium oxide for the negative electrode.

【0004】[0004]

【発明が解決しようとする課題】従来のニッケル−カド
ミウム電池やニッケル−水素電池では容量か小さく小型
化が困難であった。また、負極にリチウム含有チタン酸
化物を用いた1.5V電池は、活物質の容量が100m
Ah/g前後であるため、更なる容量の増加ができなか
った。
The conventional nickel-cadmium battery or nickel-hydrogen battery has a small capacity and is difficult to be miniaturized. In addition, a 1.5 V battery using a lithium-containing titanium oxide for the negative electrode has an active material capacity of 100 m.
Since it was around Ah / g, the capacity could not be further increased.

【0005】負極活物質としては、金属リチウムを単独
で用いた場合が電極電位が最も卑であるため、正極と組
み合わせた電池としての出力電圧が最も高く、エネルギ
ー密度も高く好ましい。しかし乍、充放電に伴いリチウ
ム負極上にデンドライトや不働体化合物が生成し、充放
電による劣化が大きく、サイクル寿命が短いという問題
があった。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2,MoO2,Fe
23,TiS2,LixCo1-yNiy2,LixWOy
の無機化合物やグラファイト、有機物を焼成して得られ
る炭素質材料等々の結晶構造中もしくは非晶質構造中に
リチウムイオンを吸蔵させた層間化合物あるいは挿入化
合物、(3)リチウムイオンをドープしたポリアセンや
ポリアセチレン等の導電性高分子等々のリチウムイオン
を吸蔵放出可能な物質を用いることが提案されている。
As the negative electrode active material, when metal lithium is used alone, the electrode potential is the lowest, and therefore the output voltage as a battery combined with the positive electrode is the highest and the energy density is high, which is preferable. However, there has been a problem that dendrites and passivation compounds are generated on the lithium negative electrode with charge and discharge, the deterioration due to charge and discharge is large, and the cycle life is short. In order to solve this problem, as a negative electrode active material, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
Alloys with other metals such as (2) WO 2 , MoO 2 , Fe
In the crystal structure or amorphous structure of inorganic compounds such as 2 O 3 , TiS 2 , Li x Co 1-y Ni y O 2 , and Li x WO y, carbonaceous materials obtained by firing graphite, and organic substances It has been proposed to use a substance capable of occluding and releasing lithium ions such as an intercalation compound or insertion compound occluding lithium ions, and (3) a conductive polymer such as polyacene or polyacetylene doped with lithium ions.

【0006】しかし乍、一般に、負極活物質として上記
の様な金属リチウム以外のリチウムイオンを吸蔵放出可
能な物質を用いて電池を構成した場合には、これらの負
極活物質の電極電位が金属リチウムの電極電位より貴で
あるため、金属リチウムを単独で用いた場合より電池の
作動電圧がかなり低下するという欠点がある。例えば、
リチウムとAl,Zn,Pb,Sn,Bi,Cd等の合
金を用いる場合には0.2〜0.8V、炭素−リチウム
層間化合物では0〜1V、MoO2やWO2等のリチウム
イオン挿入化合物では0.5〜1.5V作動電圧が低下
する。
However, in general, when a battery is constituted by using a material capable of inserting and extracting lithium ions other than the above-mentioned metallic lithium as the negative electrode active material, the electrode potential of these negative electrode active materials is metallic lithium. Since the electrode potential is higher than the electrode potential of No. 1, there is a drawback that the operating voltage of the battery is considerably lower than that when metal lithium is used alone. For example,
0.2 to 0.8 V when using an alloy of lithium and Al, Zn, Pb, Sn, Bi, Cd, etc., 0 to 1 V for a carbon-lithium intercalation compound, a lithium ion insertion compound such as MoO 2 or WO 2 . Then, the operating voltage decreases by 0.5 to 1.5V.

【0007】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。更に、上記の(1)のリチウム
と他金属との合金を用いた場合には、充放電時のリチウ
ムの利用効率が低く、且つ充放電の繰り返しにより電極
にクラックが発生し割れを生じる等のためサイクル寿命
が短いという問題がある。(2)のリチウム層間化合物
又は挿入化合物の場合には、過充放電により結晶構造の
崩壊や不可逆物質の生成等の劣化があり、又電極電位が
高い(貴な)ものが多い為、これを用いた電池の出力電
圧が低いという欠点がある。(3)の導電性高分子の場
合には、充放電容量、特に体積当りの充放電容量が小さ
いという問題がある。
Further, since elements other than lithium also serve as negative electrode constituents, the capacity and energy density per volume and weight are significantly reduced. Furthermore, when the alloy of (1) above with lithium and another metal is used, the utilization efficiency of lithium during charging and discharging is low, and cracks occur in the electrode due to repeated charging and discharging, and the like. Therefore, there is a problem that the cycle life is short. In the case of the lithium intercalation compound or the intercalation compound of (2), there are many deteriorations such as the collapse of the crystal structure and the formation of irreversible substances due to overcharging and discharging, and the electrode potential is high (noble). There is a drawback that the output voltage of the battery used is low. In the case of the conductive polymer (3), there is a problem that the charge / discharge capacity, especially the charge / discharge capacity per volume is small.

【0008】このため、高電圧、高エネルギー密度で、
且つ充放電特性が優れ、サイクル寿命の長い二次電池を
得るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
Therefore, at high voltage and high energy density,
In addition, in order to obtain a secondary battery with excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (base), and the collapse of the crystal structure or the irreversible substance due to the absorption / desorption of lithium ions during charge / discharge. There is a need for a negative electrode active material that has a large amount of lithium ions that can be occluded and released reversibly without deterioration such as generation, that is, a large effective charge / discharge capacity.

【0009】先に、本発明者等は、組成式LixSiOy
(但し、0≦x、0<y<2)で示されるリチウムを含
有するケイ素の酸化物が、非水電解質中においてリチウ
ム基準極(金属リチウム)に対し少なくとも0〜3Vの
電極電位の範囲で電気化学的に安定に繰り返しリチウム
イオンを吸蔵放出することが出来、その様な充放電反応
により、特に0〜1Vの卑な電位領域に於て著しく高い
充放電容量を有し、優れた負極活物質となる事を見い出
し特許を出願した(特願平4−265179、同5−3
581、同5−162958等)。
First, the present inventors have found that the composition formula Li x SiO y
(However, the lithium-containing silicon oxide represented by 0 ≦ x, 0 <y <2) is contained in the non-aqueous electrolyte in an electrode potential range of at least 0 to 3 V with respect to the lithium reference electrode (metallic lithium). It is capable of electrochemically stably occluding and releasing lithium ions repeatedly, and by such a charge-discharge reaction, it has a remarkably high charge-discharge capacity particularly in a base potential region of 0 to 1 V, and has an excellent negative electrode activity. He found that it could be a substance and applied for a patent (Japanese Patent Application Nos. 4-265179 and 5-3).
581 and 5-162958).

【0010】[0010]

【課題を解決するための手段】本発明では、鉄の硫化物
を電池活物質として用いることにより容量を格段に増加
できることを見出した。特に、本発明者等が先に出願し
た組成式LixSiOy(但し、0≦x、0<y<2)で
示されるリチウムを含有するケイ素の酸化物を負極と
し、鉄の硫化物を正極として用いることによる容量増加
は著しい。
In the present invention, it has been found that the capacity can be remarkably increased by using iron sulfide as a battery active material. In particular, a lithium-containing silicon oxide represented by the composition formula Li x SiO y (where 0 ≦ x, 0 <y <2), which the present inventors previously applied, was used as a negative electrode, and an iron sulfide was used. The increase in capacity due to use as a positive electrode is remarkable.

【0011】本発明の負極活物質として用いるリチウム
含有ケイ素酸化物LixSiOyを有する作用極とリチウ
ム金属から成る対極と非水電解質とから構成されたテス
トセルを充放電し、電気化学的にLixSiOy中にリチ
ウムイオンを吸蔵放出させ、作用極のリチウム含有量x
と電位及び分極との関係を調べた。その結果、安定に繰
り返し充放電できる容量、即ち該酸化物LixSiOy
に電気化学的に吸蔵放出できるリチウムイオン量には制
限があり、且つリチウム含有量xによってLixSiOy
電極の分極(内部抵抗)が著しく変化することが分かっ
た。該酸化物LixSiOyは、酸素量yによっても異な
るが、x>4では分極が著しく大きくなり、実用的に大
きな電流密度ではこれ以上リチウムイオンが吸蔵されに
くく、該電極上や集電体上に析出しデンドライトを生成
する。このデンドライトが甚だしい場合にはセパレータ
を貫通し対極に達し内部短絡を引き起こすことが分かっ
た。又、充電後の放電においても、X<1.5ではやは
り分極が大きく、電位も著しく高い(貴である)ことが
分かった。即ち、リチウム含有ケイ素酸化物LixSi
yは、酸素量yによっても異なるが、リチウム含有量
xが1.5≦x≦4の範囲で充放電時の分極(内部抵
抗)が小さく、電位が卑であり、負極としての充放電特
性が優れている。特に、2≦x≦3.9において電位が
卑であり、分極が小さく、且つ繰り返し充放電の効率
(可逆性)が高く、これを負極活物質として用いた電池
の内部抵抗が小さく特に充放電特性が優れている。
A test cell composed of a working electrode having a lithium-containing silicon oxide Li x SiO y used as a negative electrode active material of the present invention, a counter electrode made of lithium metal, and a non-aqueous electrolyte is charged and discharged, and electrochemically Li x SiO y absorbs and desorbs lithium ions to obtain a lithium content x of the working electrode.
The relationship between the potential and the potential and polarization was investigated. As a result, capacity can be stably repeatedly charged and discharged, i.e. the oxide Li x the amount of lithium ions can be electrochemically absorbing and desorbing into SiO y is limited, Li x SiO y and the lithium content x
It was found that the polarization (internal resistance) of the electrodes changed significantly. The oxide Li x SiO y varies depending on the amount of oxygen y, but when x> 4, the polarization becomes significantly large, and lithium ions are less likely to be occluded at a practically high current density. Precipitates on top and forms dendrites. It was found that when this dendrite was extremely large, it penetrated the separator and reached the counter electrode, causing an internal short circuit. Also, it was found that even after discharging after charging, when X <1.5, the polarization was still large and the potential was extremely high (noble). That is, lithium-containing silicon oxide Li x Si
O y varies depending on the oxygen amount y, but when the lithium content x is in the range of 1.5 ≦ x ≦ 4, the polarization (internal resistance) during charge / discharge is small, the potential is base, and the charge / discharge as the negative electrode is It has excellent characteristics. In particular, when 2 ≦ x ≦ 3.9, the potential is base, the polarization is small, and the efficiency (reversibility) of repeated charging / discharging is high, and the internal resistance of a battery using this as a negative electrode active material is small, and particularly charging / discharging It has excellent characteristics.

【0012】本発明は、上記の様な知見に基づいて成さ
れたものであり、この種の電池の負極活物質として、組
成式LixSiOyで表され、リチウム含有量xと酸素量
yがそれぞれ1.5≦x≦4、0<y<2であるリチウ
ム含有ケイ素酸化物から成るリチウムイオン吸蔵放出可
能物質を用いる。即ち、その結晶構造中または非晶質構
造内にリチウムを含有し、非水電解質中で電気化学反応
によりリチウムイオンを吸蔵及び放出可能なケイ素の酸
化物であって、ケイ素原子数に対するリチウム原子数の
比であるxが1.5以上且つ4.0以下であり、且つケ
イ素原子数に対する酸素原子数の比であるyが0より大
きく且つ2より小さい組成を有する複合酸化物を用い
る。この複合酸化物中でのリチウムの状態は主としてイ
オンであることが好ましいが必ずしも限定はされない。
The present invention was made on the basis of the above-mentioned findings, and as a negative electrode active material of this type of battery, it is represented by the composition formula Li x SiO y , and has a lithium content x and an oxygen content y. A lithium ion occluding and desorbing substance composed of a lithium-containing silicon oxide in which the respective values are 1.5 ≦ x ≦ 4 and 0 <y <2 is used. That is, it is an oxide of silicon containing lithium in its crystal structure or in an amorphous structure and capable of inserting and extracting lithium ions by an electrochemical reaction in a non-aqueous electrolyte. The composite oxide has a composition in which x, which is a ratio of 1.5 to 4.0, and y, which is a ratio of the number of oxygen atoms to the number of silicon atoms, is larger than 0 and smaller than 2. The state of lithium in this composite oxide is preferably mainly ionic, but not limited thereto.

【0013】本発明電池の負極活物質として用いられる
該リチウム含有ケイ素酸化物LixSiOy(但し、1.
5≦x≦4、0<y<2)の好ましい製造方法として
は、下記の2種類の方法が上げられるが、これらに限定
はされない。第一の方法は、ケイ素とリチウムの各々の
単体又はそれらの化合物を所定のモル比で混合し又は混
合しながら、不活性雰囲気中や真空中等の非酸化性雰囲
気中又はケイ素とリチウムが所定の酸化数と成るように
酸素量を制御した雰囲気中で熱処理してケイ素とリチウ
ムの複合酸化物とする方法である。出発原料となるケイ
素及びリチウムのそれぞれの化合物としては、各々の酸
化物、水酸化物、あるいは炭酸塩、硝酸塩等の塩あるい
は有機化合物等々の様な、各々を非酸化性雰囲気中で熱
処理することにより各々の酸化物を生成する化合物が好
ましい。これらの出発原料の混合方法としては、各原料
の粉末を直接乾式混合する方法の他、これらの原料を
水、アルコールやその他の溶媒に溶解もしくは分散し、
溶液中で均一に混合又は反応させた後、乾燥する方法、
これらの原料を加熱や電磁波、光等によりアトマイズ又
はイオン化し、同時にもしくは交互に蒸着又は析出させ
る方法等々の種々の方法が可能である。この様にして原
料を混合した後、又は混合しながら行う熱処理の温度
は、出発原料や熱処理雰囲気によっても異なるが、40
0゜C以上で合成が可能であり、好ましくは600゜C
以上の温度がよい。一方、不活性雰囲気中や真空中等で
は800゜C以上の温度でケイ素と4価のケイ素酸化物
に不均化反応する場合があるため、そのような場合には
600〜800゜Cの温度が好ましい。
The lithium-containing silicon oxide Li x SiO y used as the negative electrode active material of the battery of the present invention (provided that 1.
As a preferable manufacturing method of 5 ≦ x ≦ 4 and 0 <y <2), the following two kinds of methods can be mentioned, but not limited thereto. The first method is to mix or mix each of simple substances of silicon and lithium or a compound thereof at a predetermined molar ratio, and in a non-oxidizing atmosphere such as an inert atmosphere or in a vacuum, or when silicon and lithium have a predetermined content. In this method, a composite oxide of silicon and lithium is formed by heat treatment in an atmosphere in which the amount of oxygen is controlled so that the oxidation number is reached. Each of the starting compounds, silicon and lithium, should be heat-treated in a non-oxidizing atmosphere such as oxides, hydroxides, salts such as carbonates and nitrates, or organic compounds. Compounds that produce the respective oxides are preferred. As a method of mixing these starting materials, other than a method of directly dry mixing powders of the respective materials, these raw materials are dissolved or dispersed in water, alcohol or another solvent,
After uniformly mixing or reacting in a solution, a method of drying,
Various methods such as a method of atomizing or ionizing these raw materials by heating, electromagnetic waves, light or the like and simultaneously or alternately depositing or precipitating are possible. The temperature of the heat treatment carried out after or while mixing the raw materials in this manner varies depending on the starting raw material and the heat treatment atmosphere,
Synthesis is possible at 0 ° C or higher, preferably 600 ° C
The above temperature is good. On the other hand, in an inert atmosphere or in a vacuum, a disproportionation reaction of silicon and tetravalent silicon oxide may occur at a temperature of 800 ° C. or higher. In such a case, the temperature of 600 to 800 ° C. preferable.

【0014】これらの出発原料の組合せの中で、リチウ
ムの供給原料として酸化リチウムL2O、水酸化リチウ
ムLiOH、Li2CO3又はLiNO3等の塩やそれら
の水和物等々の様な熱処理により酸化リチウムを生成す
るリチウム化合物を用い、ケイ素の供給源としてケイ素
単体もしくはケイ素の低級酸化物SiOy'(但し、0<
y’<2)を用いる場合には、それらの混合物を不活性
雰囲気中または真空中等の様な酸素を断った雰囲気中で
熱処理することによって合成することが出来、熱処理雰
囲気中の酸素量もしくは酸素分圧等の制御がし易く製造
が容易であり特に好ましい。
Among these combinations of starting materials, as a lithium feed material, oxidation is carried out by heat treatment such as lithium oxide L2O, lithium hydroxide LiOH, salts such as Li 2 CO 3 or LiNO 3 and hydrates thereof. A lithium compound that produces lithium is used, and a simple substance of silicon or a lower oxide of silicon SiO y ' (where 0 <
When y '<2) is used, the mixture can be synthesized by heat-treating the mixture in an oxygen-free atmosphere such as an inert atmosphere or in a vacuum, and the amount of oxygen or oxygen in the heat-treatment atmosphere can be used. Partial pressure and the like are easy to control, and the production is easy, which is particularly preferable.

【0015】又、出発原料にケイ素の化合物として水素
を有する各種のケイ酸を用いた場合やリチウム化合物と
して水酸化リチウム等を用いた場合には、加熱処理によ
り水素が完全には脱離せず、熱処理後の生成物中に一部
残り、リチウムと水素が共存することも可能であり、本
発明に含まれる。更に、リチウムもしくはその化合物及
びケイ素もしくはその化合物と共に、ナトリウム、カリ
ウム、ルビジウム等の他のアルカリ金属、マグネシウ
ム、カルシウム等のアルカリ土類金属及び/又は鉄、ニ
ッケル、コバルト、マンガン、バナジウム、チタン、ニ
オブ、タングステン、モリブデン、銅、亜鉛、スズ、
鉛、アルミニウム、インジウム、ビスマス、ガリウム、
ゲルマニウム、炭素、ホウ素、窒素、リン等々のその他
の金属または非金属元素の単体もしくはそれらの化合物
等をも加えて混合し加熱処理することにより、これらの
リチウム以外の金属もしくは非金属をリチウム及びケイ
素と共存させることもでき、これらの場合も本発明に含
まれる。
Further, when various silicic acids having hydrogen as a silicon compound are used as a starting material or when lithium hydroxide or the like is used as a lithium compound, hydrogen is not completely desorbed by heat treatment, It is possible that a part of the product remains after the heat treatment and lithium and hydrogen coexist, which is included in the present invention. Further, together with lithium or a compound thereof and silicon or a compound thereof, another alkali metal such as sodium, potassium or rubidium, an alkaline earth metal such as magnesium or calcium and / or iron, nickel, cobalt, manganese, vanadium, titanium or niobium. , Tungsten, molybdenum, copper, zinc, tin,
Lead, aluminum, indium, bismuth, gallium,
Other metals or non-metal elements such as germanium, carbon, boron, nitrogen, phosphorus, etc., or their compounds, etc. are also added and mixed, and the mixture is heat-treated. Can also coexist with, and these cases are also included in the present invention.

【0016】この様にして得られたリチウム含有ケイ素
酸化物は、これをそのままもしくは必要により粉砕整粒
や造粒等の加工を施した後に負極活物質として用いるこ
とが出来る。又、下記の第二の方法と同様に、このリチ
ウム含有ケイ素酸化物とリチウムもしくはリチウムを含
有する物質との電気化学的反応に依り、このリチウム含
有ケイ素酸化物に更にリチウムイオンを吸蔵させるか又
は逆にこの複合酸化物からリチウムイオンを放出させる
ことにより、リチウム含有量を増加又は減少させたもの
を負極活物質として用いても良い。
The lithium-containing silicon oxide thus obtained can be used as a negative electrode active material as it is or after being optionally subjected to processing such as pulverization and granulation. Further, in the same manner as in the second method described below, the lithium-containing silicon oxide is further occluded with lithium ions by an electrochemical reaction between the lithium-containing silicon oxide and lithium or a substance containing lithium, or On the contrary, the lithium oxide may be released from the composite oxide to increase or decrease the lithium content and be used as the negative electrode active material.

【0017】第二の方法は、予め、リチウムを含有しな
いケイ素の低級酸化物SiOy(但し、2>y>0)を
合成し、得られたケイ素の低級酸化物SiOyとリチウ
ムもしくはリチウムを含有する物質との電気化学的反応
に依り、該ケイ素の低級酸化物SiOyにリチウムイオ
ンを吸蔵させて、リチウムを含有するケイ素の低級酸化
物LixSiOyを得る方法である。この様なケイ素の低
級酸化物SiOyとしては、SiO1.5(Si23)、
SiO1.33(Si34)、SiO及びSiO0.5(Si2
O)等々の化学量論組成のものの他、yが0より大きく
2未満の任意の組成のものでよい。又、これらのケイ素
の低級酸化物SiOyは、下記のような種々の公知の方
法に依り製造することが出来る。即ち、(1)二酸化ケ
イ素SiO2とケイ素Siとを所定のモル比で混合し非
酸化性雰囲気中又は真空中で加熱する方法、(2)二酸
化ケイ素SiO2を水素H2等の還元性ガス中で加熱して
所定量還元する方法、(3)二酸化ケイ素SiO2を所
定量の炭素Cや金属等と混合し、加熱して所定量還元す
る方法、(4)ケイ素Siを酸素ガス又は酸化物と加熱
して所定量酸化する方法、(5)シランSiH4等のケ
イ素化合物ガスと酸素O2の混合ガスを加熱反応又はプ
ラズマ分解反応させるCVD法又はプラズマCVD法等
々である。
In the second method, a lower silicon oxide SiO y (2>y> 0) containing no lithium is previously synthesized, and the obtained lower silicon oxide SiO y is mixed with lithium or lithium. This is a method of obtaining a lower oxide of silicon Li x SiO y containing lithium by causing lithium ions to be absorbed in the lower oxide of silicon SiO y by an electrochemical reaction with a substance contained therein. As such a lower oxide SiOy of silicon, SiO 1.5 (Si 2 O 3 ),
SiO 1.33 (Si 3 O 4 ), SiO and SiO 0.5 (Si 2
In addition to stoichiometric compositions such as O), y may be of any composition in which y is greater than 0 and less than 2. Further, these lower oxides of silicon such as SiO y can be produced by various known methods as described below. That is, (1) a method in which silicon dioxide SiO 2 and silicon Si are mixed at a predetermined molar ratio and heated in a non-oxidizing atmosphere or in a vacuum, (2) silicon dioxide SiO 2 is a reducing gas such as hydrogen H 2. A method of heating in a predetermined amount to reduce a predetermined amount, (3) a method of mixing silicon dioxide SiO 2 with a predetermined amount of carbon C or a metal, and heating to reduce a predetermined amount, (4) an oxygen gas or oxidation of silicon Si A method of heating an object to oxidize it by a predetermined amount, (5) a CVD method or a plasma CVD method in which a mixed gas of a silicon compound gas such as silane SiH 4 and oxygen O 2 is heated or plasma-decomposed.

【0018】又、該ケイ素の低級酸化物SiOyには、
ケイ素と共に、水素やナトリウム、カリウム、ルビジウ
ム等のアルカリ金属、マグネシウム、カルシウム等のア
ルカリ土類金属及び/又は鉄、ニッケル、コバルト、マ
ンガン、バナジウム、チタン、ニオブ、タングステン、
モリブデン、銅、亜鉛、スズ、鉛、アルミニウム、イン
ジウム、ビスマス、ガリウム、ゲルマニウム、炭素、ホ
ウ素、窒素、リン等々のその他の金属または非金属元素
を含有させることもでき、これらの場合も本発明に含ま
れる。
Further, the lower oxide SiO y of the silicon includes
Along with silicon, hydrogen, sodium, potassium, rubidium, and other alkali metals, magnesium, calcium, and other alkaline earth metals, and / or iron, nickel, cobalt, manganese, vanadium, titanium, niobium, tungsten,
Other metal or non-metal element such as molybdenum, copper, zinc, tin, lead, aluminum, indium, bismuth, gallium, germanium, carbon, boron, nitrogen, phosphorus, etc. may be contained, and in these cases, the present invention is also included. included.

【0019】このケイ素の低級酸化物SiOyへの電気
化学的反応に依るリチウムイオンの吸蔵は、電池組立後
電池内で、又は電池製造工程の途上において電池内もし
くは電池外で行うことが出来、具体的には次の様にして
行うことが出来る。即ち、(1)該ケイ素の低級酸化物
又はそれらと導電剤及び結着剤等との混合合剤を所定形
状に成形したものを一方の電極(作用極)とし、金属リ
チウム又はリチウムを含有する物質をもう一方の電極
(対極)としてリチウムイオン導電性の非水電解質に接
して両電極を対向させて電気化学セルを構成し、作用極
がカソード反応をする方向に適当な電流で通電し電気化
学的にリチウムイオンを該ケイ素の低級酸化物に吸蔵さ
せる。得られた該作用極をそのまま負極として又は負極
を構成する負極活物質として用いて非水電解質二次電池
を構成する。(2)該ケイ素の低級酸化物又はそれらと
導電剤及び結着剤等との混合合剤を所定形状に成形し、
これにリチウムもしくはリチウムの合金等を圧着しても
しくは接触させて積層電極としたものを負極として非水
電解質二次電池に組み込む。電池内でこの積層電極が電
解質に触れることにより一種の局部電池を形成し、自己
放電し電気化学的にリチウムが該ケイ素の低級酸化物に
吸蔵される方法。(3)該ケイ素の低級酸化物を負極活
物質とし、リチウムを含有しリチウムイオンを吸蔵放出
可能な物質を正極活物質として用いた非水電解質二次電
池を構成する。電池として使用時に充電を行うことによ
り正極から放出されたリチウムイオンが該ケイ素の低級
酸化物に吸蔵される方法。また、ケイ素酸化物もしくは
リチウム含有ケイ素酸化物の粒径は、500μm以下が
好ましく、より好ましくは100μm以下、特に50〜
0.1μmが良い。比表面積は0.05〜100m3
gが好ましく、より好ましくは0.1〜50m3/g、
とくに0.1〜30m3/gが良い。
The storage of lithium ions by the electrochemical reaction of the silicon to the lower oxide SiO y can be carried out in the battery after the battery is assembled, or inside or outside the battery during the battery manufacturing process, Specifically, it can be performed as follows. That is, (1) one of the electrodes (working electrode) is formed by molding the lower oxide of silicon or a mixture of the lower oxide of silicon and a conductive agent, a binder or the like into a predetermined shape, and contains metallic lithium or lithium. The other electrode (counter electrode) is used as the other electrode (counter electrode) to come into contact with the lithium ion conductive non-aqueous electrolyte so that both electrodes face each other to form an electrochemical cell, and the working electrode is energized with an appropriate current in the direction of cathodic reaction. Lithium ions are chemically absorbed in the lower oxide of silicon. A non-aqueous electrolyte secondary battery is constructed by using the obtained working electrode as it is as a negative electrode or as a negative electrode active material constituting the negative electrode. (2) Molding the lower oxide of silicon or a mixture thereof with a conductive agent, a binder and the like into a predetermined shape,
Lithium or an alloy of lithium or the like is pressure-bonded or brought into contact therewith to form a laminated electrode, which is incorporated as a negative electrode in a non-aqueous electrolyte secondary battery. A method of forming a kind of local battery by exposing the laminated electrode to the electrolyte in the battery, and self-discharging to electrochemically occlude lithium in the lower oxide of silicon. (3) A non-aqueous electrolyte secondary battery is constructed using the lower oxide of silicon as a negative electrode active material and a material containing lithium and capable of inserting and extracting lithium ions as a positive electrode active material. A method in which lithium ions released from the positive electrode by being charged when used as a battery are occluded in the lower oxide of silicon. The particle diameter of the silicon oxide or the lithium-containing silicon oxide is preferably 500 μm or less, more preferably 100 μm or less, and particularly 50 to 50 μm.
0.1 μm is good. Specific surface area is 0.05-100 m 3 /
g is preferable, more preferably 0.1 to 50 m 3 / g,
Particularly, 0.1 to 30 m 3 / g is good.

【0020】この様にして得られるリチウム含有ケイ素
酸化物LixSiOyを負極活物質として用いる。一方、
鉄の硫化物は従来より電池活物質として検討されてきた
物質であるが、1.5V二次電池としては実用化されてい
ない。それは、使い方により特性が大きく変わるところ
に問題があると考えられる。
The lithium-containing silicon oxide Li x SiO y thus obtained is used as a negative electrode active material. on the other hand,
Iron sulfide is a substance that has been studied as a battery active material, but it has not been put to practical use as a 1.5V secondary battery. It is considered that there is a problem in that the characteristics greatly change depending on the usage.

【0021】図1は、本発明に依る非水電解質二次電池
の活物質の充放電特性評価に用いたテストセルの一例を
示す断面図である。図において、1は対極端子を兼ねる
対極ケースであり、外側片面をNiメッキしたステンレ
ス鋼製の板を絞り加工したものである。3は対極であ
り、所定厚みのリチウムフォイルを直径14mmに打ち
抜いたものを、対極ケース1の内側に圧着したものであ
る。7は外側片面をNiメッキしたステンレス鋼製の作
用極ケースであり、作用極端子を兼ねている。5は後述
の本発明に係わる活物質を用いて構成された作用極であ
り、6は炭素を導電性フィラーとする導電性接着剤から
なる作用極集電体であり、作用極5と作用極ケース7と
を接着し電気的に接続している。4はポリプロピレンの
多孔質フィルムからなるセパレータであり、電解液が含
浸されている。8はポリプロピレンを主体とするガスケ
ットであり、対極ケース1と作用極ケース7の間に介在
し、対極と作用極との間の電気的絶縁性を保つと同時
に、作用極ケース開口縁が内側に折り曲げられカシメら
れることに依って、電池内容物を密封、封止している。
電解質はエチレンカーボネートとエチルメチルカーボネ
ートの体積比1:1混合溶媒に六フッ化燐酸リチウムL
iPF6を1モル/l溶解したものを用いた。テストセ
ルの大きさは、外径20mm、厚さ1.6mmであっ
た。
FIG. 1 is a sectional view showing an example of a test cell used for evaluating the charge / discharge characteristics of the active material of the non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 is a counter electrode case which also serves as a counter electrode terminal, which is obtained by drawing a stainless steel plate having Ni plated on one outer surface. 3 is a counter electrode, which is obtained by punching out a lithium foil having a predetermined thickness to a diameter of 14 mm and crimping it to the inside of the counter electrode case 1. Reference numeral 7 denotes a working electrode case made of stainless steel whose outer surface is plated with Ni, and also serves as a working electrode terminal. Reference numeral 5 is a working electrode constituted by using an active material according to the present invention described later, 6 is a working electrode current collector made of a conductive adhesive containing carbon as a conductive filler, and the working electrode 5 and the working electrode are The case 7 is bonded and electrically connected. 4 is a separator made of a polypropylene porous film, which is impregnated with an electrolytic solution. Numeral 8 is a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode, and at the same time the working electrode case opening edge is inward. By folding and crimping, the battery contents are hermetically sealed.
The electrolyte is lithium hexafluorophosphate L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1.
iPF 6 was used after dissolving 1 mol / l. The size of the test cell was 20 mm in outer diameter and 1.6 mm in thickness.

【0022】作用極5は次の様にして作製した。市販の
FeSを自動乳鉢により粉砕整粒したものを作用極の活
物質として用いた。この活物質に導電剤としてグラファ
イトを、結着剤としてポリフッ化ビニリデンをそれぞれ
重量比45:45:10の割合で混合して作用極合剤と
した。次に、この作用極合剤を2ton/cm2で直径
4.05mm厚さ0.3mmのペレットに加圧成形して
作用極5を作製した。その後、この様にして得られた作
用極5を炭素を導電性フィラーとする導電性樹脂接着剤
からなる作用極集電体6を用いて作用極ケース7に接着
し一体化した後、100℃で8時間減圧加熱乾燥したも
のを用いて上述のテストセルを作製した。
The working electrode 5 was manufactured as follows. Commercially available FeS was crushed and sized by an automatic mortar and used as the active material of the working electrode. Graphite as a conductive agent and polyvinylidene fluoride as a binder were mixed with this active material at a weight ratio of 45:45:10 to prepare a working electrode mixture. Next, this working electrode mixture was pressure-molded at 2 ton / cm 2 into a pellet having a diameter of 4.05 mm and a thickness of 0.3 mm to prepare a working electrode 5. Thereafter, the working electrode 5 thus obtained is bonded to the working electrode case 7 by using a working electrode current collector 6 made of a conductive resin adhesive containing carbon as a conductive filler, and integrated at 100 ° C. The above-mentioned test cell was prepared by using the dried product under reduced pressure for 8 hours.

【0023】この様にして作製したテストセルを0.1
mAの定電流で、放電(D)の終止電圧0V、充電
(C)の終止電圧2.5Vの条件で充放電サイクルを行
ったときのサイクル特性を図2に示した。図中のD1は
1回目の放電、D2は2回目の放電、Dnはn回目の放
電、Cnはn回目の充電を示す。
The test cell thus prepared was set to 0.1
FIG. 2 shows the cycle characteristics when a charging / discharging cycle was performed under the conditions of a discharge (D) end voltage of 0 V and a charge (C) end voltage of 2.5 V at a constant current of mA. In the figure, D1 indicates the first discharge, D2 indicates the second discharge, Dn indicates the nth discharge, and Cn indicates the nth charge.

【0024】図2を見ると1回目の放電(D1)以降容
量が減少していることがわかる。これは、D1の放電カ
ーブの二段目の平らな部分でFeSの構造変化が起こり
容量減少がおきていることが推測される。つまり、Fe
Sにリチウムイオンが入りすぎるとFeS構造を破壊し
充放電できなくなってくる。
It can be seen from FIG. 2 that the capacity has decreased since the first discharge (D1). It is presumed that the structure change of FeS occurs in the second flat portion of the discharge curve of D1 and the capacity is reduced. That is, Fe
If lithium ions enter S too much, the FeS structure is destroyed and charging / discharging becomes impossible.

【0025】そこで、同様のテストセルを0.1mAの
定電流で、放電(D)の終止電圧11.0V、充電
(C)の終止電圧2.5Vの条件で充放電サイクルを行
い、二段目の平らな部分までリチウムイオンが入らない
ようにしたときのサイクル特性を図3に示した。図2に
比べ容量が大きく劣化も少なくなっていることがわか
る。これらの結果より、FeSの電位を1V以下に下げ
ないリチウム量、つまりFeS 1molあたりに対し
リチウムを1.1mol以下にすることを考慮して、電池
を設計しなければFeSの特性を殺すことになる。さら
に、図3の1Dと3Dとを比較すると約1mAh程度差
があるこれは、FeSの結晶の中に残り充放電に関与し
なくなるリチウムであるため、FeS 1molあたり
に対しリチウムを0.25mol以上なければ、充放電
できない。また、FeSは通常Fe欠損を生じ易いこと
や製造上のばらつきのため、Feに対するSの量は±3
0%程度まで変動することが、活物質として問題なく使
用できる。すなわち、リチウム含有する鉄の硫化物が組
成式LixFeSyで表され、リチウム含有量xと硫黄量
yがそれぞれ0.25≦x≦1.1、0.7<y<1.3であ
ることが重要である。また、鉄の硫化物またはリチウム
含有する鉄の硫化物の粒径は、500μm以下が好まし
く、より好ましくは100μm以下、特に50〜0.1
μmが良い。比表面積は0.05〜100m3/gが好
ましく、より好ましくは0.1〜50m3/g、とくに
0.1〜30m3/gが良い。
Therefore, a similar test cell was subjected to a charge / discharge cycle at a constant current of 0.1 mA under the conditions of an end voltage of discharge (D) of 11.0 V and an end voltage of charge (C) of 2.5 V, and two steps were performed. FIG. 3 shows the cycle characteristics when lithium ions were prevented from entering the flat part of the eyes. It can be seen that the capacity is larger and the deterioration is less than that in FIG. From these results, considering that the amount of lithium that does not lower the potential of FeS to 1 V or less, that is, 1.1 mol or less of lithium per 1 mol of FeS, the characteristics of FeS are killed unless the battery is designed. Become. Further, when comparing 1D and 3D in FIG. 3, there is a difference of about 1 mAh. This is lithium that remains in the FeS crystal and does not participate in charging and discharging. Therefore, 0.25 mol or more of lithium per 1 mol of FeS If not, it cannot be charged and discharged. In addition, since FeS is usually susceptible to Fe deficiency and variations in manufacturing, the amount of S relative to Fe is ± 3.
A fluctuation of about 0% can be used as an active material without any problem. That is, a lithium-containing iron sulfide is represented by the composition formula Li x FeS y , and the lithium content x and the sulfur content y are 0.25 ≦ x ≦ 1.1 and 0.7 <y <1.3, respectively. It is important to be. The particle size of iron sulfide or lithium-containing iron sulfide is preferably 500 μm or less, more preferably 100 μm or less, and particularly 50 to 0.1.
μm is good. The specific surface area 0.05~100m 3 / g, more preferably 0.1~50m3 / g, especially 0.1~30m 3 / g is good.

【0026】本発明では、容量の大きなリチウム含有す
る鉄の硫化物を1.5V前後の電池の電池活物質として用
いることにより容量を格段に増加できることを見出し
た。特に、本発明者等が先に出願した組成式LixSi
y(但し、0≦x、0<y<2)で示されるリチウム
を含有するケイ素の酸化物を負極とし、FeSを正極と
して用いることによる容量増加は著しい。
In the present invention, it has been found that the capacity can be remarkably increased by using a lithium-containing iron sulfide having a large capacity as a battery active material of a battery of about 1.5V. In particular, the composition formula Li x Si that the present inventors have previously applied for
The use of a lithium-containing silicon oxide represented by O y (where 0 ≦ x, 0 <y <2) as the negative electrode and FeS as the positive electrode significantly increases the capacity.

【0027】また、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、エチルメチルカーボネート、メチルフ
ォーメイト、1,2−ジメトキシエタン、テトラヒドロ
フラン、ジオキソラン、ジメチルフォルムアミド等の有
機溶媒の単独又は混合溶媒に支持電解質としてLiCl
4,LiPF6,LiBF4,LiCF3SO3,Li
(CF3SO22N等のリチウムイオン解離性塩を溶解
した非水(有機)電解液、ポリエチレンオキシドやポリ
フォスファゼン架橋体等の高分子に前記リチウム塩を固
溶させた高分子固体電解質あるいはLi3N,LiI等
の無機固体電解質等々のリチウムイオン導電性の非水電
解質であれば良い。特に、プロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート等の環状ア
ルキルカーボネートとジメチルカーボネート、ジエチル
カーボネート、エチルメチルカーボネート等の鎖状アル
キルカーボネートの混合溶媒にLiPF6,LiCl
4,LiBF4又はLiCF3SO3等の塩を溶解した有
機電解液を用いた場合に、充放電特性が優れ、サイクル
寿命の長い電池が得られるので、特に好ましい。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiCl as a supporting electrolyte in a single or mixed solvent of organic solvents such as butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, dimethylformamide.
O 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , Li
Non-aqueous (organic) electrolytic solution in which a lithium ion dissociable salt such as (CF 3 SO 2 ) 2 N is dissolved, and a polymer solid in which the lithium salt is solid-dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene Any lithium ion conductive non-aqueous electrolyte such as an electrolyte or an inorganic solid electrolyte such as Li 3 N or LiI may be used. Particularly, in a mixed solvent of cyclic alkyl carbonate such as propylene carbonate, ethylene carbonate and butylene carbonate and chain alkyl carbonate such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, LiPF 6 , LiCl
It is particularly preferable to use an organic electrolyte solution in which a salt such as O 4 , LiBF 4 or LiCF 3 SO 3 is dissolved, because a battery having excellent charge / discharge characteristics and a long cycle life can be obtained.

【0028】[0028]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1)本実施例は、正極活物質としてFeS、負
極活物質としてSiOを用いた場合である。下記のよう
にして作製した正極、負極及び電解液を用いた。また、
電池の大きさは外径6.8mm、厚さ2.1mmであっ
た。電池断面図を図4に示した。
EXAMPLES The present invention will be described in more detail below with reference to examples. (Example 1) In this example, FeS was used as the positive electrode active material and SiO was used as the negative electrode active material. The positive electrode, the negative electrode, and the electrolytic solution produced as described below were used. Also,
The battery had an outer diameter of 6.8 mm and a thickness of 2.1 mm. A cross-sectional view of the battery is shown in FIG.

【0029】正極は次の様にして作製した。 市販のF
eSを粉砕したものに導電剤としてグラファイトを、結
着剤として架橋型アクリル酸樹脂及びフッ素樹脂等を重
量比82:10:7:1の割合で混合して正極合剤と
し、次にこの正極合剤を2ton/cm2で直径4.0
5mm厚さ0.54mmのペレットに加圧成形し重量は2
1.0mgとした。その後、この様にして得られた正極ペ
レット101を炭素を導電性フィラとする導電性樹脂接
着剤からなる電極集電体102を用いて正極ケース10
3に接着し一体化した後、150℃で8時間減圧加熱乾
燥した。
The positive electrode was manufactured as follows. Commercial F
Graphite as a conductive agent and crosslinked acrylic acid resin and fluororesin as a binder are mixed at a weight ratio of 82: 10: 7: 1 to obtain a positive electrode mixture. Diameter of mixture is 2 ton / cm 2 and 4.0
5mm thick 0.54mm pellets are pressure molded and weigh 2
It was 1.0 mg. Thereafter, the positive electrode case 101 is obtained by using the positive electrode pellet 101 thus obtained and the electrode current collector 102 made of a conductive resin adhesive having carbon as a conductive filler.
After adhering to 3 and integrating, it was dried under reduced pressure at 150 ° C. for 8 hours.

【0030】負極は、次の様にして作製した。市販の一
酸化ケイ素(SiO)を自動乳鉢により粒径44μm以
下に粉砕整粒したものを作用極の活物質として用いた。
この活物質に導電剤としてグラファイトを、結着剤とし
てポリフッ化ビニリデン等をそれぞれ重量比45:4
5:10の割合で混合して負極極合剤とした。合剤を2
ton/cm2で直径4.05mm厚さ0.49mmの
ペレットに加圧成形したものを用いた。
The negative electrode was manufactured as follows. Commercially available silicon monoxide (SiO) was pulverized and sized to a particle size of 44 μm or less by an automatic mortar and used as the active material of the working electrode.
Graphite as a conductive agent and polyvinylidene fluoride as a binder are added to this active material at a weight ratio of 45: 4, respectively.
The mixture was mixed at a ratio of 5:10 to obtain a negative electrode mixture. Mix 2
Pellets having a diameter of 4.05 mm and a thickness of 0.49 mm at ton / cm 2 were pressed and used.

【0031】ペレット重量は11.5mgとした。その
後、この様にして得られた負極ペレット104を炭素を
導電性フィラーとする導電性樹脂接着剤からなる電極集
電体2を用いて負極ケース105に接着し一体化した
後、100℃で8時間減圧加熱乾燥した。さらに、ペレ
ット上にリチウムフォイル106を直径4mm、厚さ
0.4mmに打ち抜いたものを圧着し、リチウム−負極
ペレット積層電極とした。張ったリチウムのうちLix
SiOyのx1.5から2のリチウムが充放電に関与しな
い部分となることが実験によりわかっている。このリチ
ウムを2として計算すると、充放電に使われるリチウム
は約5.57mAhとなる。このリチウム量はFeS 1
molに対し1.08molとなり1.1mol以下となる
ためFeSの構造を壊すことがない。
The pellet weight was 11.5 mg. After that, the negative electrode pellets 104 thus obtained are bonded and integrated with the negative electrode case 105 by using the electrode current collector 2 made of a conductive resin adhesive containing carbon as a conductive filler, and then at 100 ° C. It was dried under reduced pressure for an hour. Further, a punched lithium foil 106 having a diameter of 4 mm and a thickness of 0.4 mm was pressure-bonded onto the pellet to obtain a lithium-negative electrode pellet laminated electrode. Li x out of the stretched lithium
It is known from experiments that lithium of x 1.5 to 2 of SiO y is a part that does not participate in charge and discharge. When this lithium is calculated as 2, the lithium used for charging and discharging is about 5.57 mAh. This lithium content is FeS 1
Since it is 1.08 mol with respect to mol and is 1.1 mol or less, the structure of FeS is not destroyed.

【0032】電解液107は、プロピレンカーボネー
ト、エチレンカーボネートとエチルメチルカーボネート
の体積比1:1:2混合溶媒にLiClO4を1モル/
l溶解したものを用いた。この様にして作製された電池
について50μA定電流、終止電圧0.7Vの放電と5
0μA定電流、2.3Vまでの充電という条件で充放電サ
イクルを行った。このときの充放電特性を図5に示し
た。
The electrolytic solution 107 was prepared by mixing LiClO 4 in a mixed solvent of propylene carbonate, ethylene carbonate and ethylmethyl carbonate at a volume ratio of 1: 1: 2 and 1 mol / mol.
1 The dissolved product was used. The battery thus manufactured was discharged at a constant current of 50 μA and a final voltage of 0.7 V and
A charge / discharge cycle was performed under the conditions of 0 μA constant current and charging up to 2.3V. The charge / discharge characteristics at this time are shown in FIG.

【0033】(実施例2)本実施例は、正極活物質とし
てリチウム含有マンガン酸化物、負極活物質としてFe
Sを用いた場合である。下記のようにして作製した正
極、負極及び電解液を用いた。また、電池の大きさは外
径6.8mm、厚さ2.1mmであった。
Example 2 In this example, lithium-containing manganese oxide was used as the positive electrode active material, and Fe was used as the negative electrode active material.
This is the case when S is used. The positive electrode, the negative electrode, and the electrolytic solution produced as described below were used. The battery had an outer diameter of 6.8 mm and a thickness of 2.1 mm.

【0034】正極は次の様にして作製した。電解二酸化
マンガンMnO2と水酸化リチウム及び硝酸リチウムを
Mn:Liのモル比が1:0.3となる様に混合した
後、この混合物を大気中400゜Cで6時間熱処理して
得られた生成物を活物質として用いた。この活物質に導
電剤としてグラファイトを、結着剤として架橋型アクリ
ル酸樹脂及びフっ素樹脂等を重量比87:10:3の割
合で混合して正極合剤とし、次にこの正極合剤を2to
n/cm2で直径4.05mm厚さ0.96mmのペレ
ットに加圧成形した後、150℃で10時間減圧加熱乾
燥したものを正極とし、重量は31.2mgとした。その
後、この様にして得られた正極ペレット101を炭素を
導電性フィラーとする導電性樹脂接着剤からなる電極集
電体102を用いて正極ケース103に接着し一体化し
た後、150℃で8時間減圧加熱乾燥した。
The positive electrode was manufactured as follows. It was obtained by mixing electrolytic manganese dioxide MnO 2 with lithium hydroxide and lithium nitrate so that the molar ratio of Mn: Li was 1: 0.3, and then heat-treating the mixture at 400 ° C. for 6 hours in the atmosphere. The product was used as the active material. This active material is mixed with graphite as a conductive agent and a cross-linking acrylic resin and a fluororesin as a binder at a weight ratio of 87: 10: 3 to prepare a positive electrode mixture. 2 to
Pellets having a diameter of 4.05 mm and a thickness of 0.96 mm at n / cm 2 were pressure-molded and dried under reduced pressure at 150 ° C. for 10 hours to obtain a positive electrode having a weight of 31.2 mg. After that, the positive electrode pellet 101 thus obtained is adhered to and integrated with the positive electrode case 103 by using the electrode current collector 102 made of a conductive resin adhesive containing carbon as a conductive filler, and then at 150 ° C. It was dried under reduced pressure for an hour.

【0035】負極は、次の様にして作製した。市販のF
eSを粉砕したものに導電剤としてグラファイトを、結
着剤として架橋型アクリル酸樹脂及びフっ素樹脂等を重
量比82:10:7:1の割合で混合して正極合剤と
し、次にこの正極合剤を2ton/cm2で直径4.0
5mm厚さ0.39mmのペレットに加圧成形し重量は1
5.0mgとした。その後、この様にして得られた負極
ペレット104を炭素を導電性フィラーとする導電性樹
脂接着剤からなる電極集電体2を用いて負極ケース10
5に接着し一体化した後、100℃で8時間減圧加熱乾
燥した。さらに、ペレット上にリチウムフォイル106
を直径4mm、厚さ0.15mm(3.88mAhの容量
を持つ)に打ち抜いたものを圧着し、リチウム−負極ペ
レット積層電極とした。充放電に使われるリチウムを3.
88mAhとすると、リチウム量はFeS1molに対
し1.04molとなり1.1mol以下となるためFeS
の構造を壊すことがない。
The negative electrode was manufactured as follows. Commercial F
Graphite as a conductive agent is mixed with crushed eS, and cross-linking acrylic resin and fluorine resin as a binder are mixed at a weight ratio of 82: 10: 7: 1 to form a positive electrode mixture. This positive electrode material mixture has a diameter of 4.0 at 2 ton / cm 2.
5mm thick 0.39mm thick pellets are pressed and weighed 1
It was set to 5.0 mg. Then, the negative electrode pellet 104 thus obtained is used as the negative electrode case 10 using the electrode current collector 2 made of a conductive resin adhesive containing carbon as a conductive filler.
After being adhered to and integrated with No. 5, dried under reduced pressure at 100 ° C. for 8 hours. In addition, lithium foil 106 on the pellets
4 mm in diameter and 0.15 mm in thickness (having a capacity of 3.88 mAh), which was punched out, were pressed to obtain a lithium-negative electrode pellet laminated electrode. The lithium used for charging and discharging 3.
At 88 mAh, the amount of lithium is 1.04 mol per 1 mol of FeS, which is less than 1.1 mol.
Does not break the structure of.

【0036】電解液107は、プロピレンカーボネー
ト、エチレンカーボネートとエチルメチルカーボネート
の体積比1:1:2混合溶媒にLiClO4を1モル/
l溶解したものを用いた。この様にして作製された電池
について50μA定電流、終止電圧0.7Vの放電と5
0μA定電流、2.3Vまでの充電という条件で充放電サ
イクルを行った。このときの充放電特性を図6に示し
た。
The electrolytic solution 107 was prepared by mixing LiClO 4 in a mixed solvent of propylene carbonate, ethylene carbonate and ethylmethyl carbonate in a volume ratio of 1: 1: 2 and 1 mol / mol.
1 The dissolved product was used. The battery thus manufactured was discharged at a constant current of 50 μA and a final voltage of 0.7 V and
A charge / discharge cycle was performed under the conditions of 0 μA constant current and charging up to 2.3V. The charge / discharge characteristics at this time are shown in FIG.

【0037】[0037]

【発明の効果】本発明では、鉄の硫化物を電池活物質と
して用いることにより容量を格段に増加できることを見
出した。特に、本発明者等が先に出願した組成式Lix
SiOy(但し、0≦x、0<y<2)で示されるリチ
ウムを含有するケイ素の酸化物を負極とし、鉄の硫化物
を正極として用いることにより、高エネルギー密度で且
つ内部抵抗が少なく、充放電特性が優れた1.5V前後の
二次電池を得ることが出来る。又、充放電効率が高く、
デンドライト生成による内部短絡等の不良の発生が無
く、極めて安定でサイクル寿命の長い二次電池を得るこ
とが出来る。
According to the present invention, it has been found that the capacity can be remarkably increased by using iron sulfide as a battery active material. In particular, the composition formula Li x that the present inventors have previously applied for
SiO y (provided that 0 ≦ x, 0 <y <2) is used as a negative electrode, and a lithium oxide containing silicon is used as a positive electrode, and an iron sulfide is used as a positive electrode. It is possible to obtain a secondary battery of around 1.5 V with excellent charge / discharge characteristics. Also, the charge and discharge efficiency is high,
It is possible to obtain a secondary battery that is extremely stable and has a long cycle life, without the occurrence of defects such as internal short circuit due to dendrite formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】負極活物質の性能評価に用いたテストセルの構
造の一例を示した断面図である。
FIG. 1 is a sectional view showing an example of a structure of a test cell used for performance evaluation of a negative electrode active material.

【図2】作製したテストセルを0.1mAの定電流で、
放電(D)の終止電圧0V、充電(C)の終止電圧2.
5Vの条件で充放電サイクルを行ったときのサイクル特
性図である。
FIG. 2 shows a test cell manufactured by a constant current of 0.1 mA,
Discharge (D) end voltage 0V, charge (C) end voltage 2.
It is a cycle characteristic figure when a charging / discharging cycle is performed on conditions of 5V.

【図3】作製したテストセルを0.1mAの定電流で、
放電(D)の終止電圧1.0V、充電(C)の終止電圧
2.5Vの条件で充放電サイクルを行ったときのサイク
ル特性図である。
FIG. 3 shows a test cell manufactured by a constant current of 0.1 mA,
It is a cycle characteristic view when a charging / discharging cycle is performed under the conditions of an end voltage of discharge (D) of 1.0V and an end voltage of charge (C) of 2.5V.

【図4】本発明のコイン型リチウム二次電池の断面図で
ある。
FIG. 4 is a cross-sectional view of a coin-type lithium secondary battery of the present invention.

【図5】正極活物質にFeSを用い、負極活物質にSi
Oを用いた本発明のリチウム二次電池の充放電特性図で
ある。
FIG. 5 uses FeS as the positive electrode active material and Si as the negative electrode active material.
It is a charge / discharge characteristic figure of the lithium secondary battery of this invention which used O.

【図6】正極活物質にリチウム含有マンガン酸化物を用
い、負極活物質にFeSを用いた本発明のリチウム二次
電池の充放電特性図である。
FIG. 6 is a charge / discharge characteristic diagram of a lithium secondary battery of the present invention in which a lithium-containing manganese oxide is used as a positive electrode active material and FeS is used as a negative electrode active material.

【符号の説明】[Explanation of symbols]

1 対極ケース 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット 101 正極ペレット 102 電極集電体 103 正極ケース 104 負極ペレット 105 負極ケース 106 リチウムホイル 107 電解液 108 ガスケット 109 セパレータ 1 counter case 3 opposite poles 4 separator 5 Working pole 6 Working electrode current collector 7 Working pole case 8 gasket 101 Positive electrode pellet 102 electrode collector 103 Positive case 104 negative electrode pellet 105 Negative electrode case 106 lithium foil 107 Electrolyte 108 gasket 109 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 謙介 千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内 (72)発明者 坂田 明史 千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内 (72)発明者 小野寺 英晴 千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内 (56)参考文献 特開 平8−264182(JP,A) 特開 平6−342661(JP,A) 特開 平2−265167(JP,A) 特開 昭61−22577(JP,A) 特開 平6−325765(JP,A) 特開 平8−130011(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 H01M 4/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kensuke Tahara, 1-8 Nakase, Mihama-ku, Chiba, Chiba Seiko Electronics Co., Ltd. (72) Akifumi Sakata 1-8, Nakase, Mihama-ku, Chiba, Chiba Seiko Electronics Industry Co., Ltd. (72) Inventor Hideharu Onodera 1-8 Nakase, Nakase, Mihama-ku, Chiba, Chiba Seiko Electronics Co., Ltd. (56) Reference JP-A-8-264182 (JP, A) JP-A-6- 342661 (JP, A) JP-A-2-265167 (JP, A) JP-A-61-22577 (JP, A) JP-A-6-325765 (JP, A) JP-A-8-130011 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40 H01M 4/02 H01M 4/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式LixFeSy(0.25≦x≦
1.1、0.7<y<1.3)で表されるリチウムを含
んだ鉄の硫化物を活物質として用いた正極と、組成式L
ixSiOy(1.5≦x≦4、0<y<2)で表される
リチウムを含んだケイ素酸化物を活物質として用いた負
極を備えることを特徴とする非水電解質二次電池。
1. A composition formula LixFeSy (0.25 ≦ x ≦
1.1, 0.7 <y <1.3), a positive electrode using an iron sulfide containing lithium as an active material, and a composition formula L
A non-aqueous electrolyte secondary battery comprising a negative electrode using a silicon oxide containing lithium represented by ixSiOy (1.5 ≦ x ≦ 4, 0 <y <2) as an active material.
【請求項2】 リチウムを含んだマンガン酸化物を活物
質として用いた正極と、組成式LixFeSy(0.25
≦x≦1.1、0.7<y<1.3)で表されるリチウ
ムを含んだ鉄の硫化物を活物質として用いた負極を備え
ることを特徴とする非水電解質二次電池。
2. A positive electrode using a manganese oxide containing lithium as an active material, and a composition formula LixFeSy (0.25
A non-aqueous electrolyte secondary battery comprising a negative electrode using an iron sulfide containing lithium represented by ≦ x ≦ 1.1, 0.7 <y <1.3) as an active material.
JP32012396A 1996-11-29 1996-11-29 Non-aqueous electrolyte battery and method for manufacturing the same Expired - Fee Related JP3447187B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP32012396A JP3447187B2 (en) 1996-11-29 1996-11-29 Non-aqueous electrolyte battery and method for manufacturing the same
US08/978,825 US6083644A (en) 1996-11-29 1997-11-26 Non-aqueous electrolyte secondary battery
DE69716013T DE69716013T2 (en) 1996-11-29 1997-11-28 Secondary battery containing non-aqueous electrolyte and manufacturing method
EP97309614A EP0845828B1 (en) 1996-11-29 1997-11-28 Non-aqueous electrolyte secondary battery and method of producing the same
CN97120801A CN1130787C (en) 1996-11-29 1997-11-28 Non-aqueous electrolyte secondary battery
HK98111709A HK1010609A1 (en) 1996-11-29 1998-11-03 Non-aqueous electrolyte secondary battery and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32012396A JP3447187B2 (en) 1996-11-29 1996-11-29 Non-aqueous electrolyte battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10162808A JPH10162808A (en) 1998-06-19
JP3447187B2 true JP3447187B2 (en) 2003-09-16

Family

ID=18117963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32012396A Expired - Fee Related JP3447187B2 (en) 1996-11-29 1996-11-29 Non-aqueous electrolyte battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3447187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259629A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using the electrode, and manufacturing method of the battery
JP2007213825A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
JP2013175316A (en) * 2012-02-24 2013-09-05 Toyota Industries Corp Lithium-ion secondary battery and vehicle mounted with the same

Also Published As

Publication number Publication date
JPH10162808A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JPH097638A (en) Nonaqueous electrolytic secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP3533664B2 (en) Negative electrode material and battery using the same
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000268879A (en) Lithium secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2952367B2 (en) Non-aqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3331608B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees