JP3506386B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3506386B2
JP3506386B2 JP30764092A JP30764092A JP3506386B2 JP 3506386 B2 JP3506386 B2 JP 3506386B2 JP 30764092 A JP30764092 A JP 30764092A JP 30764092 A JP30764092 A JP 30764092A JP 3506386 B2 JP3506386 B2 JP 3506386B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
negative electrode
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30764092A
Other languages
Japanese (ja)
Other versions
JPH06140076A (en
Inventor
茂 藤田
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP30764092A priority Critical patent/JP3506386B2/en
Publication of JPH06140076A publication Critical patent/JPH06140076A/en
Application granted granted Critical
Publication of JP3506386B2 publication Critical patent/JP3506386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
に関する。より詳しくは、この発明は、特定の非水溶媒
を使用することにより、温度特性や負荷特性が良好で、
耐酸化還元性にも優れた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION This invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention has good temperature characteristics and load characteristics by using a specific non-aqueous solvent,
The present invention relates to a non-aqueous electrolyte secondary battery having excellent redox resistance.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR、携帯電話、
ラップトップコンピューター等の新しいポータブル電子
機器が数多く登場し、その小型軽量化が図られている。
そのためポータブル電子機器に使用するポータブル電源
として二次電池が注目されるようになっており、高いエ
ネルギー密度を得られる二次電池の開発が進められてい
る。中でも、リチウム(二次)電池は水溶液系電解液二
次電池である鉛電池やニッケルカドニウム電池と比較し
て大きなエネルギー密度が得られるため、活発に研究が
進められている。
2. Description of the Related Art Recently, a VTR with a built-in camera, a mobile phone,
Many new portable electronic devices such as laptop computers have appeared, and their size and weight have been reduced.
Therefore, a secondary battery has been attracting attention as a portable power source used in a portable electronic device, and a secondary battery capable of obtaining a high energy density is being developed. Among them, a lithium (secondary) battery has a large energy density as compared with a lead battery or a nickel-cadmium battery, which is an aqueous electrolyte secondary battery, and therefore, research is actively conducted.

【0003】リチウム電池には電解液の溶媒として非水
溶媒が使用されるが、この非水溶媒としては、従来より
高誘電率で比較的安定であることから炭酸プロピレン
(PC)等の環状炭エステルが使用されている。しか
し、この炭酸プロピレンを電解液の単独溶媒として使用
した場合には、導電率が比較的低いため負荷特性や低温
特性が著しく劣り、またリチウムの充放電効率も低くな
る。そのため炭酸プロピレンは電解液の単独溶媒として
使用されることはなく、1,2−ジメトキシエタン(D
ME)等の低粘度溶媒と合わせた混合溶媒として使用さ
れている。
A non-aqueous solvent is used as a solvent for an electrolyte in a lithium battery. As the non-aqueous solvent, a cyclic carbon such as propylene carbonate (PC) is used because it has a higher dielectric constant and is relatively stable than before. Acid esters are used. However, when this propylene carbonate is used as the sole solvent of the electrolytic solution, the load characteristics and the low temperature characteristics are remarkably inferior because the conductivity is relatively low, and the lithium charge / discharge efficiency is also low. Therefore, propylene carbonate is not used as the sole solvent of the electrolytic solution, and 1,2-dimethoxyethane (D
It is used as a mixed solvent combined with a low viscosity solvent such as ME).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、1,2
−ジメトキシエタンを電解液に使用すると、1,2−ジ
メトキシエタンの耐酸化性が大きくないために、リチウ
ム電池を充電状態で保存した場合の容量劣化や高温下で
のサイクル劣化が大きくなるという問題があった。
[Problems to be Solved by the Invention]
-When dimethoxyethane is used as an electrolyte, the oxidation resistance of 1,2-dimethoxyethane is not so large that the capacity deterioration and the cycle deterioration at high temperature when a lithium battery is stored in a charged state become large. was there.

【0005】このような問題に対しては、電解液として
炭酸プロピレンと炭酸ジエチル(DEC)との混合溶媒
を使用することが提案されている。しかし、この混合溶
媒を使用しても導電率を十分に高くすることはできず、
このために高負荷での容量や低温での容量を十分に改善
することができないという問題があった。
For such a problem, it has been proposed to use a mixed solvent of propylene carbonate and diethyl carbonate (DEC) as an electrolytic solution. However, even if this mixed solvent is used, the conductivity cannot be sufficiently increased,
Therefore, there is a problem that the capacity under high load and the capacity at low temperature cannot be sufficiently improved.

【0006】また、この混合溶媒において、炭酸ジエチ
ルの代わりに炭酸メチルエチル(MEC)を使用し、サ
イクル特性と低温特性を改善することも提案されている
が、いまだ十分に改善されてはいない。
In this mixed solvent, it has been proposed to use methyl ethyl carbonate (MEC) in place of diethyl carbonate to improve cycle characteristics and low temperature characteristics, but it has not been sufficiently improved.

【0007】この発明は、このような従来技術の課題を
解決しようとするものであり、従来の混合溶媒に代わる
非水溶媒を見出し、導電率が十分に高く、温度特性や負
荷特性も良好で、しかも耐酸化還元性にも優れた非水電
解液二次電池を提供することを目的とする。
The present invention is intended to solve such problems of the prior art, has found a non-aqueous solvent which can replace the conventional mixed solvent, and has a sufficiently high conductivity and good temperature characteristics and load characteristics. Moreover, it is an object of the present invention to provide a non-aqueous electrolyte secondary battery having excellent redox resistance.

【0008】[0008]

【課題を解決するための手段】この発明者らは、上記の
目的を達成するために種々の検討を重ねた結果、非水電
解液に使用する非水溶媒として、炭酸プロピレン、炭酸
エチレン及び炭酸メチルエチルの3種の溶媒を含む混合
溶媒を使用することが有効であることを見出し、この発
明を完成させるに至った。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors have found that propylene carbonate, ethylene carbonate and carbonic acid are used as a non-aqueous solvent in a non-aqueous electrolyte. It has been found that it is effective to use a mixed solvent containing three kinds of methylethyl solvents, and the present invention has been completed.

【0009】即ち、この発明は、帯状の集電体の両面に
リチウムをドープ、脱ドープできる負極活物質と結着剤
からなる負極合剤層が形成されてなる負極と、帯状の集
電体の両面に充放電が可能な正極活物質と導電剤と結着
剤とを含む正極合剤層が形成されてなる正極とを、セパ
レータを介して多数回巻回してなる巻回電極体と、非水
溶媒に電解質が溶解されてなる非水電解液とを備える非
水電解液二次電池において、非水電解液の非水溶媒が、
10〜47容量%の炭酸プロピレン、3〜40容量%の
炭酸エチレン及び30〜70容量%の炭酸メチルエチル
を含む混合溶媒であることを特徴とする非水電解液二次
電池を提供する。
That is, according to the present invention, a negative electrode in which a negative electrode mixture layer composed of a negative electrode active material capable of doping and dedoping lithium and a binder is formed on both surfaces of the current collector in a band shape, and a current collector in a band shape. Bonding of the positive electrode active material that can be charged and discharged and the conductive agent on both sides of the
A positive electrode formed by forming a positive electrode mixture layer containing an agent, a wound electrode body that is wound a large number of times through a separator, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent In the non-aqueous electrolyte secondary battery, the non-aqueous solvent of the non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery comprising a mixed solvent containing 10 to 47% by volume of propylene carbonate, 3 to 40% by volume of ethylene carbonate and 30 to 70% by volume of methyl ethyl carbonate. provide.

【0010】以下、この発明を詳細に説明する。The present invention will be described in detail below.

【0011】 この発明は、その電解液の非水溶媒とし
て炭酸プロピレン、炭酸エチレン及び炭酸メチルエチル
の3種を含むことを特徴としているが、ここでこの非水
溶媒を構成する各溶媒の混合割合としては、炭酸プロピ
レンを10〜75容量%、炭酸エチレンを3〜50容量
%、炭酸メチルエチルを10〜80容量%とすることが
好ましい。また、炭酸プロピレンと炭酸エチレンの合計
と炭酸メチルエチルとの体積配合比は、70:30〜3
0:70とすることが好ましい。
The present invention is characterized by containing three kinds of propylene carbonate, ethylene carbonate and methyl ethyl carbonate as the non-aqueous solvent of the electrolytic solution. Here, the mixing ratio of each solvent constituting the non-aqueous solvent is It is preferable that propylene carbonate is 10 to 75% by volume, ethylene carbonate is 3 to 50% by volume, and methyl ethyl carbonate is 10 to 80% by volume. In addition, the volume mixture ratio of the total of propylene carbonate and ethylene carbonate and methyl ethyl carbonate is 70:30 to 3
It is preferably set to 0:70 .

【0012】このような非水溶媒に溶解させる電解質と
しては特に限定はなく、従来のリチウム電池と同様にす
ることができる。例えば、LiClO、LiAs
、LiPF、LiBF、LiCFSO、L
iN(CFSO等を使用でき、このうち特にL
iPFやLiBFを使用することが好ましい。
The electrolyte to be dissolved in such a non-aqueous solvent is not particularly limited and may be the same as the conventional lithium battery. For example, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , L
iN (CF 3 SO 2 ) 2 or the like can be used, among which L
It is preferable to use iPF 6 or LiBF 4 .

【0013】正極としては、充放電が可能であれば特に
限定はなく、例えば、LiMO(式中、Mは1種以
上の遷移金属を表し、0.05≦x≦1.10である)
を主体とする活物質からなるものを好ましく使用するこ
とができる。この場合、特に遷移金属Mとして、Co、
Ni、Mnの少なくとも1種が使用されていることが好
ましい。これにより、エネルギー密度を高くすることが
可能となる。
The positive electrode is not particularly limited as long as it can be charged and discharged. For example, Li x MO 2 (wherein M represents one or more kinds of transition metals, and 0.05 ≦ x ≦ 1.10. is there)
A material composed of an active material mainly composed of is preferably used. In this case, especially as the transition metal M, Co,
It is preferable to use at least one of Ni and Mn. This makes it possible to increase the energy density.

【0014】一方、負極としては、リチウムをドープ、
脱ドープできるものを使用する。このような負極として
は、例えば、熱分解炭素類、コークス類(ピッチコーク
ス、ニードルコークス、石油コークス等)、グラファイ
ト類、ガラス状炭素類、有機高分子化合物焼成体(フェ
ノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化
したもの)、炭素繊維、活性炭等の炭素材料、あるいは
金属リチウム、リチウム合金(例えば、リチウム−アル
ミニウム合金)、ポリアセチレン、ポリピロール等のポ
リマー等を使用することができる。特に、リチウムをド
ープ、脱ドープできる炭素材料を使用することが、サイ
クル特性が向上するので好ましい。
On the other hand, the negative electrode is doped with lithium,
Use one that can be dedoped. Examples of such a negative electrode include pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound fired products (phenolic resins, furan resins, etc.). Carbon materials such as carbonized by firing at a suitable temperature), carbon fibers, activated carbon, and the like, or polymers such as metallic lithium, lithium alloys (for example, lithium-aluminum alloy), polyacetylene, polypyrrole, and the like can be used. In particular, it is preferable to use a carbon material that can be doped or dedoped with lithium because the cycle characteristics are improved.

【0015】また、電池の形状についても特に限定され
ることはなく、円筒形、角形、コイン形、ボタン形等の
種々の形状にすることができる。
The shape of the battery is also not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape and a button shape can be used.

【0016】[0016]

【作用】この発明の非水電解液二次電池は、サイクル特
性と低温特性を改善する非水溶媒として提案されていた
炭酸プロピレンと炭酸メチルエチルからなる混合溶媒
に、更に高誘電率溶媒である炭酸エチレンを配合した3
種の混合溶媒となっているので、電解液が高い導電率と
低い凝固点を同時に達成できるようになる。したがっ
て、電池の負荷特性や低温特性を十分に向上させること
が可能となる。
The non-aqueous electrolyte secondary battery according to the present invention is a mixed solvent of propylene carbonate and methyl ethyl carbonate, which has been proposed as a non-aqueous solvent for improving cycle characteristics and low temperature characteristics, and has a higher dielectric constant solvent. 3 blended with ethylene carbonate
Since it is a mixed solvent of the seeds, the electrolytic solution can simultaneously achieve high conductivity and low freezing point. Therefore, it becomes possible to sufficiently improve the load characteristics and low temperature characteristics of the battery.

【0017】[0017]

【実施例】以下、この発明を実施例により具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0018】実施例1〜7及び比較例1 各実施例及び比較例において、図1に示した構造の電池
を作製した。この電池は、負極集電体1aに負極活物質
を塗布した帯状の負極1と、正極集電体2aに正極活物
質を塗布して形成した帯状の正極2とをセパレーター3
を介して巻き回し、この巻回体を上下の両端部に絶縁体
4を載置した状態で電池缶5に収納したものであり、そ
の上部は封口ガスケット6を介して電池蓋7をかしめる
ことにより封口したものである。また、負極リード9を
介して負極1を電池の底部に接続すると共に、正極リー
ド10を介して正極2を電池蓋7と接続し、それぞれ電
極として機能するようにしたものである。
Examples 1 to 7 and Comparative Example 1 In each of the Examples and Comparative Examples, a battery having the structure shown in FIG. 1 was produced. This battery includes a separator 3 including a strip-shaped negative electrode 1 in which a negative electrode current collector 1a is coated with a negative electrode active material, and a strip-shaped positive electrode 2 formed by coating a positive electrode current collector 2a with a positive electrode active material.
The winding body is housed in the battery can 5 with the insulators 4 placed on the upper and lower ends thereof, and the upper portion of the winding body is caulked with the battery lid 7 via the sealing gasket 6. It is the one that has been sealed. Further, the negative electrode 1 is connected to the bottom of the battery via the negative electrode lead 9, and the positive electrode 2 is connected to the battery lid 7 via the positive electrode lead 10 so as to function as electrodes, respectively.

【0019】このような構造の電池の作製に際しては、
まず、負極を次のように作製した。負極活物質として、
石油ピッチを出発原料とし、これに酸素を含む官能基を
10〜20%導入し(所謂、酸素架橋)、その後不活性
ガス気流中1000℃で焼成することにより、ガラス状
炭素に近い性質の難黒鉛炭素材料を得た。この難黒鉛炭
素材料のX線回折を行ったところ、(002)面の面間
隔は3.76オングストロームで、真比重は1.58g
/cmであった。この難黒鉛炭素材料を粉砕して平均
粒径10μmの粉末とし、この粉末90重量部と結着剤
としてポリフッ化ビニリデン(PVDF)10重量部と
を混合して負極合剤とし、これをN−メチル−2−ピロ
リドンに分散させてスラリー状にした。次に、このスラ
リーを負極集電体である厚さ10μmの帯状の銅箔の両
面に均一に塗布し、乾燥後、ロールプレス機で圧縮成型
し、帯状の負極1を得た。
When manufacturing a battery having such a structure,
First, the negative electrode was manufactured as follows. As the negative electrode active material,
By using petroleum pitch as a starting material, introducing 10 to 20% of a functional group containing oxygen therein (so-called oxygen cross-linking), and then calcining at 1000 ° C. in an inert gas stream, it is possible to obtain properties similar to those of glassy carbon. A graphite carbon material was obtained. When X-ray diffraction of this non-graphite carbon material was conducted, the (002) plane spacing was 3.76 angstroms and the true specific gravity was 1.58 g.
It was / cm 3. This non-graphite carbon material was pulverized into a powder having an average particle size of 10 μm, and 90 parts by weight of this powder was mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder to prepare a negative electrode mixture. It was dispersed in methyl-2-pyrrolidone to form a slurry. Next, this slurry was uniformly applied to both surfaces of a strip-shaped copper foil having a thickness of 10 μm, which is a negative electrode current collector, dried, and compression-molded by a roll press machine to obtain strip-shaped negative electrode 1.

【0020】次に、正極を次のように作製した。正極活
物質として、炭酸リチウムと炭酸コバルトとを0.5モ
ル対1モルの比で混合し、空気中900℃、5時間焼成
してLiCoOを得た。このようにして得たLiCo
91重量部と、導電剤としてグラファイト6重量部
と、結着剤としてポリフッ化ビニリデン(PVDF)3
重量部とを混合して正極合剤とし、これをN−メチル−
2−ピロリドンに分散させてスラリー状にした。次に、
このスラリーを正極集電体である厚さ20μmの帯状の
アルミニウム箔の両面に均一に塗布し、乾燥後、ロール
プレス機で圧縮成型し、帯状の正極2を得た。
Next, a positive electrode was prepared as follows. As a positive electrode active material, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol and fired in air at 900 ° C. for 5 hours to obtain LiCoO 2 . LiCo thus obtained
91 parts by weight of O 2, 6 parts by weight of graphite as a conductive agent, and polyvinylidene fluoride (PVDF) 3 as a binder
Parts by weight to prepare a positive electrode mixture, which is mixed with N-methyl-
It was dispersed in 2-pyrrolidone to form a slurry. next,
This slurry was uniformly applied to both sides of a strip-shaped aluminum foil having a thickness of 20 μm, which is a positive electrode current collector, dried, and compression-molded with a roll press to obtain a strip-shaped positive electrode 2.

【0021】このようにして得た正極2、負極1及び厚
さ25μmの微孔性ポリプロピレンフィルムからなるセ
パレーター3を積層して渦巻き型に多数回巻回すること
により巻回体を作製した。
The positive electrode 2, the negative electrode 1 thus obtained, and the separator 3 made of a microporous polypropylene film having a thickness of 25 μm were laminated and spirally wound many times to prepare a wound body.

【0022】電池缶5として、ニッケルメッキを施した
鉄製の缶を用意し、この底部に絶縁板4を挿入し、上記
巻回体を収納した。そして、負極の集電をとるために、
ニッケル製の負極リード9の一端を負極1に圧着し、他
端を電池缶5に溶接した。また、正極の集電をとるため
に、アルミニウム製の正極リード10の一端を正極2に
取り付け、他端を電池内力に応じて電流を遮断する電流
遮断用薄板8を介して電池蓋7に電気的に接続した。
As the battery can 5, an iron can plated with nickel was prepared, the insulating plate 4 was inserted into the bottom of the can, and the wound body was housed. And in order to collect the current of the negative electrode,
One end of a negative electrode lead 9 made of nickel was pressure-bonded to the negative electrode 1, and the other end was welded to the battery can 5. Further, in order to collect current from the positive electrode, one end of a positive electrode lead 10 made of aluminum is attached to the positive electrode 2, and the other end is electrically connected to the battery lid 7 via a thin plate 8 for cutting off current according to the internal force of the battery. Connected to each other.

【0023】次に、この電池缶5の中に、表1に示した
混合溶媒中にLiPFを1mol/l溶解させた電解
液を注入した。そして、アルファルトを塗布した絶縁封
口ガスケット6を介して電池缶5をかしめ、電池蓋7を
固定し、直径18mm、高さ65mmの円筒型非水電解
液電池を作製した。
Next, into this battery can 5, an electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in the mixed solvent shown in Table 1 was injected. Then, the battery can 5 was caulked via the insulating sealing gasket 6 coated with Alfalto, the battery lid 7 was fixed, and a cylindrical nonaqueous electrolyte battery having a diameter of 18 mm and a height of 65 mm was produced.

【0024】以上のようにして作製した実施例1〜7及
び比較例1の円筒型非水電解液電池について、まず、高
負荷特性を評価するために、20℃で、充電電圧を4.
2Vに設定して1Aで2.5時間を行う充電と、700
mAの定電流で終止電圧2.5Vまで行う放電とを9サ
イクル行い、その後同一条件で再度充電し、比較的高負
荷である1Aの定電流放電を行い、その時の放電容量を
測定した。
Regarding the cylindrical non-aqueous electrolyte batteries of Examples 1 to 7 and Comparative Example 1 produced as described above, first, in order to evaluate the high load characteristics, the charging voltage was 4.
700V when charging at 2.5V at 1A for 2 hours
Nine cycles of discharging with a constant current of mA up to a final voltage of 2.5 V were performed, then recharging was performed under the same conditions, and discharging with a constant current of 1 A, which was a relatively high load, was performed, and the discharge capacity at that time was measured.

【0025】また、低温特性を評価するために、高負荷
特性の評価時と同様の充放電サイクルを行い、その後−
20℃で1Aの定電流放電を行い、その時の放電容量を
測定した。
Further, in order to evaluate the low temperature characteristics, the same charge-discharge cycles and evaluation of high load characteristics, then -
Constant-current discharge of 1 A was performed at 20 ° C., and the discharge capacity at that time was measured.

【0026】さらに、自己放電特性を評価するために、
高負荷特性や低温特性の評価時と同様の充放電サイクル
を行い、次いで60℃で15時間放置し、その後20℃
で1Aの定電流放電を行い、その間の自己放電率を求め
た。
Further, in order to evaluate the self-discharge characteristic,
Perform the same charge / discharge cycle as when evaluating high load characteristics and low temperature characteristics, then leave at 60 ° C for 15 hours, then at 20 ° C.
A constant current discharge of 1 A was performed and the self-discharge rate during that period was obtained.

【0027】これらの結果を表1に併せて示した。表1
の結果から、炭酸プロピレン、炭酸エチレン、炭酸メチ
ルエチルの3種の溶媒を含む電解液を使用したこの発明
の実施例の電池は、通常のサイクルだけでなく高負荷特
性、低温特性及び自己放電特性にも優れていることが明
らかである。
The results are also shown in Table 1. Table 1
From the results of the above, the battery of the example of the present invention using the electrolytic solution containing three kinds of solvents of propylene carbonate, ethylene carbonate, and methyl ethyl carbonate is not only the normal cycle but also has high load characteristics, low temperature characteristics, and self-discharge characteristics. It is clear that it is also excellent.

【0028】[0028]

【表1】 非水溶媒組成(vol%) 高負荷特性 低温特性 自己放電率 PC:EC:MEC 放電容量(mAh) 放電容量(mAh) (%) 実施例1 25:25:50 1026 780 9.4 実施例2 10:40:50 1030 765 8.7 実施例3 35:15:50 1019 751 9.7 実施例4 47: 3:50 1006 705 10.8 実施例5 30:30:40 1018 720 8.9 実施例6 35:35:30 1009 702 8.8 実施例7 15:15:70 1029 793 10.1 比較例1 50: 0:50 995 697 11.5 [Table 1] Non-aqueous solvent composition (vol%) High load characteristics Low temperature characteristics Self discharge rate PC: EC: MEC Discharge capacity (mAh ) Discharge capacity (mAh ) (%) Example 1 25:25:50 1026 780 9.4 Example 2 10:40:50 1030 765 8.7 Example 3 35:15:50 1019 751 9.7 Example 4 47: 3:50 1006 705 10.8 Example 5 30:30:40 1018 720 8.9 Implementation Example 6 35:35:30 1009 702 8.8 Example 7 15:15:70 1029 793 10.1 Comparative Example 1 50: 0: 50 995 697 11.5

【0029】[0029]

【発明の効果】この発明によれば、非水電解液二次電池
の導電率が十分に高くなり、温度特性や負荷特性も良好
で、しかも耐酸化還元性も優れたものとなる。
According to the present invention, the conductivity of the non-aqueous electrolyte secondary battery is sufficiently high, the temperature characteristics and the load characteristics are good, and the redox resistance is also excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例で作製した電池の断面図であ
る。
FIG. 1 is a cross-sectional view of batteries manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 負極 1a 負極集電体 2 正極 2a 正極集電体 3 セパレーター 4 絶縁体 5 電池缶 1 negative electrode 1a Negative electrode current collector 2 positive electrode 2a Positive electrode current collector 3 separator 4 insulator 5 battery cans

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−218270(JP,A) 特開 平4−155775(JP,A) 特開 平4−162370(JP,A) 特開 平2−148665(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-218270 (JP, A) JP-A-4-155775 (JP, A) JP-A-4-162370 (JP, A) JP-A-2- 148665 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 帯状の集電体の両面にリチウムをドー
プ、脱ドープできる負極活物質と結着剤からなる負極合
剤層が形成されてなる負極と、帯状の集電体の両面に充
放電が可能な正極活物質と導電剤と結着材とを含む正極
合剤層が形成されてなる正極とを、セパレータを介して
多数回巻回してなる巻回電極体と、非水溶媒に電解質が
溶解されてなる非水電解液とを備える非水電解液二次電
池において、非水電解液の非水溶媒が、10〜47容量
%の炭酸プロピレン、3〜40容量%の炭酸エチレン及
び30〜70容量%の炭酸メチルエチルを含む混合溶媒
であることを特徴とする非水電解液二次電池。
1. A negative electrode formed by forming a negative electrode mixture layer composed of a negative electrode active material capable of doping and dedoping lithium and a binder on both sides of a band-shaped current collector, and filling both sides of the band-shaped current collector. A positive electrode formed by forming a positive electrode mixture layer containing a dischargeable positive electrode active material, a conductive agent, and a binder, a wound electrode body formed by winding a large number of times through a separator, and a nonaqueous solvent. In a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution in which an electrolyte is dissolved, the non-aqueous solvent of the non-aqueous electrolyte solution is 10 to 47% by volume propylene carbonate, 3 to 40% by volume ethylene carbonate and A non-aqueous electrolyte secondary battery, which is a mixed solvent containing 30 to 70% by volume of methyl ethyl carbonate.
【請求項2】 炭酸プロピレンと炭酸エチレンとの合計
と、炭酸メチルエチルとの体積配合比が70:30〜3
0:70である請求項1記載の非水電解液二次電池。
2. The volume mixing ratio of the total of propylene carbonate and ethylene carbonate to methyl ethyl carbonate is 70: 30-3.
The non-aqueous electrolyte secondary battery according to claim 1, which is 0:70 .
【請求項3】 正極が、LiMO(式中、Mは1種
以上の遷移金属を表し、0.05≦x≦1.10であ
る)からなる請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolytic solution according to claim 1, wherein the positive electrode comprises Li x MO 2 (wherein M represents one or more kinds of transition metals, and 0.05 ≦ x ≦ 1.10). Secondary battery.
【請求項4】 負極が、リチウムをドープ、脱ドープで
きる炭素材料からなる請求項3記載の非水電解液二次電
池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the negative electrode is made of a carbon material capable of being doped and dedoped with lithium.
JP30764092A 1992-10-21 1992-10-21 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3506386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30764092A JP3506386B2 (en) 1992-10-21 1992-10-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30764092A JP3506386B2 (en) 1992-10-21 1992-10-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06140076A JPH06140076A (en) 1994-05-20
JP3506386B2 true JP3506386B2 (en) 2004-03-15

Family

ID=17971474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30764092A Expired - Lifetime JP3506386B2 (en) 1992-10-21 1992-10-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3506386B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481063B2 (en) * 1995-12-25 2003-12-22 シャープ株式会社 Non-aqueous secondary battery
JP4565287B2 (en) * 1999-06-09 2010-10-20 株式会社豊田中央研究所 Non-aqueous electrolyte secondary battery
CN108615889A (en) * 2018-05-11 2018-10-02 合肥国轩高科动力能源有限公司 Single composite graphite particle slurry combining method for lithium ion battery

Also Published As

Publication number Publication date
JPH06140076A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
JP2797390B2 (en) Non-aqueous electrolyte secondary battery
JP3416016B2 (en) Ion conductor for lithium secondary battery and lithium secondary battery using the same
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2005005117A (en) Battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JPH08335465A (en) Nonaqueous electrolytic battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP4085481B2 (en) battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JPH08180878A (en) Lithium secondary battery
JP3303320B2 (en) Non-aqueous electrolyte secondary battery
JPH09129240A (en) Nonaqueous electrolytic secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JPH07192762A (en) Nonaqueous electrolyte secondary battery
JPH07296848A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH11111302A (en) Electrode for battery, and battery using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051020

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

EXPY Cancellation because of completion of term