JP3081981B2 - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP3081981B2
JP3081981B2 JP05059165A JP5916593A JP3081981B2 JP 3081981 B2 JP3081981 B2 JP 3081981B2 JP 05059165 A JP05059165 A JP 05059165A JP 5916593 A JP5916593 A JP 5916593A JP 3081981 B2 JP3081981 B2 JP 3081981B2
Authority
JP
Japan
Prior art keywords
lithium
battery
negative electrode
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05059165A
Other languages
Japanese (ja)
Other versions
JPH06275264A (en
Inventor
英樹 石川
謙介 田原
文晴 岩崎
明史 坂田
誠治 矢作
Original Assignee
セイコーインスツルメンツ株式会社
株式会社エスアイアイ・マイクロパーツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社, 株式会社エスアイアイ・マイクロパーツ filed Critical セイコーインスツルメンツ株式会社
Priority to JP05059165A priority Critical patent/JP3081981B2/en
Priority to US08/127,960 priority patent/US5401599A/en
Publication of JPH06275264A publication Critical patent/JPH06275264A/en
Priority to US08/539,825 priority patent/USRE35818E/en
Application granted granted Critical
Publication of JP3081981B2 publication Critical patent/JP3081981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質及び正極活物質とし、リチウムイ
オン導電性の非水電解質を用いる非水電解質二次電池に
関するものであり、特に、高電圧、高エネルギー密度で
且つ充放電特性が優れ、サイクル寿命の長い新規な二次
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a material capable of inserting and extracting lithium as a negative electrode active material and a positive electrode active material and using a lithium ion conductive non-aqueous electrolyte. The present invention relates to a novel secondary battery having high voltage, high energy density, excellent charge / discharge characteristics, and long cycle life.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギ−密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリ−バックアップ用、カメラ用等の
電源として既に広く用いられている。しかしながら、近
年携帯型の電子機器、通信機器等の著しい発展に伴い、
電源としての電池に対し大電流出力を要求する機器が多
種多様に出現し、経済性と機器の小型軽量化の観点か
ら、再充放電可能で、かつ高エネルギ−密度の二次電池
が強く要望されている。このため、高エネルギ−密度を
有する前記非水電解質電池の二次電池化を進める研究開
発が活発に行われ、一部実用化されているが、エネルギ
−密度、充放電サイクル寿命、信頼性等々まだまだ不十
分である。
2. Description of the Related Art A non-aqueous electrolyte battery using lithium as a negative electrode active material has advantages such as high voltage, high energy density, small self-discharge, and excellent long-term reliability. It is already widely used as a power source for cameras and the like. However, with the recent remarkable development of portable electronic devices and communication devices,
A wide variety of devices that require a large current output from batteries as power sources have emerged. From the viewpoint of economy and reduction in size and weight of devices, rechargeable and high-energy density secondary batteries are strongly demanded. Have been. For this reason, research and development for promoting the conversion of the non-aqueous electrolyte battery having a high energy density into a secondary battery has been actively carried out, and some of them have been put to practical use. However, energy density, charge / discharge cycle life, reliability, etc. Not enough.

【0003】従来、この種の二次電池の正極を構成する
正極活物質としては、充放電反応の形態に依り下記の3
種のタイプのものが見い出されている。第1のタイプ
は、TiS2,MoS2,NbSe3等の金属カルコゲン
化物や、MnO2,MoO3,V25,LiXCoO2,L
XNiO2,LixMn24等の金属酸化物等々の様
に、結晶の層間や格子位置又は格子間隙間にリチウムイ
オン(カチオン)のみがインターカレーション、デイン
ターカレーション反応等に依り出入りするタイプ。第2
のタイプは、ポリアニリン、ポリピロール、ポリパラフ
ェニレン等の導電性高分子の様な、主としてアニオンの
みが安定にドープ、脱ドープ反応に依り出入りするタイ
プ。第3のタイプは、グラファイト層間化合物やポリア
セン等の導電性高分子等々の様な、リチウムカチオンと
アニオンが共に出入り可能なタイプ(インターカレーシ
ョン、デインターカレーション又はドープ、脱ドープ
等)である。
Conventionally, as a positive electrode active material constituting a positive electrode of this type of secondary battery, the following three types are used depending on the form of charge / discharge reaction.
Species types have been found. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 , MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , L
i X NiO 2, Li x Mn 2 O 4 or the like as a so metal oxides, only crystals of the interlayer and the grating position or the interstitial gap lithium-ion (cation) of intercalation and deintercalation reactions and the like Type that comes in and out. Second
The type is a type in which mainly anions alone are stably introduced and removed by doping and undoping reactions, such as conductive polymers such as polyaniline, polypyrrole, and polyparaphenylene. The third type is a type (intercalation, deintercalation or doping, undoping, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. .

【0004】一方、この種の電池の負極を構成する負極
活物質としては、金属リチウムを単独で用いた場合が電
極電位が最も卑であるため、上記の様な正極活物質を用
いた正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2,MoO2,Fe
23,TiS2 等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の結晶構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをド−プしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, when metallic lithium is used alone, the electrode potential is the lowest, so that a positive electrode using the above-described positive electrode active material is used. The output voltage of the combined battery is the highest, and the energy density is high, which is preferable.However, dendrites and passive compounds are generated on the negative electrode due to charge and discharge, and there is a problem that deterioration due to charge and discharge is large and cycle life is short. . In order to solve this problem, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
(2) WO 2 , MoO 2 , Fe
Inorganic compounds such as 2 O 3 , TiS 2 , graphite, intercalation compounds or insertion compounds in which lithium ions are occluded in the crystal structure of a carbonaceous material obtained by calcining an organic substance, and (3) doping lithium ions It has been proposed to use a material capable of inserting and extracting lithium ions, such as conductive polymers such as polyacene and polyacetylene.

【0005】[0005]

【発明が解決しようとする課題】しかし乍、一般に、負
極活物質として上記の様な金属リチウム以外のリチウム
イオンを吸蔵放出可能な物質を用いた負極と、前記の様
な正極活物質を用いた正極とを組合せて電池を構成した
場合には、これらの負極活物質の電極電位が金属リチウ
ムの電極電位より貴であるため、電池の作動電圧が負極
活物質として金属リチウムを単独で用いた場合よりかな
り低下するという欠点がある。例えば、リチウムとA
l,Zn,Pb,Sn,Bi,Cd等の合金を用いる場
合には0.2〜0.8V、炭素−リチウム層間化合物で
は0〜1V、MoO2やWO2等のリチウムイオン挿入化
合物では0.5〜1.5V作動電圧が低下する。
However, in general, a negative electrode using a material capable of inserting and extracting lithium ions other than lithium metal as described above and a positive electrode active material as described above are used as the negative electrode active material. When a battery is configured by combining the positive electrode and the positive electrode, the operating voltage of the battery is higher than that of the negative electrode active material because the electrode potential of these negative electrode active materials is more noble than the electrode potential of metallic lithium. There is the disadvantage that it is much lower. For example, lithium and A
l, Zn, Pb, Sn, Bi, 0.2~0.8V in the case of using an alloy of Cd, etc., carbon - 0 to 1 V in a lithium intercalation compound, a lithium ion insertion compound such as MoO 2 and WO 2 0 The operating voltage is reduced by 0.5 to 1.5 V.

【0006】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。更に、上記の(1)のリチウム
と他金属との合金を用いた場合には、充放電時のリチウ
ムの利用効率が低く、且つ充放電の繰り返しにより電極
にクラックが発生し割れを生じる等のためサイクル寿命
が短いという問題があり、(2)のリチウム層間化合物
又は挿入化合物の場合には、過充放電により結晶構造の
崩壊や不可逆物質の生成等の劣化があり、又電極電位の
高い(貴な)ものが多いため、これを用いた電池の出力
電位が低いという欠点があり、(3)の導電性高分子の
場合には、充放電容量、特に体積当りの充放電容量が小
さいという問題がある。
In addition, since elements other than lithium also serve as negative electrode components, the capacity and energy density per volume and weight are significantly reduced. Further, when the alloy of lithium and another metal of the above (1) is used, the efficiency of use of lithium during charge and discharge is low, and cracks occur in the electrodes due to repetition of charge and discharge, causing cracks and the like. Therefore, there is a problem that the cycle life is short, and in the case of the lithium intercalation compound or the insertion compound of (2), deterioration such as collapse of a crystal structure or generation of an irreversible substance due to overcharging / discharging occurs, and a high electrode potential ( There is a drawback that the output potential of a battery using this is low because there are many precious materials, and in the case of the conductive polymer of (3), the charge / discharge capacity, particularly the charge / discharge capacity per volume is small. There's a problem.

【0007】このため、高電圧、高エネルギ−密度で且
つ充放電特性が優れ、サイクル寿命の長い二次電池を得
るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
Therefore, in order to obtain a secondary battery having a high voltage, a high energy density, excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (low) and lithium during charge / discharge is required. It is necessary to use a negative electrode active material which is free from deterioration such as collapse of a crystal structure and generation of an irreversible substance due to occlusion and release of ions, and has a large amount capable of reversibly storing and releasing lithium ions, that is, an effective charge / discharge capacity.

【0008】一方、上記の正極活物質に於て、第1のタ
イプは、一般にエネルギー密度は大きいが、過充電や過
放電すると結晶の崩壊や不可逆物質の生成等による劣化
が大きいという欠点がある。又、第2、第3のタイプで
は、逆に容量及びエネルギー密度が小さいという欠点が
ある。
On the other hand, the above-mentioned positive electrode active material of the first type generally has a large energy density, but has a drawback that when overcharged or overdischarged, deterioration due to crystal collapse or generation of irreversible material is large. . On the other hand, the second and third types have a disadvantage that the capacity and the energy density are small.

【0009】このため、過充電特性及び過放電特性が優
れ、かつ高容量、高エネルギー密度の二次電池を得るた
めには過充電過放電に依る結晶の崩壊や不可逆物質の生
成が無く、かつ可逆的にリチウムイオンを吸蔵放出でき
る量のより大きい正極活物質が必要である。
For this reason, in order to obtain a secondary battery having excellent overcharge characteristics and overdischarge characteristics and a high capacity and a high energy density, there is no collapse of crystals or generation of irreversible substances due to overcharge and overdischarge, and It is necessary to use a positive electrode active material having a large amount capable of reversibly storing and releasing lithium ions.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の様な問
題点を解決するため、この種の電池の正極の活物質とし
て、 前記(1)式の Lix1yz2 (1) (但し、Mは遷移金属であり、x1,y,zはそれぞれ
0<x1≦1.15,0.85≦y+z≦1.3,0≦
z)で示される層状構造のリチウム遷移金属複合酸化物
もしくはリチウムホウ素遷移金属複合酸化物を用い、か
つ負極の活物質として、前記(2)式の Lix2MnO (2) (但し、0≦x2)で示されるマンガンMnとリチウム
Liの複合酸化物を用いることを提起するものである。
Means for Solving the Problems The present invention for solving such problems described above, as an active material for positive electrode of this type of battery, the (1) formula Li x1 M y B z O 2 ( 1) (where M is a transition metal, and x1, y, and z are each 0 <x1 ≦ 1.15, 0.85 ≦ y + z ≦ 1.3, 0 ≦
z) Lithium transition metal composite oxide or lithium boron transition metal composite oxide having a layered structure represented by the formula (2), and Li x2 MnO (2) of the above formula (2) (where 0 ≦ x2 ) Is proposed to use a composite oxide of manganese Mn and lithium Li.

【0011】本発明電池の正極活物質として用いられる
リチウム遷移金属複合酸化物もしくはリチウムホウ素遷
移金属複合酸化物は次のようにして合成することが出来
る。即ち、リチウムLi,遷移金属M,及びホウ素Bの
各単体または各々の酸化物、水酸化物あるいは炭酸塩、
硝酸塩などの塩を所定比で混合し、空気中または酸素を
有する雰囲気中600゜C以上の温度、好ましくは70
0〜900゜Cの温度で加熱焼成することに依って得ら
れる。Li,M,B等の供給源としてそれらの酸化物、
または、酸素を有する化合物を用いる場合には、不活性
雰囲気中で加熱合成することも可能である。加熱時間
は、通常4〜50時間で十分であるが、合成反応を促進
し、均一性を高めるため、焼成、冷却、粉砕混合のプロ
セスを数回繰り返すことが有効である。
The lithium transition metal composite oxide or lithium boron transition metal composite oxide used as the positive electrode active material of the battery of the present invention can be synthesized as follows. That is, each of lithium Li, transition metal M, and boron B alone or each oxide, hydroxide or carbonate,
A salt such as a nitrate is mixed at a predetermined ratio, and the mixture is heated to a temperature of 600 ° C. or more in air or an atmosphere containing oxygen, preferably 70 ° C.
It is obtained by heating and baking at a temperature of 0 to 900 ° C. Oxides thereof as sources of Li, M, B, etc.,
Alternatively, in the case of using a compound having oxygen, heat synthesis can be performed in an inert atmosphere. The heating time of 4 to 50 hours is usually sufficient, but it is effective to repeat the firing, cooling, and pulverizing and mixing processes several times in order to promote the synthesis reaction and improve the uniformity.

【0012】式(1)に於て、Li量x1は上記の加熱
合成に於いては定比組成x1=1が標準であるが、±1
5%程度の不定比組成も可能であり、又、電気化学的な
インターカレーション、デインターカレーション等によ
り0<x1≦1.15が可能である。遷移金属Mとして
は、Co,Ni,Fe,Mn,Cr,V等が好ましく、
特にCo,Niが充放電特性が優れており好ましい。ホ
ウ素量z及び遷移金属M量yとしては、0≦zかつ0.
85≦y+z≦1.3において充放電時の分極(内部抵
抗)の低減、サイクル特性向上等への効果が顕著であり
好ましい。一方、各サイクル毎の充放電容量は、ホウ素
量zが多過ぎると逆に低下し、0<z≦0.5において
最大となるため、この範囲が特に好ましい。
In the formula (1), the Li amount x1 is a stoichiometric composition x1 = 1 as a standard in the above heat synthesis, but ± 1.
A non-stoichiometric composition of about 5% is also possible, and 0 <x1 ≦ 1.15 can be achieved by electrochemical intercalation, deintercalation, or the like. As the transition metal M, Co, Ni, Fe, Mn, Cr, V and the like are preferable.
In particular, Co and Ni are preferable because of their excellent charge / discharge characteristics. As the boron amount z and the transition metal M amount y, 0 ≦ z and 0.
When 85 ≦ y + z ≦ 1.3, the effects on reduction of polarization (internal resistance) during charge and discharge, improvement of cycle characteristics, and the like are remarkable, which is preferable. On the other hand, the charge / discharge capacity in each cycle decreases when the boron amount z is too large, and becomes maximum when 0 <z ≦ 0.5. Therefore, this range is particularly preferable.

【0013】本発明電池の負極の活物質として用いられ
るマンガンとリチウムとの該複合酸化物の好ましい製造
方法としては、下記の2種類の方法が上げられるが、こ
れらに限定はされない。第一の方法は、上記のマンガン
とリチウムの各々の単体又はそれらの酸素を有する化合
物を所定のモル比で混合し、不活性雰囲気中もしくは真
空中或は酸素量を制御した雰囲気中で加熱して合成する
方法である。出発原料となるマンガン及びリチウムのそ
れぞれの化合物としては、各々の酸化物、水酸化物、も
しくは炭酸塩、硝酸塩等の塩或は有機化合物等々の不活
性雰囲気中もしくは真空中で加熱して酸化物を生成する
化合物であれば良い。加熱温度は、出発原料と加熱雰囲
気によっても異なるが、400゜C以上で合成が可能で
あり、好ましくは600゜C以上、より好ましくは70
0゜C以上の温度がよい。
Preferred methods for producing the composite oxide of manganese and lithium used as the active material of the negative electrode of the battery of the present invention include, but are not limited to, the following two methods. In the first method, each of the above-described manganese and lithium alone or a compound having oxygen thereof is mixed at a predetermined molar ratio, and heated in an inert atmosphere or in a vacuum or in an atmosphere in which the amount of oxygen is controlled. It is a method of combining. The respective compounds of manganese and lithium as starting materials include oxides, hydroxides, salts such as carbonates and nitrates or organic compounds, etc. Any compound that produces The heating temperature varies depending on the starting material and the heating atmosphere, but synthesis is possible at 400 ° C or higher, preferably 600 ° C or higher, more preferably 70 ° C or higher.
A temperature of 0 ° C. or higher is preferred.

【0014】この様にして得られるマンガンとリチウム
との複合酸化物は、これをそのままもしくは必要により
粉砕整粒や造粒等の加工を施した後に負極の活物質とし
て用いることが出来るし、又、下記の第二の方法と同様
に、このリチウムを含有するマンガンの複合酸化物と金
属リチウムもしくはリチウムを含有する物質との電気化
学的反応に依り、この複合酸化物に更にリチウムイオン
を吸蔵させるか、又は逆にこの複合酸化物からリチウム
イオンを放出させることに依り、リチウム含有量を増加
又は減少させたものを活物質として用いても良い。
The composite oxide of manganese and lithium thus obtained can be used as an active material for a negative electrode as it is or after being subjected to processing such as pulverization and sizing as required. In the same manner as in the second method described below, lithium ions are further stored in the composite oxide by an electrochemical reaction between the lithium-containing manganese composite oxide and metallic lithium or a lithium-containing substance. Alternatively, conversely, a compound having a lithium content increased or decreased by releasing lithium ions from the composite oxide may be used as the active material.

【0015】第二の方法は、一酸化マンガンMnOとリ
チウムもしくはリチウムを含有する物質との電気化学的
反応に依りMnOにリチウムイオンを吸蔵させてマンガ
ンとリチウムとの複合酸化物を得る方法である。この電
気化学的反応に用いる為のリチウムを含有する物質とし
ては、例えば、前述の従来の技術の項で上げた正極活物
質又は負極活物質等に用いられる様なリチウムイオンを
吸蔵放出可能な物質を用いることが出来る。
The second method is a method of obtaining a composite oxide of manganese and lithium by absorbing lithium ions in MnO by an electrochemical reaction between manganese monoxide MnO and lithium or a substance containing lithium. . Examples of the substance containing lithium for use in this electrochemical reaction include, for example, substances capable of inserting and extracting lithium ions such as those used for the positive electrode active material or the negative electrode active material mentioned in the section of the prior art. Can be used.

【0016】この様な、MnOへの電気化学的反応に依
るリチウムイオンの吸蔵は、電池組立後電池内で、又は
電池製造工程の途上に於て電池内もしくは電池外で行う
ことが出来、具体的には次の様にして行うことが出来
る。即ち、(1)MnO又はそれらと導電剤及び結着剤
等との混合合剤を所定形状に成形したものを一方の電極
(作用極)とし、金属リチウム又はリチウムを含有する
物質をもう一方の電極(対極)としてリチウムイオン導
電性の非水電解質に接して両電極を対向させて電気化学
セルを構成し、作用極がカソ−ド反応をする方向に適当
な電流で通電もしくは放電し電気化学的にリチウムイオ
ンをMnOに吸蔵させる方法。得られた該作用極をその
まま負極としてもしくは負極を構成する活物質として用
いて非水電解質二次電池を構成する。
Such occlusion of lithium ions by electrochemical reaction to MnO can be performed in the battery after the battery is assembled or in or outside the battery during the battery manufacturing process. Specifically, it can be performed as follows. That is, (1) MnO or a mixture obtained by mixing them with a conductive agent and a binder into a predetermined shape is used as one electrode (working electrode), and lithium metal or a substance containing lithium is used as the other electrode. An electrochemical cell is constructed by contacting a lithium ion conductive non-aqueous electrolyte as an electrode (counter electrode) with both electrodes facing each other, and conducting or discharging an appropriate current in the direction in which the working electrode undergoes a cathodic reaction. Method to occlude lithium ions into MnO. A non-aqueous electrolyte secondary battery is formed by using the obtained working electrode as a negative electrode as it is or as an active material constituting the negative electrode.

【0017】(2)MnO又はそれらと導電剤及び結着
剤等との混合合剤を所定形状に成形し、これにリチウム
もしくはリチウムの合金等を圧着もしくは接触させて積
層したものを負極として非水電解質二次電池に組み込
む。電池内でこの積層電極が電解質に触れることにより
一種の局部電池を形成し自己放電し電気化学的にリチウ
ムがMnOに吸蔵される方法。
(2) MnO or a mixture thereof with a conductive agent and a binder is formed into a predetermined shape, and lithium or an alloy of lithium is pressed or contacted and laminated to form a negative electrode. Incorporate into a water electrolyte secondary battery. A method in which the laminated electrode contacts the electrolyte in the battery to form a kind of local battery, self-discharges, and electrochemically occludes lithium in MnO.

【0018】(3)MnOを負極の活物質として負極を
構成し、正極にリチウムを含有しリチウムイオンを吸蔵
放出可能な本発明の正極活物質Lix1yz2を用い
た非水電解質二次電池を構成する。電池として使用時に
充電もしくは放電を行うことによりMnOにリチウムイ
オンが吸蔵される方法。
[0018] (3) of MnO constitutes a negative electrode as an active material of the negative electrode, a nonaqueous using a positive electrode active material Li x1 M y B z O 2 of the lithium ion containing lithium in the positive electrode capable of absorbing and releasing the invention Construct an electrolyte secondary battery. A method in which lithium ions are inserted into MnO by charging or discharging when used as a battery.

【0019】この様にして得られるマンガンとリチウム
との複合酸化物Lix2MnOを負極の活物質として用い
る。式(2)に於て、マンガンMnと酸素Oとの組成比
は上記のように1:1が標準であるが、合成に際ししば
しばマンガンMn又は酸素Oの欠損に依る不定比化合物
を生じ、その欠損の範囲は±25%に及ぶ。この様な不
定比組成のものも本発明に含まれる。又、リチウムの含
有量x2としては該複合酸化物が安定に存在する範囲で
あれば良く、0≦x2≦2の範囲が特に好ましい。
The composite oxide Li x2 MnO of manganese and lithium thus obtained is used as the active material of the negative electrode. In the formula (2), the composition ratio of manganese Mn and oxygen O is 1: 1 as described above as a standard, but a non-stoichiometric compound often occurs due to the deficiency of manganese Mn or oxygen O during synthesis. The extent of the defect extends to ± 25%. Such nonstoichiometric compositions are also included in the present invention. The content x2 of lithium may be within a range in which the composite oxide is stably present, and is particularly preferably in a range of 0 ≦ x2 ≦ 2.

【0020】一方、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、メチルフォーメイト、1、2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4,LiPF6,LiB
4,LiCF3SO3 等のリチウムイオン解離性塩を溶
解した有機電解液、ポリエチレンオキシドやポリフォス
ファゼン架橋体等の高分子に前記リチウム塩を固溶させ
た高分子固体電解質あるいはLi3N,LiI等の無機
固体電解質等々のリチウムイオン導電性の非水電解質で
あれば良い。
On the other hand, as the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO 4 , LiPF 6 , LiB as a supporting electrolyte in a single or mixed organic solvent such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methylformate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan, dimethylformamide, etc.
An organic electrolytic solution in which a lithium ion dissociable salt such as F 4 or LiCF 3 SO 3 is dissolved; a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene; or Li 3 N , LiI, etc., as long as it is a lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte.

【0021】[0021]

【作用】本発明は、リチウムを吸蔵放出可能な上記のL
ix2MnOを負極活物質に、Lix1MyBzO2 を正極活
物質に用い、リチウムイオン導電性の非水電解質を用い
ることにより、高電圧、高エネルギー密度で且つ充放電
特性が優れ、サイクル寿命の長い新規な二次電池を提供
することができる。
According to the present invention, the above-mentioned L capable of inserting and extracting lithium is used.
The ix 2 MnO negative electrode active material, using Li x 1M y BzO 2 in the positive electrode active material, by using a lithium ion conductive non-aqueous electrolyte, a high voltage, excellent and charge-discharge characteristics at high energy density, cycle A new secondary battery having a long life can be provided.

【0022】本発明に依るマンガンとリチウムとの複合
酸化物Lix2MnOを活物質とする負極は、金属リチウ
ムに対する電極電位が0〜1.5Vの卑な領域の充放電
容量が大きく、且つ過充電過放電に依る劣化が小さく、
優れたサイクル特性を有する。この様に優れた充放電特
性が得られる理由は必ずしも明らかではないが、本発明
の負極活物質であるマンガンとリチウムとの複合酸化物
Lix2MnOは、この構造中でのリチウムイオンの移動
度が高く、且つ、リチウムイオンを吸蔵できるサイトが
非常に多いためリチウムイオンの吸蔵放出が容易である
為と推定される。
The negative electrode according to the present invention using the composite oxide Lix 2 MnO of manganese and lithium as an active material has a large charge / discharge capacity in a base region where the electrode potential with respect to metallic lithium is 0 to 1.5 V, and has an excessively high charge / discharge capacity. Deterioration due to charge overdischarge is small,
Has excellent cycle characteristics. Although the reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, the composite oxide Li x2 MnO of manganese and lithium, which is the negative electrode active material of the present invention, has a high mobility of lithium ions in this structure. It is presumed that lithium ions are easily absorbed and released because there are so many sites capable of occluding lithium ions.

【0023】一方、正極活物質として用いられるLix1
yz2 は、金属リチウムに対する電極電位が約4V
もしくはそれ以上の高電位を有し、かつ0<x≦1.1
5の間でLiイオンのインターカレーション、デインタ
ーカレーションによる可逆的な充放電が可能であり、か
つ過充電過放電による劣化が小さく、優れたサイクル特
性を有する。特にホウ素Bの含有量zが0.05≦z<
0.5において分極が小さく、かつサイクル特性に優れ
ている。この様に優れた充放電特性が得られる理由は必
ずしも明らかではないが、本発明の正極活物質Lix1
yz2 は、Bを含有しない層状構造の酸化物Lix1
y'2 のM原子の一部がB原子で置換される等によりB
を含有し、結晶構造や電子構造が変化するため、Liイ
オン導電性が高まり、且つリチウムイオンの吸蔵放出が
容易になる為であると推定される。
On the other hand, Li x1 used as a positive electrode active material
M y B z O 2 is about 4V is the electrode potential relative to lithium metal
Or higher, and 0 <x ≦ 1.1
Reversible charge / discharge by intercalation and deintercalation of Li ions is possible between 5, and deterioration due to overcharge and overdischarge is small, and excellent cycle characteristics are obtained. In particular, when the content z of boron B is 0.05 ≦ z <
At 0.5, the polarization is small and the cycle characteristics are excellent. Although the reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, the cathode active material Li x1 M of the present invention is not clearly understood.
y B z O 2 is a layered oxide Li x1 M containing no B
B by such a part of the M atoms in y 'O 2 is replaced by B atoms
It is presumed that this is because the crystal structure and the electronic structure are changed, so that the Li ion conductivity is increased and the insertion and extraction of lithium ions are facilitated.

【0024】そのため、これらの負極活物質と正極活物
質を用いた電池は、可逆的にリチウムイオンを吸蔵放出
できる量即ち充放電容量が著しく大きく、かつ充放電の
分極が小さいため、大電流での充放電が可能であり、更
に過充電過放電による分解や結晶崩壊等の劣化が殆ど見
られず、極めて安定でサイクル寿命の長い優れた特性を
示す。
Therefore, a battery using the negative electrode active material and the positive electrode active material has an extremely large amount of reversible insertion and extraction of lithium ions, that is, a remarkably large charge / discharge capacity, and a small charge / discharge polarization. , And further exhibit almost no degradation such as decomposition or crystal collapse due to overcharge and overdischarge, and exhibit excellent characteristics with extremely stable and long cycle life.

【0025】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail by way of examples.

【0026】[0026]

【実施例】【Example】

(実施例1)図1は、本発明に依る非水電解質二次電池
の一例を示すコイン型電池の断面図である。図におい
て、1は負極端子を兼ねる負極ケースであり、外側片面
をNiメッキしたステンレス鋼製の板を絞り加工したも
のである。3は、後述の本発明に依る負極活物質を用い
て構成された負極であり、炭素を導電性フィラーとする
導電性接着剤からなる負極集電体2により負極ケース1
に接着されている。7は外側片面をNiメッキしたステ
ンレス鋼製の正極ケースであり、正極端子を兼ねてい
る。5は後述の本発明に依る正極活物質を用いて構成さ
れた正極であり、炭素を導電性フィラーとする導電性接
着剤からなる正極集電体6により正極ケース7に接着さ
れている。4はポリプロピレンの多孔質フィルムからな
るセパレ−タであり、電解液が含浸されている。8はポ
リプロピレンを主体とするガスケットであり、負極ケー
ス1と正極ケース7の間に介在し、負極と正極との間の
電気的絶縁性を保つと同時に、正極ケース開口縁が内側
に折り曲げられカシメられることに依って、電池内容物
を密封、封止している。電解質はプロピレンカ−ボネ−
トとエチレンカーボネートと1,2−ジメトキシエタン
の体積比1:1:2混合溶媒に過塩素酸リチウムLiC
lO4 を1モル/l溶解したものを用いた。電池の大き
さは、外径20mm、厚さ1.6mmであった。
(Embodiment 1) FIG. 1 is a sectional view of a coin-type battery showing an example of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 denotes a negative electrode case also serving as a negative electrode terminal, which is formed by drawing a stainless steel plate having one outer surface Ni-plated. Reference numeral 3 denotes a negative electrode formed by using a negative electrode active material according to the present invention, which will be described later. The negative electrode case 1 includes a negative electrode current collector 2 made of a conductive adhesive containing carbon as a conductive filler.
Adhered to. Reference numeral 7 denotes a stainless steel positive electrode case in which one outer surface is Ni-plated, and also serves as a positive electrode terminal. Reference numeral 5 denotes a positive electrode formed by using a positive electrode active material according to the present invention, which will be described later, and is bonded to a positive electrode case 7 by a positive electrode current collector 6 made of a conductive adhesive using carbon as a conductive filler. Reference numeral 4 denotes a separator made of a porous film of polypropylene, which is impregnated with an electrolytic solution. Reference numeral 8 denotes a gasket mainly composed of polypropylene, which is interposed between the negative electrode case 1 and the positive electrode case 7 to maintain the electrical insulation between the negative electrode and the positive electrode, and at the same time, the opening edge of the positive electrode case is bent inward and caulked. The battery contents are hermetically sealed. The electrolyte is propylene carbonate
Lithium perchlorate LiC in a mixed solvent of 1: 1, 2: 2 volume ratio of ethylene carbonate and 1,2-dimethoxyethane
A solution obtained by dissolving lO 4 at 1 mol / l was used. The size of the battery was 20 mm in outer diameter and 1.6 mm in thickness.

【0027】負極3は次の様にして作製した。市販の純
度99.9%の一酸化マンガンMnOを自動乳鉢に依り
粒径53μm以下に粉砕整粒したものを本発明に依る負
極活物質とし、これに導電剤としてグラファイトを、結
着剤として架橋型アクリル酸樹脂等を重量比65:2
0:15の割合で混合して負極合剤とし、次にこの負極
合剤を2ton/cm2 で直径15mm、厚さが0.2
3mmのペレットに加圧成形した後、200℃で10時
間減圧加熱乾燥したものを負極とした。
The negative electrode 3 was manufactured as follows. A commercially available manganese monoxide MnO having a purity of 99.9% was pulverized and sized using an automatic mortar to a particle size of 53 μm or less as a negative electrode active material according to the present invention. Graphite was used as a conductive agent and crosslinked as a binder. 65: 2 weight ratio acrylic resin
The mixture was mixed at a ratio of 0:15 to form a negative electrode mixture. Then, the negative electrode mixture was mixed at 2 ton / cm 2 with a diameter of 15 mm and a thickness of 0.2.
After pressure molding into a 3 mm pellet, the product was dried by heating under reduced pressure at 200 ° C. for 10 hours to obtain a negative electrode.

【0028】正極5は次の様にして作製した。水酸化リ
チウムLiOH・H2 Oと炭酸コバルトCoCO3 とを
Li:Coのモル比が1:1となる様に秤量し、乳鉢を
用いて十分混合した後、この混合物を大気中850℃の
温度で12時間加熱焼成し、冷却後、粒径53μm以下
に粉砕整粒した。この焼成、粉砕整粒を2回繰り返して
本発明に依る正極活物質LiCoO2 を合成した。
The positive electrode 5 was manufactured as follows. Lithium hydroxide LiOH.H 2 O and cobalt carbonate CoCO 3 are weighed so that the molar ratio of Li: Co becomes 1: 1 and sufficiently mixed using a mortar, and the mixture is heated to 850 ° C. in the atmosphere. For 12 hours, cooled and then crushed and sized to a particle size of 53 μm or less. This firing and pulverizing and sizing were repeated twice to synthesize the positive electrode active material LiCoO 2 according to the present invention.

【0029】この生成物を正極活物質とし、これに導電
剤としてグラファイトを、結着剤としてフっ素樹脂等を
重量比80:15:5の割合で混合して正極合剤とし、
次にこの正極合剤を2ton/cm2 で直径16.2m
m厚さ0.67mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを正極とした。
This product is used as a positive electrode active material, graphite is mixed as a conductive agent, and a fluorine resin or the like is mixed as a binder in a weight ratio of 80: 15: 5 to form a positive electrode mixture.
Next, this positive electrode mixture was applied at 2 ton / cm 2 and a diameter of 16.2 m.
m after being pressed into 0.67 mm thick pellets
What was dried by heating under reduced pressure at 0 ° C. for 10 hours was used as a positive electrode.

【0030】この様にして作製された電池(電池Aとす
る)は、室温で1週間放置エ−ジングされた後、後述の
充放電試験が行われた。この電池Aを1mAの定電流
で、充電の終止電圧4.4V、放電の終止電圧2.0V
の条件で充放電サイクルを行ったときの1サイクル目と
2サイクル目の充放電特性を図2に、サイクル特性を図
3に示した。尚、充放電サイクルは充電からスタ−トし
た。
The thus prepared battery (battery A) was aged at room temperature for one week, and then subjected to a charge / discharge test described later. The battery A was charged at a constant current of 1 mA at a charge end voltage of 4.4 V and a discharge end voltage of 2.0 V.
FIG. 2 shows the charge / discharge characteristics of the first and second cycles when the charge / discharge cycle was performed under the conditions described above, and FIG. 3 shows the cycle characteristics. The charge / discharge cycle was started from charging.

【0031】この電池Aは、充電に依って正極活物質か
ら電解質中にリチウムイオンが放出され、このリチウム
イオンが電解質中を移動して負極活物質と電極反応し、
活物質に電気化学的にリチウムイオンが吸蔵されリチウ
ムを含有するリチウムマンガン複合酸化物Lix2MnO
が生成する。次に、放電に際しては負極のリチウムマン
ガン複合酸化物からリチウムイオンが電解質中に放出さ
れ、電解質中を移動して正極活物質に吸蔵されることに
依り安定に繰り返し充放電できる。ここで、負極活物質
は1回目の充電によりリチウムを含有する複合酸化物L
x2MnOを生成した後は、その後の放電−充電のサイ
クルに於ては、完全放電時以外にはリチウムを含有する
複合酸化物Lix2' MnOを形成している。
In the battery A, lithium ions are released from the positive electrode active material into the electrolyte by charging, and the lithium ions move in the electrolyte and react with the negative electrode active material in an electrode.
Li x2 MnO lithium-manganese composite oxide electrochemically lithium ions in the active material containing lithium is occluded
Is generated. Next, at the time of discharging, lithium ions are released from the lithium manganese composite oxide of the negative electrode into the electrolyte, move in the electrolyte and are occluded by the positive electrode active material, so that charging and discharging can be stably repeated. Here, the negative electrode active material is a composite oxide L containing lithium by the first charge.
After the generation of i x2 MnO, in the subsequent discharge-charge cycle, a lithium-containing composite oxide Li x2 ′ MnO is formed except at the time of complete discharge.

【0032】図2〜3から明らかな様に、本発明による
電池Aは、充放電容量が著しく大きいことが分かる。
又、充電容量に対する放電容量(充放電効率)の低下
は、1サイクル目以外では著しく小さく、充放電の繰り
返しによる放電容量の低下(サイクル劣化)も小さい。
更に、全充放電領域に渡って充電と放電の作動電圧の差
が著しく小さく、電池の分極(内部抵抗)が著しく小さ
く、大電流充放電が容易なことが分かる。
As is clear from FIGS. 2 and 3, the battery A according to the present invention has a remarkably large charge / discharge capacity.
Further, the decrease in the discharge capacity (charge / discharge efficiency) relative to the charge capacity is extremely small except in the first cycle, and the decrease in the discharge capacity (cycle deterioration) due to repeated charge / discharge is also small.
Furthermore, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging and discharging region, the polarization (internal resistance) of the battery is extremely small, and large-current charging and discharging is easy.

【0033】尚、1サイクル目の充電容量に対する1サ
イクル目の放電容量の低下(初期ロス)がやや大きい原
因は、1サイクル目の充電に於いて、負極活物質に電気
化学的にリチウムイオンが吸蔵される際に、負極合剤に
導電剤として加えたグラファイトや結着剤等とLiとの
間で発生する副反応が主原因であり、又、負極活物質の
MnOに吸蔵され、放電時に放出されないで残存するL
iが存在するためと考えられる。
The reason why the decrease in the discharge capacity in the first cycle (initial loss) with respect to the charge capacity in the first cycle is slightly large is that lithium ions are electrochemically added to the negative electrode active material in the first cycle charge. At the time of occlusion, the main cause is a side reaction that occurs between Li and graphite or a binder added as a conductive agent to the negative electrode mixture, and is occluded by MnO of the negative electrode active material, during discharge. L remaining without being released
It is considered that i exists.

【0034】(実施例2)図1において、負極3は次の
様にして作製した。実施例1と同じ負極活物質、負極合
剤を用いて、2ton/cm2 で直径15mm、厚さが
0.33mmのペレットに加圧成形した後、200℃で
10時間減圧加熱乾燥し、その上に所定厚みのリチウム
フォイルを直径14mmに打ち抜いたものを圧着したリ
チウム―負極合剤ペレット積層電極を負極とした。
Example 2 In FIG. 1, the negative electrode 3 was manufactured as follows. The same negative electrode active material and negative electrode mixture as in Example 1 were pressed at 2 ton / cm 2 into a pellet having a diameter of 15 mm and a thickness of 0.33 mm, and then dried by heating under reduced pressure at 200 ° C. for 10 hours. A lithium-negative electrode composite pellet-laminated electrode obtained by punching out a lithium foil having a predetermined thickness to a diameter of 14 mm on the top thereof was used as a negative electrode.

【0035】正極5は次の様にして作製した。水酸化リ
チウムLiOH・H2Oと炭酸コバルトCoCO3と酸化
ホウ素B23 をLi:Co:Bのモル比が1:0.
9:0.1となる様に秤量し、乳鉢を用いて十分混合し
た後、この混合物を大気中850℃の温度で12時間加
熱焼成し、冷却後、粒径53μm以下に粉砕整粒した。
この焼成、粉砕整粒を2回繰り返して本発明に依る正極
活物質LiCo0.90.12 を合成した。
The positive electrode 5 was manufactured as follows. Lithium hydroxide LiOH.H 2 O, cobalt carbonate CoCO 3, and boron oxide B 2 O 3 were prepared at a molar ratio of Li: Co: B of 1: 0.
The mixture was weighed so as to be 9: 0.1, sufficiently mixed using a mortar, and heated and fired in the air at a temperature of 850 ° C. for 12 hours. After cooling, the mixture was pulverized and sized to a particle size of 53 μm or less.
This firing and pulverization and sizing were repeated twice to synthesize the positive electrode active material LiCo 0.9 B 0.1 O 2 according to the present invention.

【0036】この生成物を正極活物質とし、これに導電
剤としてグラファイトを、結着剤としてフっ素樹脂等を
重量比80:15:5の割合で混合して正極合剤とし、
次にこの正極合剤を2ton/cm2 で直径16.2m
m厚さ0.47mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを正極とした。
This product is used as a positive electrode active material, and graphite is mixed as a conductive agent with fluorine resin and the like as a binder in a weight ratio of 80: 15: 5 to form a positive electrode mixture.
Next, this positive electrode mixture was applied at 2 ton / cm 2 and a diameter of 16.2 m.
m after being pressed into a 0.47 mm thick pellet.
What was dried by heating under reduced pressure at 0 ° C. for 10 hours was used as a positive electrode.

【0037】それ以外は、すべて実施例1の電池Aと同
様な電池Bを作製した。この様にして作製された電池
は、室温で1週間放置エ−ジングされた後、後述の充放
電試験が行われた。このエ−ジングによって、負極のリ
チウム−負極合剤ペレット積層電極は電池内で非水電解
液に触れることにより、リチウムフォイルは実質的に全
て負極合剤に電気化学的に吸蔵された。
Except for this, a battery B similar to the battery A of Example 1 was prepared. The battery thus manufactured was aged at room temperature for one week, and then subjected to a charge / discharge test described later. Due to this aging, the lithium-negative electrode mixture pellet electrode of the negative electrode came into contact with the non-aqueous electrolyte in the battery, and substantially all of the lithium foil was electrochemically occluded in the negative electrode mixture.

【0038】この様にして得られた電池Bについても、
実施例1と同様に1mAの定電流で充電の終止電圧4.
4V、放電の終止電圧2.0Vの条件で充放電サイクル
試験を行った。この時の1サイクル目と2サイクル目の
充放電特性を図4に、サイクル特性を図5に示した。
The battery B thus obtained is also
3. End voltage of charging at a constant current of 1 mA as in Example 1.
A charge / discharge cycle test was performed under the conditions of 4 V and a discharge end voltage of 2.0 V. FIG. 4 shows the charge / discharge characteristics of the first and second cycles, and FIG. 5 shows the cycle characteristics.

【0039】図から明かな様に、本実施例の電池Bは、
実施例1の電池A以上に優れた充放電特性を有すること
が判る。特に、1サイクル目の充電容量に対する1サイ
クル目の放電容量の低下(初期ロス)がほとんど無く、
実施例1の電池Aと比較して著しく改善されていること
が判る。これは、充放電に伴う導電剤や結着剤等との副
反応やMnOへの残存分に相当するリチウムを、予め負
極合剤に積層して電池を組立て、電池内で電解液に触れ
させることにより電池組立後自発的に負極合剤にこのリ
チウムを反応させ吸蔵させたため、充放電時の負極にお
けるリチウムのロスが発生しないためである。
As is clear from the figure, the battery B of this embodiment is
It can be seen that the battery A has better charge / discharge characteristics than the battery A of Example 1. In particular, there is almost no decrease (initial loss) in the discharge capacity in the first cycle relative to the charge capacity in the first cycle,
It can be seen that it is significantly improved as compared with the battery A of Example 1. In this method, lithium corresponding to a side reaction with a conductive agent or a binder during charge / discharge or a residual amount in MnO is previously laminated on a negative electrode mixture to assemble a battery and make the electrolyte come into contact with the electrolyte in the battery. As a result, the lithium was spontaneously reacted with the negative electrode mixture after the battery was assembled to cause occlusion, so that no lithium loss occurred in the negative electrode during charging and discharging.

【0040】又、正極活物質としてホウ素を含有する複
合酸化物を用いることにより、サイクル劣化が著しく改
善されていることが判る。
It can also be seen that the use of a composite oxide containing boron as the positive electrode active material significantly reduces cycle deterioration.

【0041】[0041]

【発明の効果】以上詳述した様に、本発明は、非水電解
質二次電池の正極の活物質としてリチウムホウ素遷移金
属複合酸化物Lix1yz2 を用い、負極の活物質と
してリチウムマンガン複合酸化物Lix2MnOを用いた
ものであり、充放電により可逆的にリチウムイオンを吸
蔵放出出来る量即ち充放電容量が著しく大きく、かつ充
放電の分極が小さいため、大電流での充放電が可能であ
り、更に過充電過放電による分解や結晶崩壊等の劣化が
殆ど見られず、極めて安定でサイクル寿命の長い高電圧
かつ高エネルギ−密度の電池を得ることが出来る等々優
れた効果を有する。
As has been described above in detail, the present invention uses a lithium-boron transition metal composite oxide Li x1 M y B z O 2 as the active material of the positive electrode of the nonaqueous electrolyte secondary battery, the active material of the negative electrode The lithium manganese composite oxide Li x2 MnO is used as the amount, and the amount capable of reversibly inserting and extracting lithium ions by charge and discharge, that is, the charge and discharge capacity is remarkably large, and the polarization of charge and discharge is small, so that at a large current, It is capable of charging and discharging, has little degradation such as decomposition and crystal collapse due to overcharging and overdischarging, and has a very high stability and a long cycle life. Has an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】本発明による電池の1サイクル目と2サイクル
目の充放電特性を示した説明図である。
FIG. 2 is an explanatory diagram showing charge and discharge characteristics of a battery according to the present invention in a first cycle and a second cycle.

【図3】本発明による電池のサイクル特性を示した説明
図である。
FIG. 3 is an explanatory diagram showing cycle characteristics of a battery according to the present invention.

【図4】本発明による電池の1サイクル目と2サイクル
目の充放電特性を示した説明図である。
FIG. 4 is an explanatory diagram showing charge / discharge characteristics of a battery according to the present invention in a first cycle and a second cycle.

【図5】本発明による電池のサイクル特性を示した説明
図である。
FIG. 5 is an explanatory diagram showing cycle characteristics of a battery according to the present invention.

【符号の説明】 1 負極ケ−ス 2 負極集電体 3 負極 4 セパレ−タ 5 正極 6 正極集電体 7 正極ケ−ス 8 ガスケット[Description of Signs] 1 Negative electrode case 2 Negative electrode current collector 3 Negative electrode 4 Separator 5 Positive electrode 6 Positive electrode current collector 7 Positive electrode case 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 文晴 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 坂田 明史 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 矢作 誠治 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (56)参考文献 特開 平4−324258(JP,A) 特開 平4−237970(JP,A) 特開 平6−60867(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Fumiharu Iwasaki 6-31-1 Kameido, Koto-ku, Tokyo Inside Seiko Electronic Industries Co., Ltd. (72) Inventor Akifumi Sakata 6-31-1, Kameido, Koto-ku, Tokyo No. Seiko Electronics Co., Ltd. (72) Inventor Seiji Yahagi 6-31-1, Kameido, Koto-ku, Tokyo Seiko Electronics Co., Ltd. (56) References JP-A-4-324258 (JP, A) JP-A-4-237970 (JP, A) JP-A-6-60867 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、 一般式Li x1 y z 2 (但し、Mは一種以上の遷移金
属であり、X1、y、zはそれぞれ0<X1≦1.15、
0.85≦y+z≦1.3、0<z)で示される層状構造
の複合酸化物を活物質とする正極と、 一酸化マンガンMnO又は一般式Li x2 MnO(但し、
0<X2)で示されるマンガンMnとリチウムLiの複
合酸化物を活物質とする負極とを用いたことを特徴とす
る非水電解質二次電池。
1. A negative electrode, a positive electrode and a lithium ion conductive non-conductive material.
A non-aqueous electrolyte secondary battery comprising at least a water electrolyte.
There are, in general formula Li x1 M y B z O 2 ( where, M is one or more transition metal
X1, y and z are each 0 <X1 ≦ 1.15,
0.85 ≦ y + z ≦ 1.3, 0 <z)
And a positive electrode using a composite oxide of the following formula as an active material: manganese monoxide MnO or a general formula Li x2 MnO (provided that
0 <X2) complex of manganese Mn and lithium Li
And a negative electrode using a composite oxide as an active material.
Non-aqueous electrolyte secondary battery.
【請求項2】 電池組立後電池内で、又は電池製造工程
の途上において電池内もしくは電池外で、一酸化マンガ
ンMnOとリチウムもしくはリチウムを含有する物質と
の電気化学的反応に依り該一酸化マンガンMnOにリチ
ウムを含有させてマンガンとリチウムとの複合酸化物を
得ることを特徴とする請求項1記載の非水電解質二次電
池の製造方法。
2. In a battery after battery assembly or in a battery manufacturing process
Manganese monoxide inside or outside the battery
MnO and lithium or a substance containing lithium
Reacts with the manganese monoxide MnO by electrochemical reaction of
To form a composite oxide of manganese and lithium
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein
Pond manufacturing method.
JP05059165A 1992-10-01 1993-03-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP3081981B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05059165A JP3081981B2 (en) 1993-03-18 1993-03-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same
US08/127,960 US5401599A (en) 1992-10-02 1993-09-28 Non-aqueous electrolyte secondary battery and method of producing the same
US08/539,825 USRE35818E (en) 1992-10-01 1995-10-06 Non-aqueous electrolyte secondary battery and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05059165A JP3081981B2 (en) 1993-03-18 1993-03-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06275264A JPH06275264A (en) 1994-09-30
JP3081981B2 true JP3081981B2 (en) 2000-08-28

Family

ID=13105501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05059165A Expired - Lifetime JP3081981B2 (en) 1992-10-01 1993-03-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3081981B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries

Also Published As

Publication number Publication date
JPH06275264A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5401599A (en) Non-aqueous electrolyte secondary battery and method of producing the same
EP0870339B1 (en) Electrode material for electrochemical lithium intercalation
EP1494302A1 (en) Nonaqueous electrolyte secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
USRE35818E (en) Non-aqueous electrolyte secondary battery and method of producing the same
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP2952367B2 (en) Non-aqueous electrolyte secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2000082459A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2000077075A (en) Nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 13