JPH09129240A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH09129240A
JPH09129240A JP7282774A JP28277495A JPH09129240A JP H09129240 A JPH09129240 A JP H09129240A JP 7282774 A JP7282774 A JP 7282774A JP 28277495 A JP28277495 A JP 28277495A JP H09129240 A JPH09129240 A JP H09129240A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
binder
organic compound
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282774A
Other languages
Japanese (ja)
Other versions
JP3329161B2 (en
Inventor
Tomoko Kono
智子 河野
Takafumi Fujiwara
隆文 藤原
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28277495A priority Critical patent/JP3329161B2/en
Publication of JPH09129240A publication Critical patent/JPH09129240A/en
Application granted granted Critical
Publication of JP3329161B2 publication Critical patent/JP3329161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent the peeling off of an active material from a current collector and provide a nonaqueous electrolytic secondary battery with an excellent cycle characteristic by using polyvinylidene fluoride and an organic compound having an imide group as a binder of a positive electrode. SOLUTION: A positive electrode and a negative electrode are spirally wound through a separator, then housed in a case 1. The positive electrode uses LiNi0.9 Co0.1 O2 as an active material. 4 pts.wt. acetylene black is mixed to 10 pts.wt. positive active material, N-methyl pyrrolidone solution in which 4 pts.wt. polyvinylidene fluoride and 0.1 pts.wt. organic compound are dissolved is added to the mixture, they are kneaded to a pasty state, the paste obtained is applied to the both surfaces of an aluminum foil, then dried to obtain the positive plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にその正極に使用する結着剤の改良により電池特
性を向上するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improving battery characteristics by improving the binder used for the positive electrode thereof.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの電源として主に小
型、軽量で高エネルギー密度を有する二次電池が使用さ
れている。中でも非水電解液二次電池、とりわけリチウ
ム二次電池は高電圧、高エネルギー密度を有する電池と
して有望視されている。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and secondary batteries having small size, light weight and high energy density are mainly used as power sources for these electronic devices. Among them, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are regarded as promising as batteries having high voltage and high energy density.

【0003】これらの重負荷に耐えうるためには電極の
表面積を大きくし、対極との接触面積を大きくするのが
望ましい。すなわち、電池構造として、正・負極の活物
質を導電材、結着剤と共に薄い金属箔の集電体上に塗布
し、セパレーターを介して巻回する渦巻状構造が有利で
ある。
In order to withstand these heavy loads, it is desirable to increase the surface area of the electrode and the contact area with the counter electrode. That is, as a battery structure, a spiral structure in which positive and negative electrode active materials are applied on a thin metal foil current collector together with a conductive material and a binder and wound through a separator is advantageous.

【0004】このリチウム複合酸化物を使用した正極
は、有機溶剤に溶解した結着剤と導電材と共に混練し、
集電体に塗布、乾燥した後、圧延などにより接着して作
成されており、その結着剤としてポリフッ化ビニリデン
(特開平4−249859号公報)やポリイミド樹脂
(特開昭57−210568号公報)が提案されてい
る。
A positive electrode using this lithium composite oxide is kneaded with a binder dissolved in an organic solvent and a conductive material,
It is formed by applying it to a current collector, drying it, and then adhering it by rolling or the like. As its binder, polyvinylidene fluoride (JP-A-4-249859) or polyimide resin (JP-A-57-210568). ) Is proposed.

【0005】しかしながら、ポリフッ化ビニリデンは、
金属酸化物との密着性には優れるので正極活物質同士を
一体化するのには適しているが、銅、アルミニウムなど
からなる集電体金属との密着性はさほど良くない。この
ため、ポリフッ化ビニリデンをリチウムを吸蔵・放出し
うる化合物からなる正極の結着剤として用いた電池は、
充放電サイクルを繰り返すうちに集電体と電極層との密
着性が悪化し、放電容量が低下することで電池の寿命が
短くなるといった問題がある。
However, polyvinylidene fluoride is
Since it has excellent adhesion to metal oxides, it is suitable for integrating positive electrode active materials with each other, but it does not have very good adhesion to current collector metals such as copper and aluminum. Therefore, a battery using polyvinylidene fluoride as a positive electrode binder made of a compound capable of inserting and extracting lithium is
As the charge and discharge cycle is repeated, the adhesion between the current collector and the electrode layer deteriorates, and the discharge capacity decreases, which shortens the battery life.

【0006】また、ポリイミド樹脂は銅、アルミニウム
などからなる集電体金属との密着性には優れているが、
集電体金属に対する導電性が低い。よって、ポリイミド
樹脂をリチウムを吸蔵・放出しうる化合物からなる正極
の結着剤として用いた電池は、電池の内部抵抗が高くな
るため、充放電サイクル特性には優れても放電容量が小
さくなるといった問題がある。
Further, although the polyimide resin is excellent in adhesion to a collector metal such as copper or aluminum,
Low conductivity for current collector metal. Therefore, a battery using a polyimide resin as a positive electrode binder made of a compound capable of occluding and releasing lithium has a high internal resistance of the battery, so that the discharge capacity becomes small even though the charge-discharge cycle characteristics are excellent. There's a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、正極活物質
の集電体金属からの剥離を防ぎ、充放電サイクルの繰り
返しに伴う容量低下の少ない非水電解液二次電池を提供
するものである。
DISCLOSURE OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery which prevents the positive electrode active material from peeling off from the current collector metal and has a small decrease in capacity with repeated charge and discharge cycles. is there.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、本発明はリチウム、リチウム合金、またはリチウム
を吸蔵・放出し得る化合物からなる負極と、リチウムを
可逆的に充放電可能な化合物からなる正極を備え、前記
正極の構成要素である結着剤として、ポリフッ化ビニリ
デンとイミド基を有する有機化合物の混合物を用いるこ
とを特徴とする。本発明における正極は、有機溶剤に溶
解したポリフッ化ビニリデンとイミド基を有する有機化
合物の混合物を結着剤として用い、導電材と共に混練
し、集電体に塗布、乾燥した後、圧延などにより接着し
て作成される。
In order to solve the above problems, the present invention comprises an anode made of lithium, a lithium alloy, or a compound capable of inserting and extracting lithium, and a compound capable of reversibly charging and discharging lithium. It is characterized in that a mixture of polyvinylidene fluoride and an organic compound having an imide group is used as a binder which is a constituent element of the positive electrode. The positive electrode in the present invention uses a mixture of polyvinylidene fluoride dissolved in an organic solvent and an organic compound having an imide group as a binder, and is kneaded with a conductive material, applied to a current collector, dried, and then bonded by rolling or the like. Created.

【0009】イミド基を有する有機化合物としては、
[化学式1]で示す化合物1〜29が集電体金属との密
着性に優れている。
As the organic compound having an imide group,
Compounds 1 to 29 represented by [Chemical Formula 1] have excellent adhesion to the collector metal.

【0010】[0010]

【化1】 Embedded image

【0011】[0011]

【発明の実施の形態】本発明電池においては、ポリフッ
化ビニリデンとイミド基を有する有機化合物を結着剤と
して用い、正極活物質同士の密着性はポリフッ化ビニリ
デン、正極活物質と集電体金属との密着性はイミド基を
有する有機化合物によってそれぞれ実現される。このた
め、充放電サイクルを繰り返すうちに集電体と電極層と
の密着性が悪化し、放電容量が低下することで電池の寿
命が短くなるといった従来の問題を解決できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the battery of the present invention, polyvinylidene fluoride and an organic compound having an imide group are used as a binder, and the adhesion between the positive electrode active materials is determined by polyvinylidene fluoride, the positive electrode active material and the collector metal. The adhesiveness with and is respectively realized by the organic compound having an imide group. Therefore, the conventional problem that the adhesion between the current collector and the electrode layer is deteriorated as the charge / discharge cycle is repeated and the discharge capacity is reduced to shorten the life of the battery can be solved.

【0012】イミド基を有する有機化合物の正極活物質
に対する含有比率が大きすぎると、集電体金属との結着
性は向上するものの、集電体金属に対する導電性が低く
なるので、重負荷での放電特性が好ましくない。このた
め、イミド基を有する有機化合物の正極活物質に対する
含有比率は0.05〜0.25重量部であることがより
望ましい。
When the content ratio of the organic compound having an imide group to the positive electrode active material is too large, the binding property with the current collector metal is improved, but the conductivity with respect to the current collector metal is lowered, so that the load is increased under heavy load. Discharge characteristics are not preferable. Therefore, the content ratio of the organic compound having an imide group to the positive electrode active material is more preferably 0.05 to 0.25 part by weight.

【0013】[0013]

【実施例】【Example】

(実施例1)以下、本発明の実施例を図面を参照にしな
がら説明する。図1に本実施例に用いた円筒型電池の縦
断面図を示す。図において、1は耐有機電解液性のステ
ンレス鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極および負極がセパレーターを介して複数回渦巻
状に巻回されてケース1内に収納されている。そして上
記正極からは正極リード5が引き出されて封口板2に接
続され、負極からは負極リード6が引き出されて電池ケ
ース1の底部に接続されている。7は絶縁リングで極板
群4の上下部にそれぞれ設けられている。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a vertical sectional view of a cylindrical battery used in this example. In the figure, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times via a separator and are housed in the case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0014】正極は、活物質としてLiNi0.9Co0.1
2を使用した。正極活物質10重量部に対してアセチ
レンブラック4重量部を混合し、ポリフッ化ビニリデン
4重量部と化学式1で表される化合物1〜29(それぞ
れ電池1〜29に相当)を0.1重量部を溶解したN−
メチルピロリドン溶液を結着剤として加え、混練してペ
ースト状にした。次にこのペーストをアルミニウム箔の
両面に塗工し、乾燥後、圧延して厚さ0.14mm、幅
37mm、長さ250mmの正極板とした。
The positive electrode contains LiNi 0.9 Co 0.1 as an active material.
The O 2 was used. 4 parts by weight of acetylene black was mixed with 10 parts by weight of the positive electrode active material, and 4 parts by weight of polyvinylidene fluoride and 0.1 parts by weight of compounds 1 to 29 represented by Formula 1 (corresponding to batteries 1 to 29, respectively). Dissolved N-
The methylpyrrolidone solution was added as a binder and kneaded to form a paste. Next, this paste was applied to both sides of an aluminum foil, dried, and then rolled to obtain a positive electrode plate having a thickness of 0.14 mm, a width of 37 mm, and a length of 250 mm.

【0015】負極はメソフェーズ小球体を黒鉛化したも
の(以下メソフェーズ黒鉛と称す)を使用した。このメ
ソフェーズ黒鉛100重量部にスチレン/ブタジエンゴ
ム3重量部を結着剤として混合し、カルボキシメチルセ
ルロース水溶液を加えて混練し、ペースト状にした。そ
してこのペーストを銅箔の両面に塗工し、乾燥後、圧延
して厚さ0.21mm、幅39mm、長さ280mmの
負極板とした。
The negative electrode was formed by graphitizing mesophase small spheres (hereinafter referred to as mesophase graphite). 100 parts by weight of this mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber as a binder, and an aqueous carboxymethyl cellulose solution was added and kneaded to form a paste. Then, this paste was applied to both sides of a copper foil, dried, and then rolled to obtain a negative electrode plate having a thickness of 0.21 mm, a width of 39 mm, and a length of 280 mm.

【0016】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取りつけ、厚さ
0.025mm、幅45mm、長さ740mmのポリエ
チレン製のセパレータを介して渦巻状に巻回し、直径1
4.0mm、高さ50mmの電池ケースに納入した。
Aluminum lead is attached to the positive electrode plate and nickel lead is attached to the negative electrode plate, and the lead wire is spirally wound through a polyethylene separator having a thickness of 0.025 mm, a width of 45 mm and a length of 740 mm. Diameter 1
It was delivered to a battery case with a height of 4.0 mm and a height of 50 mm.

【0017】電解液にはエチレンカーボネートとエチル
メチルカーボネートとを20:80の体積比で混合した
溶媒に電解液として1モル/lの六フッ化リン酸リチウ
ムを溶解したものを注液した。そして電池を封口し完成
電池とした。
As the electrolytic solution, 1 mol / l lithium hexafluorophosphate was dissolved as an electrolytic solution in a solvent prepared by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 20:80. Then, the battery was sealed to obtain a completed battery.

【0018】(実施例2)正極活物質100重量部に対
して、ポリフッ化ビニリデン4重量部と化学式1で表さ
れる化合物1を0.2重量部溶解したN−メチルピロリ
ドン溶液を結着剤として加え、実施例1と同様に正極板
および電池を構成し、電池30とした。
Example 2 A binder was an N-methylpyrrolidone solution in which 4 parts by weight of polyvinylidene fluoride and 0.2 parts by weight of the compound 1 represented by the chemical formula 1 were dissolved in 100 parts by weight of the positive electrode active material. In addition, a positive electrode plate and a battery were formed in the same manner as in Example 1 to obtain a battery 30.

【0019】(実施例3)正極活物質100重量部に対
して、ポリフッ化ビニリデン4重量部と化学式1で表さ
れる化合物1を1.0重量部を溶解したN−メチルピロ
リドン溶液を結着剤として加え、実施例1と同様に正極
板および電池を構成し、電池31とした。
Example 3 An N-methylpyrrolidone solution containing 4 parts by weight of polyvinylidene fluoride and 1.0 part by weight of the compound 1 represented by the chemical formula 1 was bound to 100 parts by weight of the positive electrode active material. In addition to the agent, a positive electrode plate and a battery were constructed in the same manner as in Example 1 to obtain a battery 31.

【0020】(比較例1)正極活物質100重量部に対
して、ポリフッ化ビニリデン4重量部のみを溶解したN
−メチルピロリドン溶液を結着剤として加え、実施例1
と同様に正極板および電池を構成し、電池32とした。
Comparative Example 1 N in which 4 parts by weight of polyvinylidene fluoride was dissolved in 100 parts by weight of the positive electrode active material
-Methylpyrrolidone solution was added as a binder, Example 1
A positive electrode plate and a battery were formed in the same manner as in 1. to obtain a battery 32.

【0021】(比較例2)正極活物質100重量部に対
して、化学式1で表される化合物1を4重量部のみを溶
解したN−メチルピロリドン溶液を結着剤として加え、
実施例1と同様に正極板および電池を構成し、電池33
とした。
Comparative Example 2 An N-methylpyrrolidone solution in which only 4 parts by weight of the compound 1 represented by the chemical formula 1 was dissolved was added as a binder to 100 parts by weight of the positive electrode active material,
A positive electrode plate and a battery were constructed in the same manner as in Example 1, and the battery 33
And

【0022】これらの電池について以下の条件で高負荷
放電試験と充放電サイクル試験を行った。充電は4.2
Vで2時間の定電圧充電を行い、電池電圧が4.2Vに
達するまでは420mAの定電流充電となるように設定
した。そして高負荷放電試験は1220mA,サイクル
試験は610mAで定電流放電を行い、放電終止電圧を
3.0Vとした。このような充放電を20℃の環境下で
行った。サイクル試験においては、5サイクル目の放電
容量を初期容量とし、放電容量が300mAhに劣化し
た時点をサイクル寿命末期としてそのサイクル数の値を
読んだ。結果を表1〜2に示す。
A high load discharge test and a charge / discharge cycle test were performed on these batteries under the following conditions. Charging is 4.2
Constant voltage charging was performed for 2 hours at V, and it was set so that the constant current charging was 420 mA until the battery voltage reached 4.2V. A constant current discharge was performed at 1220 mA for the high load discharge test and 610 mA for the cycle test, and the discharge end voltage was set to 3.0V. Such charging / discharging was performed in an environment of 20 ° C. In the cycle test, the value of the number of cycles was read with the discharge capacity at the 5th cycle as the initial capacity and the point at which the discharge capacity deteriorated to 300 mAh as the end of the cycle life. The results are shown in Tables 1 and 2.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1〜2より、610mAで定電流放電を
行った場合の電池の初期容量は、結着剤がポリフッ化ビ
ニリデンのみの電池(電池32)とポリフッ化ビニリデ
ンに化学式1で表される化合物1〜29を加えた電池
(電池1〜31)でほとんど変わらないことがわかる。
しかし、結着剤がイミド基を含む有機化合物のみの電池
(電池33)だけは、とりわけ容量が小さかった。これ
は、イミド基を含む有機化合物が集電体金属との密着性
には優れているが、集電体金属に対する導電性がないた
め電池の内部抵抗が高くなるからである。
From Tables 1 and 2, the initial capacity of the battery after constant current discharge at 610 mA is represented by the chemical formula 1 in the case where the binder is only polyvinylidene fluoride (battery 32) and polyvinylidene fluoride. It can be seen that the batteries to which the compounds 1 to 29 are added (batteries 1 to 31) hardly change.
However, only the battery (battery 33) in which the binder was an organic compound containing an imide group had a particularly small capacity. This is because the organic compound containing an imide group has excellent adhesion to the current collector metal, but the internal resistance of the battery increases because it has no conductivity with respect to the current collector metal.

【0026】また、1220mAの高負荷で定電流放電
を行った場合、結着剤がポリフッ化ビニリデンに化学式
1で表される化合物1〜29を0.1〜0.2重量部加
えた電池(電池1〜30)は結着剤がポリフッ化ビニリ
デンのみの電池(電池32)に比べてあまり大きな容量
の減少は見られなかったが、ポリフッ化ビニリデンに化
学式1で表される化合物1を1.0重量部加えた電池
(電池31)と結着剤がイミド基を含む有機化合物のみ
の電池(電池33)は著しく容量が減少した。これは、
イミド基を含む有機化合物そのものに導電性がないた
め、結着剤中のイミド基を含む有機化合物の含有比率が
大きくなると集電体金属に対する導電性が低くなるため
である。
When constant current discharge was performed under a high load of 1220 mA, a battery was prepared by adding 0.1 to 0.2 parts by weight of the compound 1 to 29 represented by the chemical formula 1 to polyvinylidene fluoride as a binder ( Batteries 1 to 30) showed no significant decrease in capacity as compared with the battery (battery 32) having only polyvinylidene fluoride as a binder, but polyvinylidene fluoride was added to the compound 1 represented by the chemical formula 1. The capacity of the battery added with 0 parts by weight (battery 31) and the battery containing only the organic compound containing the imide group as the binder (battery 33) showed a marked decrease in capacity. this is,
This is because the organic compound itself containing an imide group does not have conductivity, and thus the conductivity with respect to the current collector metal decreases as the content ratio of the organic compound containing an imide group in the binder increases.

【0027】また、結着剤がポリフッ化ビニリデンのみ
の電池(電池32)と比較して、ポリフッ化ビニリデン
に化学式1で表される化合物1〜29を加えた電池(電
池1〜31)は寿命末期のサイクル数が著しく向上し
た。これは、結着剤中のBMIの集電体金属に対する優
れた密着性により、充放電サイクルの繰り返しに伴う正
極活物質の集電体金属からの剥離が防げるので、充放電
サイクルの繰り返しに伴う容量低下が小さくなるためで
ある。また、結着剤中のイミド基を含む有機化合物の添
加量の増加に伴いサイクル数も増えたが、それぞれのサ
イクル数に大きな違いは見られなかった。これは、結着
剤中のBMIが少量でも、集電体金属に対する密着性が
十分保持されるためである。結着剤がイミド基を含む有
機化合物のみの電池(電池33)の寿命末期のサイクル
数はあまり大きくないが、これは初期容量が小さいた
め、放電容量が300mAhに劣化するのが早いだけで
ある。
Further, as compared with the battery (battery 32) in which the binder is only polyvinylidene fluoride, the battery (batteries 1 to 31) in which the compounds 1 to 29 represented by the chemical formula 1 are added to polyvinylidene fluoride has a long life. The number of terminal cycles has improved significantly. This is because the excellent adhesion of the BMI in the binder to the current collector metal prevents the positive electrode active material from peeling off from the current collector metal due to repeated charge / discharge cycles. This is because the decrease in capacity is reduced. Further, the number of cycles increased as the amount of the organic compound containing an imide group contained in the binder increased, but no significant difference was observed in the respective numbers of cycles. This is because even if the BMI in the binder is small, the adhesion to the current collector metal is sufficiently maintained. The number of cycles at the end of life of the battery (battery 33) in which the binder is an organic compound containing an imide group is not very large, but since the initial capacity is small, the discharge capacity only deteriorates to 300 mAh quickly. .

【0028】以上のことから本発明は、非水電解液二次
電池の正極の結着剤としてポリフッ化ビニリデンと共に
イミド基を有する有機化合物を適量用いることで、充放
電サイクルに伴う活物質の集電体金属からの剥離を防ぐ
ことができ、それにより電池のサイクル特性を向上する
ことができる。
From the above, according to the present invention, by using an appropriate amount of an organic compound having an imide group together with polyvinylidene fluoride as a binder for the positive electrode of a non-aqueous electrolyte secondary battery, it is possible to collect the active material during charge / discharge cycles. It is possible to prevent peeling from the electric metal, thereby improving the cycle characteristics of the battery.

【0029】なお、上記実施例においては正極活物質と
してLiNi0.9Co0.12を使用したが、活物質が一
般式LixNiO2,LixCoO2,LixMn24(0
≦x≦1.2)で表されるリチウム複合酸化物、もしく
は、一般式Lix(1-y)y2(0≦x≦1.2、0≦
y≦0.5、N,MはNi,Ti,V,Cr,Mn,F
e,Co,Cu,Zn,Al,B等の金属元素のうち2
種類以上)で表されるリチウム複合酸化物などの正極材
料を用いても、同様の効果が得られる。
Although LiNi 0.9 Co 0.1 O 2 was used as the positive electrode active material in the above examples, the active material has the general formula Li x NiO 2 , Li x CoO 2 , Li x Mn 2 O 4 (0
≦ x ≦ 1.2) lithium composite oxide represented by, or the general formula Li x N (1-y) M y O 2 (0 ≦ x ≦ 1.2,0 ≦
y ≦ 0.5, N and M are Ni, Ti, V, Cr, Mn and F
2 out of metallic elements such as e, Co, Cu, Zn, Al, B
The same effect can be obtained by using a positive electrode material such as a lithium composite oxide represented by (more than one kind).

【0030】また、上記実施例においては円筒型の電池
を用いて評価を行ったが、角型など電池形状が異なって
も、同様の結果が得られる。
Further, in the above embodiment, the evaluation was performed using a cylindrical battery, but similar results can be obtained even when the battery shape is different, such as a prismatic battery.

【0031】さらに、上記実施例において負極には炭素
質材料を用いたが、本発明における効果は正極板におい
て作用するため、リチウム、リチウム合金、リチウムを
吸蔵・放出し得る化合物などを用いても同様の効果が得
られる。
Further, although a carbonaceous material is used for the negative electrode in the above examples, since the effect of the present invention works on the positive electrode plate, lithium, a lithium alloy, a compound capable of inserting and extracting lithium, etc. may be used. The same effect can be obtained.

【0032】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、ほかのリチウム含
有塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。
Although lithium hexafluorophosphate was used as the electrolyte in the above examples, other lithium-containing salts, such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluoride. Similar effects were obtained with lithium arsenate and the like.

【0033】さらに、上記実施例ではエチレンカーボネ
ートとエチルメチルカーボネートの混合溶媒を用いた
が、ほかの非水溶媒、例えば、プロピレンカーボネート
などの環状エステル、テトラヒドロフランなどの環状エ
ーテル、ジメトキシエタンなどの鎖状エーテル、プロピ
オン酸メチルなどの鎖状エステルなどの非水溶媒や、こ
れらの多元系混合溶媒を用いても同様の効果が得られ
た。
Further, although a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used in the above examples, other non-aqueous solvents such as cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, and chain-like chains such as dimethoxyethane. Similar effects were obtained using a non-aqueous solvent such as an ether or a chain ester such as methyl propionate, or a multi-component mixed solvent thereof.

【0034】[0034]

【発明の効果】以上のように本発明による正極の結着剤
としてポリフッ化ビニリデンと共にイミド基を有する有
機化合物を適量用いることで、充放電サイクルに伴う活
物質の集電体金属からの剥離を防ぐことができるため、
サイクル特性に優れた非水電解液二次電池を提供するこ
とができる。
As described above, by using an appropriate amount of an organic compound having an imide group together with polyvinylidene fluoride as a binder for the positive electrode according to the present invention, peeling of the active material from the current collector metal due to charge / discharge cycles can be achieved. Because it can be prevented
A non-aqueous electrolyte secondary battery having excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例における円筒型電
池の断面図
FIG. 1 is a cross-sectional view of a cylindrical battery in an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウム、リチウム合金、またはリチウム
を吸蔵・放出し得る化合物からなる負極と、リチウムを
可逆的に充放電可能な化合物からなる正極を備え、前記
正極の構成要素である結着剤として、ポリフッ化ビニリ
デンとイミド基を有する有機化合物の混合物を用いるこ
とを特徴とした非水電解液二次電池。
1. A binder comprising a negative electrode made of lithium, a lithium alloy, or a compound capable of occluding / releasing lithium, and a positive electrode made of a compound capable of reversibly charging / discharging lithium, the binder being a constituent element of the positive electrode. As the non-aqueous electrolyte secondary battery, a mixture of polyvinylidene fluoride and an organic compound having an imide group is used.
【請求項2】イミド基を有する有機化合物の正極活物質
に対する含有比率が0.05〜0.25重量部である請
求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content ratio of the organic compound having an imide group to the positive electrode active material is 0.05 to 0.25 part by weight.
【請求項3】有機化合物が[化学式1]で示すような化
学構造であることを特徴とする請求項1または2記載の
非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the organic compound has a chemical structure represented by [Chemical formula 1].
JP28277495A 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3329161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28277495A JP3329161B2 (en) 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28277495A JP3329161B2 (en) 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09129240A true JPH09129240A (en) 1997-05-16
JP3329161B2 JP3329161B2 (en) 2002-09-30

Family

ID=17656907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28277495A Expired - Fee Related JP3329161B2 (en) 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3329161B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001507A (en) * 1996-12-24 1999-12-14 Sony Corporation Non-aqueous electrolyte secondary battery
WO2000036675A1 (en) * 1998-12-11 2000-06-22 Fujitsu Limited Secondary lithium battery, negative electrode for secondary lithium battery, and process for producing the negative electrode
EP1217674A2 (en) * 2000-12-15 2002-06-26 Wilson Greatbatch Ltd. Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector
EP1221732A3 (en) * 2000-11-29 2002-07-17 Wilson Greatbatch Ltd. Electrodes containing a heat-treated polyamic acid-pvdf binder mixture
WO2003035059A3 (en) * 2001-10-25 2003-09-25 Ssl Int Plc Spermicides
WO2003035058A3 (en) * 2001-10-25 2003-12-31 Ssl Int Plc Polymaleide compounds and their medical use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001507A (en) * 1996-12-24 1999-12-14 Sony Corporation Non-aqueous electrolyte secondary battery
WO2000036675A1 (en) * 1998-12-11 2000-06-22 Fujitsu Limited Secondary lithium battery, negative electrode for secondary lithium battery, and process for producing the negative electrode
US6645671B2 (en) 1998-12-11 2003-11-11 Fujitsu Limited Lithium secondary battery, anode for lithium secondary battery, and method for manufacturing the anode
EP1221732A3 (en) * 2000-11-29 2002-07-17 Wilson Greatbatch Ltd. Electrodes containing a heat-treated polyamic acid-pvdf binder mixture
US6759164B2 (en) 2000-11-29 2004-07-06 Wilson Greatbatch Ltd. Use of heat-treated electrodes containing a polyamic acid-PVDF binder mixture
EP1217674A2 (en) * 2000-12-15 2002-06-26 Wilson Greatbatch Ltd. Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector
EP1217674A3 (en) * 2000-12-15 2004-10-20 Wilson Greatbatch Ltd. Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector
WO2003035059A3 (en) * 2001-10-25 2003-09-25 Ssl Int Plc Spermicides
WO2003035058A3 (en) * 2001-10-25 2003-12-31 Ssl Int Plc Polymaleide compounds and their medical use

Also Published As

Publication number Publication date
JP3329161B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
JP4000646B2 (en) Non-aqueous electrolyte for secondary batteries
JP4502311B2 (en) Method for manufacturing lithium secondary battery
JP2009081049A (en) Nonaqueous electrolyte battery and packed battery
KR100313633B1 (en) Secondary battery
JP3732455B2 (en) Flat non-aqueous electrolyte secondary battery
JP4502332B2 (en) Manufacturing method of sheet-like positive electrode
JP2006269321A (en) Winding type non-aqueous electrolyte secondary battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
US11011743B2 (en) Lithium ion secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP4172061B2 (en) Non-aqueous electrolyte secondary battery
JP2006134758A (en) Secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP4103168B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JPH0745304A (en) Organic electrolyte secondary battery
JP3329161B2 (en) Non-aqueous electrolyte secondary battery
JP2000149992A (en) Gel electrolyte battery
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP3432922B2 (en) Solid electrolyte secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP2021096901A (en) Lithium ion secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees