JP3329161B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3329161B2 JP3329161B2 JP28277495A JP28277495A JP3329161B2 JP 3329161 B2 JP3329161 B2 JP 3329161B2 JP 28277495 A JP28277495 A JP 28277495A JP 28277495 A JP28277495 A JP 28277495A JP 3329161 B2 JP3329161 B2 JP 3329161B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- positive electrode
- binder
- lithium
- polyvinylidene fluoride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解液二次電
池、特にその正極に使用する結着剤の改良により電池特
性を向上するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to an improvement in battery characteristics by improving a binder used for a positive electrode thereof.
【0002】[0002]
【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの電源として主に小
型、軽量で高エネルギー密度を有する二次電池が使用さ
れている。中でも非水電解液二次電池、とりわけリチウ
ム二次電池は高電圧、高エネルギー密度を有する電池と
して有望視されている。2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly developed, and secondary batteries having a small size, light weight and high energy density are mainly used as power sources for these devices. Among them, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are regarded as promising as batteries having high voltage and high energy density.
【0003】これらの重負荷に耐えうるためには電極の
表面積を大きくし、対極との接触面積を大きくするのが
望ましい。すなわち、電池構造として、正・負極の活物
質を導電材、結着剤と共に薄い金属箔の集電体上に塗布
し、セパレーターを介して巻回する渦巻状構造が有利で
ある。In order to withstand these heavy loads, it is desirable to increase the surface area of the electrode and increase the contact area with the counter electrode. That is, as a battery structure, a spiral structure in which positive and negative electrode active materials are applied together with a conductive material and a binder on a thin metal foil current collector and wound through a separator is advantageous.
【0004】このリチウム複合酸化物を使用した正極
は、有機溶剤に溶解した結着剤と導電材と共に混練し、
集電体に塗布、乾燥した後、圧延などにより接着して作
成されており、その結着剤としてポリフッ化ビニリデン
(特開平4−249859号公報)やポリイミド樹脂
(特開昭57−210568号公報)が提案されてい
る。A positive electrode using this lithium composite oxide is kneaded with a binder dissolved in an organic solvent and a conductive material,
It is prepared by coating and drying on a current collector and then bonding it by rolling or the like. As a binder, polyvinylidene fluoride (Japanese Patent Application Laid-Open No. 4-24959) or a polyimide resin (Japanese Patent Application Laid-Open No. 57-210568) is used. ) Has been proposed.
【0005】しかしながら、ポリフッ化ビニリデンは、
金属酸化物との密着性には優れるので正極活物質同士を
一体化するのには適しているが、銅、アルミニウムなど
からなる集電体金属との密着性はさほど良くない。この
ため、ポリフッ化ビニリデンをリチウムを吸蔵・放出し
うる化合物からなる正極の結着剤として用いた電池は、
充放電サイクルを繰り返すうちに集電体と電極層との密
着性が悪化し、放電容量が低下することで電池の寿命が
短くなるといった問題がある。[0005] However, polyvinylidene fluoride is
Although it has excellent adhesion to metal oxides, it is suitable for integrating positive electrode active materials, but adhesion to a collector metal such as copper or aluminum is not so good. For this reason, batteries using polyvinylidene fluoride as a binder for the positive electrode made of a compound capable of inserting and extracting lithium,
As the charge / discharge cycle is repeated, the adhesion between the current collector and the electrode layer deteriorates, and there is a problem that the life of the battery is shortened due to a decrease in the discharge capacity.
【0006】また、ポリイミド樹脂は銅、アルミニウム
などからなる集電体金属との密着性には優れているが、
集電体金属に対する導電性が低い。よって、ポリイミド
樹脂をリチウムを吸蔵・放出しうる化合物からなる正極
の結着剤として用いた電池は、電池の内部抵抗が高くな
るため、充放電サイクル特性には優れても放電容量が小
さくなるといった問題がある。[0006] Polyimide resin is excellent in adhesion to a current collector metal such as copper and aluminum.
Low conductivity to current collector metal. Therefore, a battery using a polyimide resin as a binder for a positive electrode made of a compound capable of inserting and extracting lithium has a high internal resistance of the battery. There's a problem.
【0007】[0007]
【発明が解決しようとする課題】本発明は、正極活物質
の集電体金属からの剥離を防ぎ、充放電サイクルの繰り
返しに伴う容量低下の少ない非水電解液二次電池を提供
するものである。SUMMARY OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery which prevents the positive electrode active material from peeling off from the current collector metal and has a small capacity reduction due to repeated charge / discharge cycles. is there.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
め、本発明はリチウム、リチウム合金、またはリチウム
を吸蔵・放出し得る化合物からなる負極と、リチウムを
可逆的に充放電可能な化合物からなる正極を備え、前記
正極の構成要素である結着剤として、ポリフッ化ビニリ
デンとイミド基を有する有機化合物の混合物を用いるこ
とを特徴とする。本発明における正極は、有機溶剤に溶
解したポリフッ化ビニリデンとイミド基を有する有機化
合物の混合物を結着剤として用い、導電材と共に混練
し、集電体に塗布、乾燥した後、圧延などにより接着し
て作成される。In order to solve the above-mentioned problems, the present invention relates to a negative electrode comprising lithium, a lithium alloy, or a compound capable of inserting and extracting lithium, and a compound comprising a compound capable of reversibly charging and discharging lithium. And a mixture of polyvinylidene fluoride and an organic compound having an imide group is used as a binder that is a component of the positive electrode. The positive electrode according to the present invention uses a mixture of polyvinylidene fluoride and an organic compound having an imide group dissolved in an organic solvent as a binder, kneads it with a conductive material, coats it on a current collector, dries it, and bonds it by rolling or the like Is created.
【0009】イミド基を有する有機化合物としては、
[化学式1]で示す化合物1〜29が集電体金属との密
着性に優れている。The organic compound having an imide group includes
Compounds 1 to 29 represented by [Chemical Formula 1] have excellent adhesion to the current collector metal.
【0010】[0010]
【化1】 Embedded image
【0011】[0011]
【発明の実施の形態】本発明電池においては、ポリフッ
化ビニリデンとイミド基を有する有機化合物を結着剤と
して用い、正極活物質同士の密着性はポリフッ化ビニリ
デン、正極活物質と集電体金属との密着性はイミド基を
有する有機化合物によってそれぞれ実現される。このた
め、充放電サイクルを繰り返すうちに集電体と電極層と
の密着性が悪化し、放電容量が低下することで電池の寿
命が短くなるといった従来の問題を解決できる。BEST MODE FOR CARRYING OUT THE INVENTION In the battery of the present invention, polyvinylidene fluoride and an organic compound having an imide group are used as a binder, and the adhesion between the positive electrode active materials is polyvinylidene fluoride, the positive electrode active material and the current collector metal. Is realized by an organic compound having an imide group. For this reason, the conventional problem that the adhesion between the current collector and the electrode layer is deteriorated while the charge / discharge cycle is repeated and the discharge capacity is reduced, thereby shortening the life of the battery can be solved.
【0012】イミド基を有する有機化合物の正極活物質
に対する含有比率が大きすぎると、集電体金属との結着
性は向上するものの、集電体金属に対する導電性が低く
なるので、重負荷での放電特性が好ましくない。このた
め、イミド基を有する有機化合物の正極活物質に対する
含有比率は0.05〜0.25重量部であることがより
望ましい。When the content ratio of the organic compound having an imide group to the positive electrode active material is too large, although the binding property with the current collector metal is improved, the conductivity with respect to the current collector metal is lowered. Is not preferable. Therefore, the content ratio of the organic compound having an imide group to the positive electrode active material is more preferably 0.05 to 0.25 parts by weight.
【0013】[0013]
(実施例1)以下、本発明の実施例を図面を参照にしな
がら説明する。図1に本実施例に用いた円筒型電池の縦
断面図を示す。図において、1は耐有機電解液性のステ
ンレス鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極および負極がセパレーターを介して複数回渦巻
状に巻回されてケース1内に収納されている。そして上
記正極からは正極リード5が引き出されて封口板2に接
続され、負極からは負極リード6が引き出されて電池ケ
ース1の底部に接続されている。7は絶縁リングで極板
群4の上下部にそれぞれ設けられている。Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional view of the cylindrical battery used in this example. In the figure, reference numeral 1 denotes a battery case formed by processing a stainless steel plate having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode group, in which a positive electrode and a negative electrode are spirally wound a plurality of times via a separator and housed in the case 1. A positive electrode lead 5 is drawn from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.
【0014】正極は、活物質としてLiNi0.9Co0.1
O2を使用した。正極活物質10重量部に対してアセチ
レンブラック4重量部を混合し、ポリフッ化ビニリデン
4重量部と化学式1で表される化合物1〜29(それぞ
れ電池1〜29に相当)を0.1重量部を溶解したN−
メチルピロリドン溶液を結着剤として加え、混練してペ
ースト状にした。次にこのペーストをアルミニウム箔の
両面に塗工し、乾燥後、圧延して厚さ0.14mm、幅
37mm、長さ250mmの正極板とした。The positive electrode is made of LiNi 0.9 Co 0.1 as an active material.
The O 2 was used. 4 parts by weight of acetylene black is mixed with 10 parts by weight of the positive electrode active material, and 4 parts by weight of polyvinylidene fluoride and 0.1 parts by weight of compounds 1 to 29 represented by Chemical Formula 1 (each corresponding to batteries 1 to 29). Dissolved N-
A methylpyrrolidone solution was added as a binder and kneaded to form a paste. Next, this paste was applied on both sides of an aluminum foil, dried, and then rolled to obtain a positive electrode plate having a thickness of 0.14 mm, a width of 37 mm, and a length of 250 mm.
【0015】負極はメソフェーズ小球体を黒鉛化したも
の(以下メソフェーズ黒鉛と称す)を使用した。このメ
ソフェーズ黒鉛100重量部にスチレン/ブタジエンゴ
ム3重量部を結着剤として混合し、カルボキシメチルセ
ルロース水溶液を加えて混練し、ペースト状にした。そ
してこのペーストを銅箔の両面に塗工し、乾燥後、圧延
して厚さ0.21mm、幅39mm、長さ280mmの
負極板とした。As the negative electrode, a mesophase small sphere graphitized (hereinafter referred to as mesophase graphite) was used. 100 parts by weight of the mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber as a binder, and an aqueous carboxymethyl cellulose solution was added and kneaded to form a paste. This paste was applied to both sides of a copper foil, dried, and rolled to obtain a negative electrode plate having a thickness of 0.21 mm, a width of 39 mm, and a length of 280 mm.
【0016】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取りつけ、厚さ
0.025mm、幅45mm、長さ740mmのポリエ
チレン製のセパレータを介して渦巻状に巻回し、直径1
4.0mm、高さ50mmの電池ケースに納入した。A lead made of aluminum is attached to the positive electrode plate, and a lead made of nickel is attached to the negative electrode plate, and spirally wound through a polyethylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 740 mm. Diameter 1
It was delivered to a 4.0 mm, 50 mm high battery case.
【0017】電解液にはエチレンカーボネートとエチル
メチルカーボネートとを20:80の体積比で混合した
溶媒に電解液として1モル/lの六フッ化リン酸リチウ
ムを溶解したものを注液した。そして電池を封口し完成
電池とした。As the electrolytic solution, a solution prepared by dissolving 1 mol / l lithium hexafluorophosphate as an electrolytic solution in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 20:80 was injected. Then, the battery was sealed to obtain a completed battery.
【0018】(実施例2)正極活物質100重量部に対
して、ポリフッ化ビニリデン4重量部と化学式1で表さ
れる化合物1を0.2重量部溶解したN−メチルピロリ
ドン溶液を結着剤として加え、実施例1と同様に正極板
および電池を構成し、電池30とした。Example 2 An N-methylpyrrolidone solution obtained by dissolving 4 parts by weight of polyvinylidene fluoride and 0.2 part by weight of the compound 1 represented by the chemical formula 1 with respect to 100 parts by weight of the positive electrode active material was used as a binder. In addition, a positive electrode plate and a battery were formed in the same manner as in Example 1 to obtain a battery 30.
【0019】(実施例3)正極活物質100重量部に対
して、ポリフッ化ビニリデン4重量部と化学式1で表さ
れる化合物1を1.0重量部を溶解したN−メチルピロ
リドン溶液を結着剤として加え、実施例1と同様に正極
板および電池を構成し、電池31とした。Example 3 An N-methylpyrrolidone solution obtained by dissolving 4 parts by weight of polyvinylidene fluoride and 1.0 part by weight of compound 1 represented by the formula (1) to 100 parts by weight of a positive electrode active material was bound. A positive electrode plate and a battery were formed in the same manner as in Example 1 in addition to the agent, and a battery 31 was obtained.
【0020】(比較例1)正極活物質100重量部に対
して、ポリフッ化ビニリデン4重量部のみを溶解したN
−メチルピロリドン溶液を結着剤として加え、実施例1
と同様に正極板および電池を構成し、電池32とした。Comparative Example 1 N was obtained by dissolving only 4 parts by weight of polyvinylidene fluoride with respect to 100 parts by weight of the positive electrode active material.
Example 1-methylpyrrolidone solution was added as binder
A positive electrode plate and a battery were formed in the same manner as described above.
【0021】(比較例2)正極活物質100重量部に対
して、化学式1で表される化合物1を4重量部のみを溶
解したN−メチルピロリドン溶液を結着剤として加え、
実施例1と同様に正極板および電池を構成し、電池33
とした。Comparative Example 2 An N-methylpyrrolidone solution in which only 4 parts by weight of the compound 1 represented by the chemical formula 1 was dissolved with respect to 100 parts by weight of the positive electrode active material was added as a binder.
The positive electrode plate and the battery were formed in the same manner as in Example 1, and the battery 33
And
【0022】これらの電池について以下の条件で高負荷
放電試験と充放電サイクル試験を行った。充電は4.2
Vで2時間の定電圧充電を行い、電池電圧が4.2Vに
達するまでは420mAの定電流充電となるように設定
した。そして高負荷放電試験は1220mA,サイクル
試験は610mAで定電流放電を行い、放電終止電圧を
3.0Vとした。このような充放電を20℃の環境下で
行った。サイクル試験においては、5サイクル目の放電
容量を初期容量とし、放電容量が300mAhに劣化し
た時点をサイクル寿命末期としてそのサイクル数の値を
読んだ。結果を表1〜2に示す。These batteries were subjected to a high load discharge test and a charge / discharge cycle test under the following conditions. Charging is 4.2
The battery was charged at a constant voltage of 2 V for 2 hours, and a constant current charge of 420 mA was set until the battery voltage reached 4.2 V. A constant current discharge was performed at 1220 mA in the high load discharge test and 610 mA in the cycle test, and the discharge end voltage was set to 3.0 V. Such charge / discharge was performed in an environment of 20 ° C. In the cycle test, the discharge capacity at the fifth cycle was set as the initial capacity, and the value of the number of cycles was read when the discharge capacity deteriorated to 300 mAh as the end of cycle life. The results are shown in Tables 1 and 2.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】表1〜2より、610mAで定電流放電を
行った場合の電池の初期容量は、結着剤がポリフッ化ビ
ニリデンのみの電池(電池32)とポリフッ化ビニリデ
ンに化学式1で表される化合物1〜29を加えた電池
(電池1〜31)でほとんど変わらないことがわかる。
しかし、結着剤がイミド基を含む有機化合物のみの電池
(電池33)だけは、とりわけ容量が小さかった。これ
は、イミド基を含む有機化合物が集電体金属との密着性
には優れているが、集電体金属に対する導電性がないた
め電池の内部抵抗が高くなるからである。According to Tables 1 and 2, the initial capacity of the battery when constant current discharge is performed at 610 mA is represented by the chemical formula 1 for a battery (battery 32) having only polyvinylidene fluoride as a binder and for polyvinylidene fluoride. It can be seen that there is almost no change in the batteries to which Compounds 1 to 29 are added (Batteries 1 to 31).
However, the capacity of the battery (Battery 33) containing only an organic compound containing an imide group as the binder was particularly small. This is because the organic compound containing an imide group has excellent adhesion to the current collector metal, but has no conductivity to the current collector metal, so that the internal resistance of the battery increases.
【0026】また、1220mAの高負荷で定電流放電
を行った場合、結着剤がポリフッ化ビニリデンに化学式
1で表される化合物1〜29を0.1〜0.2重量部加
えた電池(電池1〜30)は結着剤がポリフッ化ビニリ
デンのみの電池(電池32)に比べてあまり大きな容量
の減少は見られなかったが、ポリフッ化ビニリデンに化
学式1で表される化合物1を1.0重量部加えた電池
(電池31)と結着剤がイミド基を含む有機化合物のみ
の電池(電池33)は著しく容量が減少した。これは、
イミド基を含む有機化合物そのものに導電性がないた
め、結着剤中のイミド基を含む有機化合物の含有比率が
大きくなると集電体金属に対する導電性が低くなるため
である。When a constant current discharge was carried out at a high load of 1220 mA, a battery was prepared by adding 0.1 to 0.2 parts by weight of a compound 1-29 represented by the chemical formula 1 to polyvinylidene fluoride as a binder. In the batteries 1 to 30), the capacity was not so much reduced as compared with the battery (battery 32) using only polyvinylidene fluoride as the binder, but the compound 1 represented by the chemical formula 1 was added to the polyvinylidene fluoride as 1. The capacity of the battery (Battery 31) added with 0 parts by weight and the battery (Battery 33) containing only the organic compound containing an imide group as the binder were significantly reduced. this is,
This is because, since the organic compound having an imide group itself has no conductivity, when the content ratio of the organic compound having an imide group in the binder increases, the conductivity to the current collector metal decreases.
【0027】また、結着剤がポリフッ化ビニリデンのみ
の電池(電池32)と比較して、ポリフッ化ビニリデン
に化学式1で表される化合物1〜29を加えた電池(電
池1〜31)は寿命末期のサイクル数が著しく向上し
た。これは、結着剤中のBMIの集電体金属に対する優
れた密着性により、充放電サイクルの繰り返しに伴う正
極活物質の集電体金属からの剥離が防げるので、充放電
サイクルの繰り返しに伴う容量低下が小さくなるためで
ある。また、結着剤中のイミド基を含む有機化合物の添
加量の増加に伴いサイクル数も増えたが、それぞれのサ
イクル数に大きな違いは見られなかった。これは、結着
剤中のBMIが少量でも、集電体金属に対する密着性が
十分保持されるためである。結着剤がイミド基を含む有
機化合物のみの電池(電池33)の寿命末期のサイクル
数はあまり大きくないが、これは初期容量が小さいた
め、放電容量が300mAhに劣化するのが早いだけで
ある。The battery (batteries 1 to 31) obtained by adding the compounds 1 to 29 represented by the chemical formula 1 to polyvinylidene fluoride compared to the battery (battery 32) containing only polyvinylidene fluoride as the binder has a longer life. The number of late cycles has improved significantly. This is because the excellent adhesion of the BMI to the current collector metal in the binder prevents the positive electrode active material from peeling off from the current collector metal due to the repetition of the charge / discharge cycle. This is because a decrease in capacity is reduced. The number of cycles also increased with an increase in the amount of the organic compound containing an imide group in the binder, but no significant difference was found between the respective numbers of cycles. This is because even with a small amount of BMI in the binder, the adhesion to the current collector metal is sufficiently maintained. Although the number of cycles at the end of life of a battery (battery 33) containing only an organic compound containing an imide group as the binder is not so large, this is because the initial capacity is small, so that the discharge capacity is only quickly deteriorated to 300 mAh. .
【0028】以上のことから本発明は、非水電解液二次
電池の正極の結着剤としてポリフッ化ビニリデンと共に
イミド基を有する有機化合物を適量用いることで、充放
電サイクルに伴う活物質の集電体金属からの剥離を防ぐ
ことができ、それにより電池のサイクル特性を向上する
ことができる。From the above, it can be seen that the present invention provides a method for collecting active materials involved in a charge / discharge cycle by using an appropriate amount of an organic compound having an imide group together with polyvinylidene fluoride as a binder for a positive electrode of a nonaqueous electrolyte secondary battery. Separation from the conductor metal can be prevented, whereby the cycle characteristics of the battery can be improved.
【0029】なお、上記実施例においては正極活物質と
してLiNi0.9Co0.1O2を使用したが、活物質が一
般式LixNiO2,LixCoO2,LixMn2O4(0
≦x≦1.2)で表されるリチウム複合酸化物、もしく
は、一般式LixN(1-y)MyO2(0≦x≦1.2、0≦
y≦0.5、N,MはNi,Ti,V,Cr,Mn,F
e,Co,Cu,Zn,Al,B等の金属元素のうち2
種類以上)で表されるリチウム複合酸化物などの正極材
料を用いても、同様の効果が得られる。In the above embodiment, LiNi 0.9 Co 0.1 O 2 was used as the positive electrode active material, but the active material was represented by the general formula Li x NiO 2 , Li x CoO 2 , Li x Mn 2 O 4 (0
≦ x ≦ 1.2) lithium composite oxide represented by, or the general formula Li x N (1-y) M y O 2 (0 ≦ x ≦ 1.2,0 ≦
y ≦ 0.5, N and M are Ni, Ti, V, Cr, Mn, F
e, 2 of metal elements such as Co, Cu, Zn, Al and B
The same effect can be obtained by using a positive electrode material such as a lithium composite oxide represented by the following formula (1).
【0030】また、上記実施例においては円筒型の電池
を用いて評価を行ったが、角型など電池形状が異なって
も、同様の結果が得られる。In the above embodiment, the evaluation was performed using a cylindrical battery. However, similar results can be obtained even when the battery shape is different, such as a square battery.
【0031】さらに、上記実施例において負極には炭素
質材料を用いたが、本発明における効果は正極板におい
て作用するため、リチウム、リチウム合金、リチウムを
吸蔵・放出し得る化合物などを用いても同様の効果が得
られる。Further, in the above embodiments, a carbonaceous material was used for the negative electrode. However, since the effect of the present invention acts on the positive electrode plate, lithium, a lithium alloy, a compound capable of inserting and extracting lithium, and the like can be used. Similar effects can be obtained.
【0032】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、ほかのリチウム含
有塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。In the above embodiment, lithium hexafluorophosphate was used as the electrolyte. However, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, hexafluorofluoride, etc. Similar effects were obtained with lithium arsenate and the like.
【0033】さらに、上記実施例ではエチレンカーボネ
ートとエチルメチルカーボネートの混合溶媒を用いた
が、ほかの非水溶媒、例えば、プロピレンカーボネート
などの環状エステル、テトラヒドロフランなどの環状エ
ーテル、ジメトキシエタンなどの鎖状エーテル、プロピ
オン酸メチルなどの鎖状エステルなどの非水溶媒や、こ
れらの多元系混合溶媒を用いても同様の効果が得られ
た。In the above embodiment, a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used. However, other non-aqueous solvents, for example, cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, and chain-like solvents such as dimethoxyethane. Similar effects were obtained by using a non-aqueous solvent such as a chain ester such as ether or methyl propionate, or a multi-component mixed solvent thereof.
【0034】[0034]
【発明の効果】以上のように本発明による正極の結着剤
としてポリフッ化ビニリデンと共にイミド基を有する有
機化合物を適量用いることで、充放電サイクルに伴う活
物質の集電体金属からの剥離を防ぐことができるため、
サイクル特性に優れた非水電解液二次電池を提供するこ
とができる。As described above, by using an appropriate amount of an organic compound having an imide group together with polyvinylidene fluoride as a binder for the positive electrode according to the present invention, peeling of the active material from the current collector metal accompanying the charge / discharge cycle can be prevented. Can be prevented,
A non-aqueous electrolyte secondary battery having excellent cycle characteristics can be provided.
【図1】本発明の実施例および比較例における円筒型電
池の断面図FIG. 1 is a sectional view of a cylindrical battery according to an example of the present invention and a comparative example.
1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring
フロントページの続き (56)参考文献 特開 平6−275279(JP,A) 特開 平7−122303(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/62 Continuation of the front page (56) References JP-A-6-275279 (JP, A) JP-A-7-122303 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 02-4/04 H01M 4/62
Claims (2)
を吸蔵・放出し得る化合物からなる負極と、リチウムを
可逆的に充放電可能な化合物からなる正極を備え、前記
正極の構成要素である結着剤として、ポリフッ化ビニリ
デンとイミド基を有する有機化合物の混合物を用いるこ
とを特徴とした非水電解液二次電池。1. A binder comprising a negative electrode made of lithium, a lithium alloy, or a compound capable of inserting and extracting lithium, and a positive electrode made of a compound capable of reversibly charging and discharging lithium. Non-aqueous electrolyte secondary battery characterized by using a mixture of polyvinylidene fluoride and an organic compound having an imide group.
に対する含有比率が0.05〜0.25重量部である請
求項1記載の非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content ratio of the organic compound having an imide group to the positive electrode active material is 0.05 to 0.25 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28277495A JP3329161B2 (en) | 1995-10-31 | 1995-10-31 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28277495A JP3329161B2 (en) | 1995-10-31 | 1995-10-31 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09129240A JPH09129240A (en) | 1997-05-16 |
JP3329161B2 true JP3329161B2 (en) | 2002-09-30 |
Family
ID=17656907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28277495A Expired - Fee Related JP3329161B2 (en) | 1995-10-31 | 1995-10-31 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3329161B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10188992A (en) * | 1996-12-24 | 1998-07-21 | Sony Corp | Non-aqueous electrolyte battery |
JP2000182621A (en) * | 1998-12-11 | 2000-06-30 | Fujitsu Ltd | Lithium secondary battery, lithium secondary battery negative electrode and manufacture thereof |
US6759164B2 (en) | 2000-11-29 | 2004-07-06 | Wilson Greatbatch Ltd. | Use of heat-treated electrodes containing a polyamic acid-PVDF binder mixture |
US6797019B2 (en) * | 2000-12-15 | 2004-09-28 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector |
GB0125658D0 (en) * | 2001-10-25 | 2001-12-19 | Ssl Int Plc | Medicaments |
GB0125659D0 (en) * | 2001-10-25 | 2001-12-19 | Ssl Int Plc | Spermicides |
-
1995
- 1995-10-31 JP JP28277495A patent/JP3329161B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09129240A (en) | 1997-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3111791B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4626105B2 (en) | Lithium ion secondary battery | |
CN100466363C (en) | Secondary battery | |
EP2169756A1 (en) | Lithium secondary battery | |
JP3218982B2 (en) | Non-aqueous electrolyte and lithium secondary battery | |
KR100313633B1 (en) | Secondary battery | |
JPH10312811A (en) | Nonaqeous electrolyte secondary battery | |
JP4529288B2 (en) | Nonaqueous electrolyte secondary battery electrode | |
JP4830207B2 (en) | battery | |
JP3580209B2 (en) | Lithium ion secondary battery | |
JP3003431B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH087926A (en) | Nonaqueous electrolytic secondary cell | |
JPH1173943A (en) | Nonaqueous electrolyte secondary battery | |
JPH05144472A (en) | Secondary battery with nonaqueous electrolyte | |
JPH1131513A (en) | Nonaqueous electrolyte secondary battery | |
JP3329161B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4563002B2 (en) | Flat non-aqueous electrolyte secondary battery | |
JP4780361B2 (en) | Lithium secondary battery | |
JP4915025B2 (en) | Nonaqueous electrolyte and lithium secondary battery | |
JP2003168427A (en) | Nonaqueous electrolyte battery | |
JPH07105935A (en) | Non-aqueous electrolyte secondary battery | |
JP2003151622A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP4843833B2 (en) | Method for improving low temperature characteristics of lithium secondary battery | |
JP3432922B2 (en) | Solid electrolyte secondary battery | |
JP2009252431A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070719 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |