JP3390195B2 - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP3390195B2
JP3390195B2 JP00616793A JP616793A JP3390195B2 JP 3390195 B2 JP3390195 B2 JP 3390195B2 JP 00616793 A JP00616793 A JP 00616793A JP 616793 A JP616793 A JP 616793A JP 3390195 B2 JP3390195 B2 JP 3390195B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
lithium
discharge
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00616793A
Other languages
Japanese (ja)
Other versions
JPH06215770A (en
Inventor
明史 坂田
文晴 岩崎
誠治 矢作
謙介 田原
英樹 石川
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP00616793A priority Critical patent/JP3390195B2/en
Publication of JPH06215770A publication Critical patent/JPH06215770A/en
Application granted granted Critical
Publication of JP3390195B2 publication Critical patent/JP3390195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質とし、リチウムイオン導電性の非
水電解質を用いる非水電解質二次電池に関するものであ
り、特に、高電圧、高エネルギー密度で且つ充放電特性
が優れ、サイクル寿命の長い新規な二次電池を提供する
新規な負極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium ion conductive non-aqueous electrolyte as a negative electrode active material, which is capable of inserting and extracting lithium, and particularly to a high voltage, The present invention relates to a novel negative electrode active material that provides a new secondary battery having high energy density, excellent charge / discharge characteristics, and long cycle life.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリーバックアップ用、カメラ用等の
電源として既に広く用いられている。しかしながら、近
年携帯型の電子機器、通信機器等の著しい発展に伴い、
電源としての電池に対し大電流出力を要求する機器が多
種多様に出現し、経済性と機器の小型軽量化の観点か
ら、再充放電可能で、かつ高エネルギー密度の二次電池
が強く要望されている。このため、高エネルギー密度を
有する前記非水電解質電池の二次電池化を進める研究開
発が活発に行われ、一部実用化されているが、エネルギ
ー密度、充放電サイクル寿命、信頼性等々まだまだ不十
分である。
Non-aqueous electrolyte batteries using lithium as a negative electrode active material have advantages of high voltage, high energy density, small self-discharge and excellent long-term reliability. It has already been widely used as a power source for industrial use. However, with the remarkable development of portable electronic devices and communication devices in recent years,
A wide variety of devices that require a large current output for batteries as power sources have appeared, and rechargeable / dischargeable secondary batteries with high energy density have been strongly demanded from the viewpoint of economy and reduction in size and weight of devices. ing. Therefore, research and development for promoting the non-aqueous electrolyte battery having a high energy density into a secondary battery have been actively carried out and partially put into practical use, but energy density, charge / discharge cycle life, reliability, etc. are still unsatisfactory. It is enough.

【0003】従来、この種の二次電池の正極に用いる正
極活物質としては、充放電反応の形態に依り下記の3種
のタイプのものが見い出されている。第1のタイプは、
TiS2,MoS2,NbSe3等の金属カルコゲン化物
や、MnO2,MoO3,V25,LiXCoO2,LiX
NiO2,LixMn24等の金属酸化物等々の様に、結
晶の層間や格子位置又は格子間隙間にリチウムイオン
(カチオン)のみがインターカレーション、デインター
カレーション反応等に依り出入りするタイプ。
Conventionally, as the positive electrode active material used for the positive electrode of this type of secondary battery, the following three types have been found depending on the form of charge / discharge reaction. The first type is
Metal chalcogenides such as TiS 2 , MoS 2 and NbSe 3 , and MnO 2 , MoO 3 , V 2 O 5 , Li X CoO 2 and Li X.
Like metal oxides such as NiO 2 and Li x Mn 2 O 4, etc., only lithium ions (cations) enter and leave due to intercalation, deintercalation reactions, etc. between crystal layers or between lattice positions or gaps. Type to do.

【0004】第2のタイプは、ポリアニリン、ポリピロ
ール、ポリパラフェニレン等の導電性高分子の様な、主
としてアニオンのみが安定にドープ、脱ドープ反応に依
り出入りするタイプ。第3のタイプは、グラファイト層
間化合物やポリアセン等の導電性高分子等々の様な、リ
チウムカチオンとアニオンが共に出入り可能なタイプ
(インターカレーション、デインターカレーション又は
ドープ、脱ドープ等)である。
The second type is a type such as a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, etc. in which mainly anions are stably doped and come in and out by a dedoping reaction. The third type is a type (intercalation, deintercalation or doping, dedoping, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. .

【0005】一方、この種電池の負極に用いる負極活物
質としては、金属リチウムを単独で用いた場合が電極電
位が最も卑であるため、上記の様な正極活物質を用いた
正極と組み合わせた電池としての出力電圧が最も高く、
エネルギー密度も高く好ましいが、充放電に伴い負極上
にデンドライトや不働体化合物が生成し、充放電による
劣化が大きく、サイクル寿命が短いという問題があっ
た。この問題を解決するため、負極活物質として(1)
リチウムとAl,Zn,Sn,Pb,Bi,Cd等の他
金属との合金、(2)WO2,MoO2,Fe23,Ti
2 等の無機化合物やグラファイト、有機物を焼成して
得られる炭素質材料等々の骨格構造中にリチウムイオン
を吸蔵させた層間化合物あるいは挿入化合物、(3)リ
チウムイオンをドープしたポリアセンやポリアセチレン
等の導電性高分子等々のリチウムイオンを吸蔵放出可能
な物質を用いることが提案されている。
On the other hand, as the negative electrode active material used for the negative electrode of this type of battery, when metal lithium is used alone, the electrode potential is the most base, so that it was combined with the positive electrode using the positive electrode active material as described above. The highest output voltage as a battery,
Although the energy density is high and preferable, there is a problem that dendrites and passivation compounds are generated on the negative electrode with charge and discharge, the deterioration due to charge and discharge is large, and the cycle life is short. In order to solve this problem, as a negative electrode active material (1)
Alloys of lithium with other metals such as Al, Zn, Sn, Pb, Bi, Cd, (2) WO 2 , MoO 2 , Fe 2 O 3 , Ti
Inorganic compounds such as S 2 and graphite, intercalation compounds or insertion compounds in which lithium ions are occluded in the skeleton structure of carbonaceous materials obtained by firing organic substances, (3) lithium ion-doped polyacene and polyacetylene, etc. It has been proposed to use a substance capable of inserting and extracting lithium ions such as a conductive polymer.

【0006】[0006]

【発明が解決しようとする課題】しかし乍、一般に、負
極活物質として上記の様な金属リチウム以外のリチウム
イオンを吸蔵放出可能な物質を用いた負極と、前記の様
な正極活物質を用いた正極とを組合せて電池を構成した
場合には、これらの負極活物質の電極電位が金属リチウ
ムの電極電位より貴であるため、電池の作動電圧が負極
活物質として金属リチウムを単独で用いた場合よりかな
り低下するという欠点がある。例えば、リチウムとA
l,Zn,Pb,Sn,Bi,Cd等の合金を用いる場
合には0.2〜0.8V、炭素−リチウム層間化合物で
は0〜1V、MoO2やWO2等のリチウムイオン挿入化
合物では0.5〜1.5V作動電圧が低下する。
However, generally, a negative electrode using a material capable of inserting and extracting lithium ions other than metallic lithium as described above as a negative electrode active material, and a positive electrode active material as described above are used. When a battery is constructed by combining the positive electrode and the negative electrode active material, the electrode potential of these negative electrode active materials is nobler than the electrode potential of metallic lithium. It has the drawback of being significantly lower. For example, lithium and A
0.2 to 0.8 V when using an alloy such as 1, Zn, Pb, Sn, Bi, Cd, 0 to 1 V for a carbon-lithium intercalation compound, and 0 for a lithium ion insertion compound such as MoO 2 or WO 2. The operating voltage is reduced by 0.5 to 1.5V.

【0007】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。更に、上記の(1)のリチウム
と他金属との合金を用いた場合には、充放電時のリチウ
ムの利用効率が低く、且つ充放電の繰り返しにより電極
にクラックが発生し割れを生じる等のためサイクル寿命
が短いという問題があり、(2)のリチウム層間化合物
又は挿入化合物の場合には、過充放電により結晶構造の
崩壊や不可逆物質の生成等の劣化があり、又電極電位が
高い(貴な)ものが多い為、これを用いた電池の出力電
圧が低いという欠点があり、(3)の導電性高分子の場
合には、充放電容量、特に体積当りの充放電容量が小さ
いという問題がある。
Further, since elements other than lithium also serve as negative electrode constituents, the capacity and energy density per volume and weight are significantly reduced. Furthermore, when the alloy of (1) above with lithium and another metal is used, the utilization efficiency of lithium during charging and discharging is low, and cracks occur in the electrode due to repeated charging and discharging, and the like. Therefore, there is a problem that the cycle life is short, and in the case of the lithium intercalation compound or the intercalation compound of (2), there is deterioration such as collapse of the crystal structure or generation of an irreversible substance due to overcharge and discharge, and a high electrode potential ( Since there are many (noble) batteries, there is a drawback that the output voltage of a battery using this is low, and in the case of the conductive polymer of (3), the charge / discharge capacity, especially the charge / discharge capacity per volume is small. There's a problem.

【0008】上記の負極活物質の中で、ルチル型の結晶
構造を有する二酸化タングステンWO2は、リチウムを
吸蔵放出可能な正極活物質に対して(1)式 WO2+xLi++xe- ←→ LixWO2 (1) に示す電池反応をし、その電極電位は金属リチウムに対
し0.5〜1.0Vの比較的卑な電位を有し、且つ、充
放電に依りWO2 の1等量当り1等量のリチウムイオン
(x=1に相当)がインターカレーション、デインター
カレーション可能であり、1500mAh/cm3 以上
の理論容量密度が期待され、この種の二次電池の負極活
物質として特に有望な物質である。
Among the above-mentioned negative electrode active materials, tungsten dioxide WO 2 having a rutile type crystal structure is the same as the positive electrode active material capable of inserting and extracting lithium (1) Formula WO 2 + xLi + + xe ← → Li x WO 2 (1) The battery reaction shown in (1) is performed, the electrode potential has a relatively base potential of 0.5 to 1.0 V with respect to metallic lithium, and 1 equivalent of WO 2 depends on charge and discharge. 1 equivalent of lithium ion (corresponding to x = 1) can be intercalated and deintercalated per unit, and a theoretical capacity density of 1500 mAh / cm 3 or more is expected, and the negative electrode active material of this type of secondary battery It is a particularly promising substance.

【0009】しかし乍、このリチウムイオン挿入化合物
WO2の場合にも、WO2の1等量あたり0.5等量以上
のリチウムイオンがインターカレーションすると相転移
して構造変化を生じるため、実用的な充放電電圧及び電
流密度に於て可逆的に充放電できる範囲、即ち有効充放
電容量が小さく、上記の理論容量の50%以下であり、
且つ電流が大きい程小さくなるという問題がある。又、
理論容量の50%以上の過充電をすると充放電容量の低
下が著しいという問題がある。更に、放電時の分極に依
る作動電圧の変化が大きいため、これを用いた電池の出
力電圧の低下が大きいという問題がある。尚、このWO
2を用いた電池については、J.J.Aubornand Y.L.Barberi
o,J.Electrochem.Soc.,134,638('87);D.W.Murphy,F.J.D
i Salvo,J.N.Carides,and J.V.Waszczak,Mater.Res.Bul
l.,13,1395('78)等の先行文献に記載されている。
However, even in the case of this lithium ion insertion compound WO 2 , when 0.5 equivalent or more of lithium ion is intercalated per 1 equivalent of WO 2 , a phase transition occurs to cause a structural change. Range that can be reversibly charged / discharged at a specific charge / discharge voltage and current density, that is, the effective charge / discharge capacity is small and 50% or less of the above theoretical capacity,
Moreover, there is a problem that the larger the current, the smaller the current. or,
If overcharge of 50% or more of the theoretical capacity is performed, there is a problem that the charge / discharge capacity is significantly reduced. Furthermore, since the change in the operating voltage due to the polarization during discharge is large, there is a problem that the output voltage of the battery using the same is greatly reduced. In addition, this WO
For batteries using 2 , see JJ Aubornand YL Barberi
o, J.Electrochem.Soc., 134,638 ('87); DWMurphy, FJD
i Salvo, JNCarides, and JVWaszczak, Mater.Res.Bul
L., 13, 1395 ('78) and the like.

【0010】このため、高電圧、高エネルギー密度で、
且つ充放電特性が優れ、サイクル寿命の長い二次電池を
得るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
Therefore, at high voltage and high energy density,
In addition, in order to obtain a secondary battery with excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (base), and the collapse of the crystal structure or the irreversible substance due to the absorption / desorption of lithium ions during charge / discharge. There is a need for a negative electrode active material that has a large amount of lithium ions that can be occluded and released reversibly without deterioration such as generation, that is, a large effective charge / discharge capacity.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の様な課
題を解決するため、この種の電池の負極活物質として、
二酸化タングステンWO2を非酸化性雰囲気中で熱処理
して得られる生成物を用いることを提起するものであ
る。
In order to solve the above problems, the present invention provides a negative electrode active material for a battery of this type,
It proposes to use a product obtained by heat treating tungsten dioxide WO 2 in a non-oxidizing atmosphere.

【0012】即ち、二酸化タングステンWO2 を、アル
ゴン、ネオン、ヘリウム、クリプトン、キセノンまたは
窒素等の不活性ガス雰囲気中、真空中、減圧大気中また
は二酸化炭素CO2や希薄水素含有ガス等の弱還元性ガ
ス雰囲気中等々の様な、加熱により二酸化タングステン
WO2を酸化して三酸化タングステンWO3を生成しない
非酸化性雰囲気中で熱処理したものを負極活物質として
用いる。熱処理温度は、出発原料と熱処理雰囲気に依っ
ても異なるが、300〜750℃が良く、好ましくは4
00〜750℃、より好ましくは、500〜750゜C
の温度が良い。その理由は、300℃未満では充放電性
能向上への効果がほとんどなく、750℃以上では、昇
華温度800℃に近いため構造変化が大きく逆に充放電
性能が低下するためである。
That is, tungsten dioxide WO 2 is reduced in an atmosphere of an inert gas such as argon, neon, helium, krypton, xenon or nitrogen, in vacuum, in a reduced pressure atmosphere or in a weak atmosphere such as carbon dioxide CO 2 or a gas containing dilute hydrogen. The negative electrode active material is used after being heat-treated in a non-oxidizing atmosphere in which tungsten dioxide WO 2 is not oxidized to form tungsten trioxide WO 3 by heating, such as in an oxidizing gas atmosphere. Although the heat treatment temperature varies depending on the starting material and the heat treatment atmosphere, it is preferably 300 to 750 ° C., preferably 4
00-750 ° C, more preferably 500-750 ° C
Temperature is good. The reason is that if the temperature is lower than 300 ° C., there is almost no effect on improving the charge / discharge performance, and if the temperature is 750 ° C. or higher, the sublimation temperature is close to 800 ° C., so that the structural change is large and conversely the charge / discharge performance deteriorates.

【0013】この様にして得られた二酸化タングステン
WO2 の熱処理生成物は、これをそのままもしくは必要
により粉砕整粒や造粒等の加工を施した後に負極活物質
として用いることが出来る。一方正極活物質としては、
前述の様にTiS2,MoS2,NbSe3等の金属カル
コゲン化物や、MnO2,MoO3,V25,LiXCo
2,LiXNiO2,LixMn24 等の金属酸化物、
ポリアニリン、ポリピロール、ポリパラフェニレンポリ
アセン等の導電性高分子、及びグラファイト層間化合物
等々のリチウムイオン及び/又はアニオンを吸蔵放出可
能な各種の物質を用いることが出来る。特に、本発明に
依る二酸化タングステンWO2の熱処理生成物を負極活
物質とする負極は、金属リチウムに対する電極電位が低
く(卑)且つ2V以下の卑な領域の充放電容量が著しく
大きいという利点を有している為、前述の金属酸化物等
の様な金属リチウムに対する電極電位が3V以上、より
好ましくはV25、MnO 2、LiXCoO2、LixNi
2やLixMn24等々の様な3.5Vもしくは4V以
上の高電位を有する(貴な)活物質を用いた正極と組み
合わせることにより高電圧高エネルギー密度でかつ充放
電特性の優れた二次電池が得られるので、特に好まし
い。
Tungsten dioxide thus obtained
WO2 The heat treatment product of
Negative electrode active material after processing such as sizing and granulation with
Can be used as On the other hand, as the positive electrode active material,
As mentioned above, TiS2, MoS2, NbSe3Etc. Metal cal
Cogenide and MnO2, MoO3, V2OFive, LiXCo
O2, LiXNiO2, LixMn2OFour Metal oxides such as
Polyaniline, polypyrrole, polyparaphenylene poly
Conductive polymer such as acene, and graphite intercalation compound
Can store and release lithium ions and / or anions, etc.
Various effective substances can be used. In particular, the present invention
Dependent tungsten dioxide WO2The heat-treated product of
The negative electrode used as a substance has a low electrode potential with respect to metallic lithium.
The charge / discharge capacity of the base area (less than 2V)
Since it has the advantage of being large, the above-mentioned metal oxides, etc.
The electrode potential for metallic lithium such as
Preferably V2OFive, MnO 2, LiXCoO2, LixNi
O2And LixMn2OFour3.5V or 4V or more like etc.
Combined with positive electrode using (noble) active material with high potential above
High voltage, high energy density and charge by combining
A secondary battery with excellent electrical characteristics can be obtained, so it is particularly preferable.
Yes.

【0014】又、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、メチルフォーメイト、1,2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4,LiPF6,LiB
4,LiCF3SO3 等のリチウムイオン解離性塩を溶
解した有機電解液、ポリエチレンオキシドやポリフォス
ファゼン架橋体等の高分子に前記リチウム塩を固溶させ
た高分子固体電解質あるいはLi3 N,LiI等の無機
固体電解質等々のリチウムイオン導電性の非水電解質で
あれば良い。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO 4 , LiPF 6 , LiB as a supporting electrolyte in an organic solvent such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl formate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane and dimethylformamide, alone or in a mixed solvent.
An organic electrolyte in which a lithium ion dissociable salt such as F 4 or LiCF 3 SO 3 is dissolved, a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or Li 3 N , Lithium ion conductive non-aqueous electrolytes such as inorganic solid electrolytes such as LiI.

【0015】[0015]

【作用】本発明に依る二酸化タングステンWO2の非酸
化性雰囲気中での熱処理生成物を負極活物質とする負極
は、非水電解質中に於てリチウム基準極(金属リチウ
ム)に対し少なくとも0〜3Vの電極電位の範囲で安定
に繰り返しリチウムイオンを吸蔵放出することが出来、
この様な電極反応により繰り返し充放電可能な二次電池
の負極として用いることが出来る。特にリチウム基準極
(金属リチウム)に対し0〜2Vの卑な電位領域におい
て、安定にリチウムイオンを吸蔵放出し繰り返し充放電
できる高容量の充放電領域を有する。又、従来この種の
電池の負極活物質として用いられてきた非酸化性雰囲気
中で熱処理していない二酸化タングステンWO2 と比べ
可逆的にリチウムイオンを吸蔵放出できる量即ち有効充
放電容量が著しく大きく、かつ充放電の分極が小さいた
め、大電流での充放電が可能であり、更に過充電過放電
による不可逆物質の生成等の劣化が殆ど見られず、極め
て安定でサイクル寿命の長い二次電池を得ることが出来
る。
The negative electrode using the heat-treated product of tungsten dioxide WO 2 in the non-oxidizing atmosphere according to the present invention as the negative electrode active material has at least 0 relative to the lithium reference electrode (metal lithium) in the non-aqueous electrolyte. Lithium ions can be occluded and released stably and repeatedly in the range of electrode potential of 3V,
It can be used as a negative electrode of a secondary battery that can be repeatedly charged and discharged by such an electrode reaction. In particular, in a base potential region of 0 to 2 V with respect to the lithium reference electrode (metal lithium), it has a high-capacity charge / discharge region capable of stably absorbing and desorbing lithium ions and repeatedly charging and discharging. In addition, the amount of lithium ions that can be reversibly occluded and released, that is, the effective charge / discharge capacity is remarkably large, as compared with tungsten dioxide WO 2 that has not been heat-treated in a non-oxidizing atmosphere that has been conventionally used as the negative electrode active material of this type of battery. In addition, since the polarization of charge and discharge is small, it is possible to charge and discharge with a large current, and almost no deterioration such as generation of irreversible substances due to overcharge and overdischarge is observed, and the secondary battery is extremely stable and has a long cycle life. Can be obtained.

【0016】この様に優れた充放電特性が得られる理由
は必ずしも明らかではないが、次の様に推定される。即
ち、本発明による新規な負極活物質である二酸化タング
ステンWO2 の熱処理生成物は、非酸化性雰囲気中での
熱処理により、表面状態及び、内部構造が変化し、この
構造中でのリチウムイオンの移動度が高く、且つ、リチ
ウムイオンを吸蔵できるサイトが非常に多いためリチウ
ムイオンの吸蔵放出が容易であり、相変化を生じにくい
為と推定される。
The reason why such excellent charge and discharge characteristics are obtained is not always clear, but it is presumed as follows. That is, the heat treatment product of tungsten dioxide WO 2 which is a novel negative electrode active material according to the present invention changes the surface state and the internal structure by heat treatment in a non-oxidizing atmosphere, and the lithium ion in this structure It is presumed that since the mobility is high and the number of sites that can store lithium ions is very large, it is easy to store and release lithium ions, and phase change is unlikely to occur.

【0017】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0018】[0018]

【実施例】【Example】

(実施例1)図1は、本発明に依る非水電解質二次電池
の負極活物質の性能評価に用いたテストセルの一例を示
すコイン型電池の断面図である。図において、1は対極
端子を兼ねる対極ケースであり、外側片面をNiメッキ
したステンレス鋼製の板を絞り加工したものである。2
はステンレス鋼製のネットから成る対極集電体であり対
極ケース1にスポット溶接されている。対極3は、所定
厚みのアルミニウム板を直径15mmに打ち抜き、対極
集電体2に固着し、その上に所定厚みのリチウムフォイ
ルを直径14mmに打ち抜いたものを圧着したものであ
る。7は外側片面をNiメッキしたステンレス鋼製の作
用極ケースであり、作用極端子を兼ねている。5は後述
の本発明に依る負極活物質又は従来法に依る比較活物質
を用いて構成された作用極であり、ステンレス鋼製のネ
ットからなる作用極集電体6と一体に加圧成形されてい
る。4はポリプロピレンの多孔質フィルムからなるセパ
レータであり、電解液が含浸されている。8はポリプロ
ピレンを主体とするガスケットであり、対極ケース1と
作用極ケース7の間に介在し、対極と作用極との間の電
気的絶縁性を保つと同時に、作用極ケース開口縁が内側
に折り曲げられカシメられることに依って、電池内容物
を密封、封止している。電解質はプロピレンカーボネー
トと1,2−ジメトキシエタンの体積比1:1混合溶媒
に過塩素酸リチウムLiClO4 を1モル/l溶解した
ものを用いた。電池の大きさは、外径20mm、厚さ
1.6mmであった。
(Example 1) FIG. 1 is a sectional view of a coin-type battery showing an example of a test cell used for performance evaluation of a negative electrode active material of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 is a counter electrode case which also serves as a counter electrode terminal, which is obtained by drawing a stainless steel plate having Ni plated on one outer surface. Two
Is a counter electrode current collector made of a stainless steel net, and is spot-welded to the counter electrode case 1. The counter electrode 3 is formed by punching out an aluminum plate having a predetermined thickness to a diameter of 15 mm, fixing it to the counter electrode current collector 2, and pressing a lithium foil having a predetermined thickness punched out to have a diameter of 14 mm on it. Reference numeral 7 denotes a working electrode case made of stainless steel whose outer surface is plated with Ni, and also serves as a working electrode terminal. Reference numeral 5 denotes a working electrode composed of a negative electrode active material according to the present invention or a comparative active material according to a conventional method, which is formed by pressure molding together with a working electrode current collector 6 made of a stainless steel net. ing. 4 is a separator made of a polypropylene porous film, which is impregnated with an electrolytic solution. Numeral 8 is a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode, and at the same time the working electrode case opening edge is inward. By folding and crimping, the battery contents are hermetically sealed. The electrolyte used was prepared by dissolving 1 mol / l of lithium perchlorate LiClO 4 in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1. The battery had an outer diameter of 20 mm and a thickness of 1.6 mm.

【0019】作用極5は次の様にして作製した。市販の
純度99.9%の二酸化タングステンWO2 を窒素ガス
気流中700゜Cの温度で12時間熱処理し、冷却後、
粒径53μm以下に粉砕整粒した。この様にして得られ
た生成物を本発明に依る活物質aとし、これに導電剤と
してグラファイトを、結着剤として架橋型アクリル酸樹
脂等を重量比30:65:5の割合で混合して作用極合
剤とし、次にこの作用極合剤をステンレス鋼製のネット
からなる作用極集電体6と共に2ton/cm 2 で直径
15mm厚さ0.5mmのペレットに加圧成形した後、
200℃で12時間減圧加熱乾燥したものを作用極とし
た。
The working electrode 5 was manufactured as follows. Commercially available
Tungsten dioxide WO with a purity of 99.9%2 The nitrogen gas
Heat treatment at 700 ° C for 12 hours in airflow, and after cooling,
The particles were crushed and sized to a particle size of 53 μm or less. Obtained in this way
The obtained product is used as the active material a according to the present invention, and a conductive agent
And graphite as a binder, cross-linked acrylic acid resin
Mixing fats etc. at a weight ratio of 30: 65: 5
Agent, and then apply this working mixture to a stainless steel net.
2 ton / cm with working electrode current collector 6 consisting of 2 In diameter
After pressure molding into a pellet with a thickness of 15 mm and a thickness of 0.5 mm,
What was dried under reduced pressure at 200 ° C for 12 hours was used as the working electrode.
It was

【0020】又、比較のため、上記の本発明に依る活物
質aの代わりに、上記の市販の二酸化タングステンWO
2 をそのまま活物質bとして、また導電剤に用いたと同
じグラファイトを活物質cとしてそれぞれ作用極の活物
質として用いた他は、上記の本発明の作用極の場合と同
様にして、同様な電極(比較用作用極)を作成した。
Also, for comparison, instead of the above-mentioned active material a according to the present invention, the above-mentioned commercially available tungsten dioxide WO
The same electrode as in the case of the working electrode of the present invention except that 2 was used as the active material b as it was, and the same graphite as that used for the conductive agent was used as the active material of the working electrode. (Comparative working electrode) was prepared.

【0021】この様にして作製された電池は、室温で1
週間放置エージングされた後、後述の充放電試験が行わ
れた。このエージングによって、対極のリチウム−アル
ミニウム積層電極は電池内で非水電解液に触れることに
より十分合金化が進行し、リチウムフォイルは実質的に
全てLi−Al合金となるため、電池電圧は、対極とし
て金属リチウムを単独で用いた場合に比べて約0.4V
低下した値となって安定した。
The battery thus produced has a temperature of 1
After being left to stand for a week, it was subjected to the charge / discharge test described below. By this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolyte in the battery, and the lithium foil is substantially all Li-Al alloy. 0.4V compared with the case where metallic lithium is used alone as
It became a lowered value and became stable.

【0022】この様にして作製した電池を、以下、それ
ぞれの使用した作用極の活物質a,b及びcに対応し、
それぞれ電池A,B及びCと略記する。これらの電池
A,B及びCを0.4mAの定電流で、充電(電解質中
から作用極にリチウムイオンが吸蔵される電池反応をす
る電流方向)の終止電圧−0.4V、放電(作用極から
電解質中へリチウムイオンが放出される電池反応をする
電流方向)の終止電圧2.5Vの条件で充放電サイクル
を行ったときの3サイクル目の放電特性を図2に、充電
特性を図3に示した。又、サイクル特性を図4に示し
た。
The batteries thus produced will be described below in correspondence with the active materials a, b and c of the working electrodes used.
These are abbreviated as batteries A, B and C, respectively. These batteries A, B, and C were charged with a constant current of 0.4 mA, the final voltage of charging (the current direction in which the battery reaction in which lithium ions were occluded in the working electrode from the electrolyte was −0.4 V), and the discharge (working electrode). 2 shows the discharge characteristics at the third cycle and the charge characteristics are shown in FIG. It was shown to. The cycle characteristics are shown in FIG.

【0023】尚、充放電サイクルは充電からスタートし
た。図2及び図3から明らかな様に、本発明による電池
Aは比較電池B,Cに比べ、充放電容量が著しく大き
く、充放電の可逆領域が著しく拡大することが分かる。
又、全充放電領域に渡って充電と放電の作動電圧の差が
著しく小さくなっており、電池の分極(内部抵抗)が著
しく小さく、大電流充放電が容易なことが分かる。更
に、図4から充放電の繰り返しによる放電容量の低下
(サイクル劣化)が著しく小さいことが分かる。即ち、
充電に依って対極のLi−Al合金から電解質中にリチ
ウムイオンが放出され、このリチウムイオンが電解質中
を移動して本発明の二酸化タングステンWO2 の熱処理
生成物から成る活物質aと電極反応し、活物質a中に電
気化学的にリチウムイオンが吸蔵される。次に放電に際
しては、この熱処理生成物からリチウムイオンが電解質
中に放出され、電解質中を移動して対極のLi−Al合
金中に吸蔵されることに依り安定に繰り返し充放電でき
る。
The charging / discharging cycle started from charging. As is apparent from FIGS. 2 and 3, the battery A according to the present invention has a significantly larger charge / discharge capacity than the comparative batteries B and C, and the reversible charge / discharge region is significantly expanded.
Further, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is extremely small, and large current charging / discharging is easy. Furthermore, it can be seen from FIG. 4 that the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. That is,
Lithium ions are released from the Li-Al alloy of the counter electrode into the electrolyte due to charging, and the lithium ions move in the electrolyte to cause an electrode reaction with the active material a composed of the heat-treated product of tungsten dioxide WO 2 of the present invention. The lithium ions are electrochemically occluded in the active material a. Next, during discharge, lithium ions are released from the heat-treated product into the electrolyte, move in the electrolyte, and are occluded in the Li-Al alloy of the counter electrode, so that stable charge and discharge can be performed repeatedly.

【0024】(実施例2)本実施例は、負極活物質とし
て用いる二酸化タングステンWO2 の熱処理を種々の温
度で行い比較した場合である。作用極5を構成する活物
質以外は、全て実施例1と同様にして同様な電池を作製
した。
Example 2 In this example, the heat treatment of tungsten dioxide WO 2 used as the negative electrode active material was carried out at various temperatures for comparison. A similar battery was produced in the same manner as in Example 1 except for the active material forming the working electrode 5.

【0025】本実施例の作用極に用いた活物質を次の様
にして作製した。市販の純度99.9%の二酸化タング
ステンWO2 を窒素ガス気流中で所定の温度で12時間
熱処理し、冷却後、粒径53μm以下に粉砕整粒した。
この様にして得られた生成物を本発明に依る活物質とし
て用いた。本実施例では、熱処理温度が300℃(a
1)、400℃(a2)、500℃(a3)、600℃
(a4)、700℃(a5)、750℃(a6)の6種
類のものを作製した。又、比較のため、活物質として実
施例1で用いたと同じ活物質b及び活物質cを用いた。
The active material used for the working electrode of this example was prepared as follows. Commercially available tungsten dioxide WO 2 having a purity of 99.9% was heat-treated at a predetermined temperature for 12 hours in a nitrogen gas stream, cooled, and then pulverized and sized to a particle size of 53 μm or less.
The product thus obtained was used as the active material according to the present invention. In this embodiment, the heat treatment temperature is 300 ° C. (a
1), 400 ° C (a2), 500 ° C (a3), 600 ° C
Six types of (a4), 700 ° C. (a5), and 750 ° C. (a6) were prepared. For comparison, the same active materials b and c as those used in Example 1 were used as active materials.

【0026】この様にして作製した電池を、以下各々の
作用極に使用した活物質a1、a2、a3、a4、a
5、a6、b及びcに対応し、電池A1、A2、A3、
A4、A5、A6、B及びCと略記する。この様にして
得られた電池A1、A2、A3、A4、A5、A6、B
及びCについても実施例1と同様な充放電サイクル試験
を行った。この時の各サイクル毎の放電容量(サイクル
特性)を図5に示した。図5から明らかな様に、本発明
による電池A1、A2、A3、A4、A5は比較電池B
及びCに比べ、放電容量が著しく大きく、充放電の可逆
領域が著しく拡大することが分かる。又、充放電の繰り
返しによる放電容量の低下(サイクル劣化)が著しく小
さい。更に、本実施例の電池A1、A2、A3、A4、
A5においても、実施例1の本発明に依る電池Aと同様
に全充放電領域に渡って充電と放電の作動電圧の差が著
しく小さくなっており、電池の分極(内部抵抗)が著し
く小さく、大電流充放電が容易な結果が得られた。
The batteries thus produced were used as active materials a1, a2, a3, a4, a in the following working electrodes.
5, a6, b and c corresponding to batteries A1, A2, A3,
Abbreviated as A4, A5, A6, B and C. Batteries A1, A2, A3, A4, A5, A6, B thus obtained
For C and C, the same charge / discharge cycle test as in Example 1 was performed. The discharge capacity (cycle characteristics) for each cycle at this time is shown in FIG. As is apparent from FIG. 5, the batteries A1, A2, A3, A4 and A5 according to the present invention are comparative batteries B.
It can be seen that the discharge capacity is significantly larger than that of C and C, and the reversible region of charge and discharge is significantly expanded. Further, the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. Further, the batteries A1, A2, A3, A4 of the present embodiment,
Oite to A5 also has become remarkably small difference between operating voltages of charge and discharge over a ZenTakashi discharge region as well as the battery A according to the present invention of Example 1, the polarization of the battery (internal resistance) is remarkably The result was small and easy to charge and discharge with a large current.

【0027】この様に優れた充放電特性を有する理由
は、必ずしも明らかではないが、次のように推定され
る。即ち、上述の様に本発明に依る電池A1〜A6の作
用極の活物質である二酸化タングステンの熱処理生成物
に於いては、非酸化性雰囲気中での熱処理により、表面
状態及び内部構造が変化するため、この構造中でのリチ
ウムイオンの移動度が高く、且つ、リチウムイオンの吸
蔵放出に伴う構造変化が小さく安定なため、リチウムイ
オンの吸蔵放出が容易である為と推定される。
The reason for having such excellent charge and discharge characteristics is not always clear, but it is presumed as follows. That is, as described above, in the heat treatment product of tungsten dioxide which is the active material of the working electrode of the batteries A1 to A6 according to the present invention, the surface state and the internal structure are changed by the heat treatment in the non-oxidizing atmosphere. Therefore, it is presumed that the mobility of lithium ions in this structure is high, and the structural change accompanying the occlusion / release of lithium ions is small and stable, so that the occlusion / release of lithium ions is easy.

【0028】更に、実施例においては、対極としてリチ
ウム−アルミニウム合金の場合のみを示したが、本発明
は実施例に限定されず、前述の様に、TiS2,Mo
2,NbSe3等の金属カルコゲン化物、MnO2,M
oO3,V25,LiXCoO2,LiXNiO2,Lix
24 等の金属酸化物、ポリアニリン、ポリピロー
ル、ポリパラフェニレン、ポリアセン等の導電性高分
子、グラファイト層間化合物等々の様なリチウムカチオ
ン及び/またはアニオンを吸蔵放出可能な物質を活物質
とする正極を対極として、本発明に依る負極活物質を用
いた負極と組合わせて用いることが出来ることは言うま
でもない。
Further, in the examples, only the case of the lithium-aluminum alloy was shown as the counter electrode, but the present invention is not limited to the examples, and as described above, TiS 2 , Mo.
Metal chalcogenides such as S 2 and NbSe 3 , MnO 2 and M
oO 3 , V 2 O 5 , Li X CoO 2 , Li X NiO 2 , Li x M
A substance capable of occluding and releasing a lithium cation and / or anion such as a metal oxide such as n 2 O 4 , a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, and polyacene, a graphite intercalation compound, etc. is used as an active material. It goes without saying that the positive electrode can be used as a counter electrode in combination with the negative electrode using the negative electrode active material according to the present invention.

【0029】[0029]

【発明の効果】以上詳述した様に、本発明は、非水電解
質二次電池の負極活物質として、二酸化タングステンW
2 を非酸化性雰囲気中で熱処理して得られる生成物か
ら成る新規な活物質を用いたものであり、該負極活物質
は従来の熱処理していない二酸化タングステンWO2
比べリチウム基準極(金属リチウム)に対し0〜2Vの
卑な電位領域に於て、充放電により可逆的にリチウムイ
オンを吸蔵放出出来る量即ち充放電容量が著しく大き
く、かつ充放電の分極が小さいため、高電圧・高エネル
ギー密度で且つ大電流での充放電特性が優れた二次電池
を得ることが出来る。又、充電放電の繰り返しによる放
電容量の減少等の劣化が殆ど見られず、極めて安定でサ
イクル寿命の長い二次電池を得ることが出来る等々優れ
た効果を有する。
As described in detail above, according to the present invention, tungsten dioxide W is used as the negative electrode active material of the non-aqueous electrolyte secondary battery.
A novel active material composed of a product obtained by heat-treating O 2 in a non-oxidizing atmosphere is used, and the negative electrode active material has a lithium reference electrode (compared to conventional non-heat-treated tungsten dioxide WO 2 ). In a base potential range of 0 to 2 V relative to metallic lithium), the amount that can reversibly store and release lithium ions by charging and discharging, that is, the charging and discharging capacity is extremely large, and the polarization of charging and discharging is small, so high voltage It is possible to obtain a secondary battery having high energy density and excellent charge / discharge characteristics at a large current. In addition, there is almost no deterioration such as a decrease in discharge capacity due to repeated charging and discharging, and an extremely stable secondary battery having a long cycle life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 2 is an explanatory diagram showing a comparison of the discharge characteristics at the third cycle between the battery according to the present invention and the conventional battery.

【図3】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 3 is an explanatory diagram showing a comparison of the charging characteristics in the third cycle between the battery according to the present invention and the conventional battery.

【図4】本発明による電池と従来電池のサイクル特性の
比較を示した説明図である。
FIG. 4 is an explanatory diagram showing a comparison of cycle characteristics of a battery according to the present invention and a conventional battery.

【図5】二酸化タングステンWO2の熱処理温度のサイ
クル特性への効果を示した説明図である。
FIG. 5 is an explanatory diagram showing the effect of the heat treatment temperature of tungsten dioxide WO2 on the cycle characteristics.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット 1 counter case 2 Counter electrode current collector 3 opposite poles 4 separator 5 Working pole 6 Working electrode current collector 7 Working pole case 8 gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 謙介 宮城県仙台市太白区西多賀5丁目30番1 号 セイコー電子部品株式会社内 (72)発明者 石川 英樹 宮城県仙台市太白区西多賀5丁目30番1 号 セイコー電子部品株式会社内 (56)参考文献 米国特許3410731(US,A) J.Electrochem.So c.,1987年3月,Vol.134,No. 3,pp.638−641 (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 H01M 10/40 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Kensuke Tahara, Kensuke Tahara 5-30-1 Nishitaga, Taihaku-ku, Sendai-shi, Miyagi Seiko Electronic Components Co., Ltd. (72) Hideki Ishikawa 5-30, Nishitaga, Taihaku-ku, Sendai-shi, Miyagi No. 1 in Seiko Electronic Components Co., Ltd. (56) Reference US Patent 3410731 (US, A) J. Electrochem. So c. , 1987, Vol. 134, No. 3, pp. 638-641 (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負極と、 正極と、 リチウムイオン導電性の非水電解液と、を有する非水電
解質二次電池において、前記負極の負極活物質は、 二酸化タングステンWO2を
非酸化性雰囲気中で400〜700℃の温度で熱処理し
て形成したものを用いることを特徴とする非水電解質二
次電池。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode , a positive electrode, and a lithium ion conductive non-aqueous electrolyte , wherein the negative electrode active material of the negative electrode is tungsten dioxide WO2 in a non-oxidizing atmosphere. A non-aqueous electrolyte secondary battery, which is formed by heat treatment at a temperature of 400 to 700 ° C.
【請求項2】 負極と、正極と、リチウムイオン導電性
非水電解液と、を有する非水電解質二次電池の製造方
法において、前記負極の負極活物質を、 二酸化タングステンWO2を
非酸化性雰囲気中で、400〜700℃の温度で熱処理
して形成する工程を有することを特徴とする非水電解質
二次電池の製造方法。
2. A method for producing a non-aqueous electrolyte secondary battery comprising a negative electrode , a positive electrode, and a lithium ion conductive non-aqueous electrolyte solution , wherein the negative electrode active material of the negative electrode is tungsten dioxide WO2.
A method of manufacturing a non-aqueous electrolyte secondary battery, comprising a step of forming by heat treatment at a temperature of 400 to 700 ° C. in a non-oxidizing atmosphere .
【請求項3】 前記負極活物質を、前記熱処理後、冷却3. The negative electrode active material is cooled after the heat treatment.
し、粒砕整粒して形成する工程を有することを特徴とすIt is characterized by having a step of
る請求項2に記載の非水電解質二次電池の製造方法。The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 2.
JP00616793A 1993-01-18 1993-01-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Fee Related JP3390195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00616793A JP3390195B2 (en) 1993-01-18 1993-01-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00616793A JP3390195B2 (en) 1993-01-18 1993-01-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06215770A JPH06215770A (en) 1994-08-05
JP3390195B2 true JP3390195B2 (en) 2003-03-24

Family

ID=11630984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00616793A Expired - Fee Related JP3390195B2 (en) 1993-01-18 1993-01-18 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3390195B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291100B1 (en) * 1999-09-15 2001-09-18 Irma America, Inc. Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
US20070065720A1 (en) * 2005-09-22 2007-03-22 Masaki Hasegawa Negative electrode for lithium ion secondary battery and lithium ion secondary battery prepared by using the same
JP5485674B2 (en) * 2009-12-11 2014-05-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN106532189A (en) * 2016-12-09 2017-03-22 厦门华戎能源科技有限公司 Nano carbon crystal heating battery
EP3633784A4 (en) * 2017-05-25 2021-05-26 Kabushiki Kaisha Toshiba Electricity storage unit and electricity storage system
JP2024035923A (en) * 2022-09-05 2024-03-15 株式会社日立製作所 Battery management device, battery management method, battery management program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Electrochem.Soc.,1987年3月,Vol.134,No.3,pp.638−641

Also Published As

Publication number Publication date
JPH06215770A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
JP3460407B2 (en) Non-aqueous electrolyte secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees