JPH1131513A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1131513A
JPH1131513A JP9212228A JP21222897A JPH1131513A JP H1131513 A JPH1131513 A JP H1131513A JP 9212228 A JP9212228 A JP 9212228A JP 21222897 A JP21222897 A JP 21222897A JP H1131513 A JPH1131513 A JP H1131513A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
secondary battery
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9212228A
Other languages
Japanese (ja)
Inventor
Takao Nirasawa
貴夫 韮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9212228A priority Critical patent/JPH1131513A/en
Publication of JPH1131513A publication Critical patent/JPH1131513A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is superior in cycle characteristic. SOLUTION: A negative electrode 1, a separator 3, a positive electrode 2 and a separator 3 are laminated in this order and wound around a center pin 14 to form an electrode body. This electrode body is stored in a battery can 5, and insulating plates 4 are disposed at both the upper end lower faces of the electrode body. A positive electrode lead 13 is led out of a positive electrode current collector 11 and welded to a battery lid 7, and a negative electrode lead 12 is led out of a negative electrode current collector 10 and welded to the battery can 5. After an electrolyte in the battery can 5 has been filled, the battery can 5 is caulked through a sealing gasket 6. A safety valve device 8 and the battery lid 7 are therefore fixed so as to constitute a cylindrical nonaqueous electrolyte secondary battery. Polyvinylidene fluoride is used for positive electrode and negative electrode binders, and polyimide of 20% or less in the coefficient of cubic expansion is further mixed in the positive electrode binder at a composition of 5 wt.% to 90 wt.% or less, while aromatic polyamide is mixed in the negative electrode binder at the composition ratio of 1 wt.% or higher to 90 wt.% or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、更に詳しくは高温環境下でのサイクル特性に優
れた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having excellent cycle characteristics in a high temperature environment.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の高性能化、小型化、ポータブル化を進め、これ
に伴いこれら電子機器に使用される電池の高エネルギー
密度化の要求が高まってきている。従来、これらの電子
機器に使用される二次電池としては、ニッケル・カドミ
ウム電池や鉛電池等が挙げられるが、これらの電池は放
電電位が低く、エネルギー密度の高い電池の要求には十
分に応えられていないのが実情である。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has promoted higher performance, smaller size, and more portable electronic devices, and accordingly, there has been an increasing demand for higher energy density of batteries used in these electronic devices. ing. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries have a low discharge potential and sufficiently meet the demand for batteries with a high energy density. The fact is that it has not been done.

【0003】最近、リチウム二次電池はこれらの要求を
満たす電池として注目され、研究開発が盛んに行われて
いる。しかしながら、金属リチウムやリチウム合金を負
極とする二次電池は、サイクル寿命、安全性、急速充電
性能等に関する問題が認識されるようになり、実用化に
対する大きな障害となっている。これらの問題は負極で
ある金属リチウムの溶解、析出時のデンドライト生成、
微細化に起因するものと考えられ、一部のコイン型電池
で実用化されているにすぎない。
Recently, lithium secondary batteries have attracted attention as batteries satisfying these requirements, and have been actively researched and developed. However, a secondary battery using metal lithium or a lithium alloy as a negative electrode has been recognized as having problems with cycle life, safety, rapid charging performance, and the like, and has become a major obstacle to practical use. These problems include dissolution of metallic lithium as the negative electrode, dendrite formation during deposition,
It is considered to be caused by miniaturization and is only practically used in some coin-type batteries.

【0004】これらの問題を解決するために、炭素質材
料のようなリチウムイオンをドープ、且つ脱ドープ可能
な物質を負極とする、非水電解液二次電池であるリチウ
ムイオン二次電池の研究開発が盛んに行われている。こ
のリチウムイオン二次電池はリチウムが金属状態で存在
しないため、これを用いた負極に起因するサイクル劣化
や安全性に関する問題を生じることがなく、また、正極
に酸化還元電位の高いリチウム化合物を用いることによ
り、電池の電圧を高くすることができ、高エネルギー密
度電池の要求に応えるものである。
In order to solve these problems, research on a lithium ion secondary battery which is a non-aqueous electrolyte secondary battery using a negative electrode made of a material which can be doped and dedoped with lithium ions such as a carbonaceous material. Development is active. In this lithium ion secondary battery, lithium does not exist in a metal state, so there is no problem of cycle deterioration and safety caused by the negative electrode using the lithium ion secondary battery, and a lithium compound having a high oxidation-reduction potential is used for the positive electrode. As a result, the voltage of the battery can be increased, which meets the demand for a high energy density battery.

【0005】更に、自己放電もニッケル・カドミウム電
池と比較して少なく、二次電池として優れた特性を有す
るものである。その結果、8mmVTR、CDプレー
ヤ、ノート型コンピュータ、セルラーテレフォン等のポ
ータブル電子機器の電源として広く用いられるようにな
ってきている。
Further, the self-discharge is less than that of the nickel-cadmium battery, and the battery has excellent characteristics as a secondary battery. As a result, it has been widely used as a power source for portable electronic devices such as 8 mm VTRs, CD players, notebook computers, and cellular telephones.

【0006】しかしながら、上述したリチウムイオン二
次電池は常温でのサイクル特性に比べて高温環境下での
サイクル特性は低下する傾向にあり、特にノート型コン
ピュータ用途等では電池を取りまく環境が高温になるた
め、高温でのサイクル特性に優れたリチウムイオン二次
電池が望まれていた。
However, the above-described lithium ion secondary batteries tend to have lower cycle characteristics in a high-temperature environment than those in a room temperature, and particularly in notebook-type computers and the like, the environment surrounding the batteries becomes high. Therefore, a lithium ion secondary battery having excellent cycle characteristics at high temperatures has been desired.

【0007】[0007]

【発明が解決しようとする課題】従って本発明の課題
は、高温環境下でのサイクル特性に優れ、高い信頼性を
有する非水電解液二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent cycle characteristics in a high temperature environment and high reliability.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウム含有化合物を用いた正極
と、リチウムをドープし、且つ脱ドープ可能な材料を用
いた負極と、非水電解液とからなる非水電解液二次電池
において、正極および負極の少なくとも一方のバインダ
ーとして、ポリフッ化ビニリデンを有し、更に、前記正
極のバインダーにはポリイミドが混合され、一方、前記
負極のバインダーには芳香族ポリアミドが混合されてい
る非水電解液二次電池を構成する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above-mentioned problems. The present invention relates to a positive electrode using a lithium-containing compound, a negative electrode using a lithium-doped and undoped material, and In a non-aqueous electrolyte secondary battery comprising an electrolytic solution, as a binder of at least one of the positive electrode and the negative electrode, has polyvinylidene fluoride, further, the binder of the positive electrode is mixed with polyimide, while the binder of the negative electrode Constitutes a non-aqueous electrolyte secondary battery in which an aromatic polyamide is mixed.

【0009】前記ポリイミドの体積膨張率は20%以下
のものを用い、また、正極のバインダーに混合される前
記ポリイミドの組成比は、5重量%以上、90重量%以
下とする。
The polyimide has a volume expansion coefficient of 20% or less, and the composition ratio of the polyimide mixed with the binder of the positive electrode is 5% by weight or more and 90% by weight or less.

【0010】また、負極のバインダーに混合される前記
芳香族ポリアミドの組成比は、1重量%以上、90重量
%以下とし、上記課題を解決する。
Further, the composition ratio of the aromatic polyamide mixed with the binder of the negative electrode is set to 1% by weight or more and 90% by weight or less to solve the above problem.

【0011】本発明の非水電解液二次電池の構成による
と、高温環境下でのサイクル特性が改善される。
According to the configuration of the non-aqueous electrolyte secondary battery of the present invention, the cycle characteristics in a high-temperature environment are improved.

【0012】[0012]

【発明の実施の形態】本発明者らは鋭意検討を行った結
果、ポリフッ化ビニリデンと体積膨張率が20%以下の
ポリイミドの混合体を正極バインダーとして用いること
により、また、ポリフッ化ビニリデンと芳香族ポリアミ
ドの混合体を負極バインダーとして用いることにより、
高温環境下でのサイクル特性が改善されることを見いだ
した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies, the present inventors have found that a mixture of polyvinylidene fluoride and a polyimide having a volume expansion coefficient of 20% or less is used as a positive electrode binder. By using a mixture of aromatic polyamide as a negative electrode binder,
It was found that the cycle characteristics in a high temperature environment were improved.

【0013】本構成の正極バインダーが高温環境下での
サイクル特性を改善する理由として、第1にポリイミド
は耐酸化性にすぐれており、リチウムイオン電池用正極
バインダーに用いても酸化分解しないことが挙げられ
る。第2に体積膨張率が低いポリイミドを添加すること
により、高温環境下で充放電サイクルを繰り返しても、
活物質と導電剤の接着力、およびこれらの合剤と正極集
電体との接着力の低下を抑えることができると考えられ
るためである。
The first reason that the positive electrode binder of the present invention improves cycle characteristics under a high temperature environment is that polyimide has excellent oxidation resistance and does not undergo oxidative decomposition even when used as a positive electrode binder for lithium ion batteries. No. Second, by adding a polyimide having a low volume expansion coefficient, even if the charge and discharge cycle is repeated under a high temperature environment,
This is because it is considered that a decrease in the adhesive force between the active material and the conductive agent, and the adhesive force between the mixture and the positive electrode current collector can be suppressed.

【0014】また、本構成の負極バインダーが高温環境
下でのサイクル特性を改善する理由として、芳香族ポリ
アミドを添加することにより、高温環境下で充放電サイ
クルを繰り返しても、活物質と導電剤の接着力、および
これらの合剤と負極集電体との接着力の低下を抑えるこ
とができると考えられるためである。
The reason why the negative electrode binder of the present invention improves the cycle characteristics under a high temperature environment is that by adding an aromatic polyamide, even if the charge and discharge cycle is repeated under a high temperature environment, the active material and the conductive agent can be removed. This is because it is considered that a decrease in the adhesive force of the mixture and the adhesive force between the mixture and the negative electrode current collector can be suppressed.

【0015】尚、本発明に関するポリイミドの体積膨張
率を、1cm×1cm×2mmの樹脂フィルムをプロピ
レンカーボネートとジエチルカーボネートの1:1混合
溶媒に23℃で7日間浸漬し、浸漬前後の体積変化の割
合と定義する。
The volume expansion coefficient of the polyimide according to the present invention was determined by immersing a resin film of 1 cm × 1 cm × 2 mm in a 1: 1 mixed solvent of propylene carbonate and diethyl carbonate at 23 ° C. for 7 days. Defined as percentage.

【0016】まず、正極活物質としてはリチウムを含有
した複合酸化物LiX MO2 (Mは1種以上の遷移金
属)が用いられるが、LiX CoO2 、LiX Ni
2 、LiX Mn2 4 、LiX Coy Ni1-y 2
のリチウム複合酸化物が好ましい。これらリチウム複合
酸化物は、例えば、リチウム、コバルト、ニッケル、マ
ンガンの炭酸塩、硝酸塩、酸化物、水酸化物等を出発原
料とし、これらを組成に応じて混合し、酸素存在雰囲気
下600℃〜1000℃の温度範囲で焼成することによ
り得られる。
First, a lithium-containing composite oxide Li X MO 2 (M is one or more transition metals) is used as the positive electrode active material. Li X CoO 2 , Li X Ni
Lithium composite oxides such as O 2 , Li X Mn 2 O 4 , and Li X Co y Ni 1 -y O 2 are preferred. These lithium composite oxides are, for example, starting materials such as lithium, cobalt, nickel, and manganese carbonates, nitrates, oxides, and hydroxides, and mixing them according to the composition. It is obtained by firing in a temperature range of 1000 ° C.

【0017】一方、負極活物質としては炭素材料を用い
るが、リチウムをドープ、且つ脱ドープが可能なもので
あれば良く、2000℃以下の比較的低い温度で焼成し
て得られる低結晶性炭素材料や、結晶化しやすい原料を
3000℃ 近くの温度で処理した人造黒鉛や、天然黒
鉛等の高結晶性材料が用いられる。例えば、熱分解炭素
類、コークス類、黒鉛類、ガラス状炭素類、有機高分子
化合物焼成体、炭素繊維、活性炭等が使用可能である。
コークス類としては、例えばピッチコークス、ニードル
コークス、石油コークスがあり、また、有機高分子化合
物焼成体としては、例えばフラン樹脂等を適当な温度で
焼成し炭素化したものがある。また、(002)面の面
間隔が0.370nm以上、真比重が1.70g/cc
未満であり、且つ空気気流中における示差熱分析で70
0℃以上に発熱ピークを有しない炭素材料が好ましい。
On the other hand, although a carbon material is used as the negative electrode active material, any material capable of doping and undoping lithium can be used, and a low crystalline carbon obtained by firing at a relatively low temperature of 2000 ° C. or less. Highly crystalline materials such as artificial graphite and natural graphite obtained by treating a material or a raw material that easily crystallizes at a temperature near 3000 ° C. are used. For example, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and the like can be used.
Examples of the coke include pitch coke, needle coke, and petroleum coke. Examples of the fired organic polymer compound include, for example, those obtained by firing and carbonizing a furan resin or the like at an appropriate temperature. The (002) plane spacing is 0.370 nm or more, and the true specific gravity is 1.70 g / cc.
And in differential thermal analysis in an air stream of 70
A carbon material having no exothermic peak at 0 ° C. or higher is preferable.

【0018】電解液としては、リチウム塩を支持電解質
とし、これを有機溶媒に溶解させた電解液が用いられ
る。ここで、有機溶媒としては、プロピレンカーボネー
ト、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、スルホラン、メチルスルホラン、ジメチルカーボ
ネート、ジエチルカーボネート、メチルエチルカーボネ
ート、メチルプロピルカーボネート等が使用可能であ
る。
As the electrolytic solution, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used. Here, as the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
Tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolan, 4-methyl-1,3-dioxolan, sulfolane, methylsulfolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate and the like can be used.

【0019】電解質としては、LiClO4 、LiAs
6 、LiPF6 、LiBF4 、LiB(C
6 5 4 、CH3 SO3 Li、CF3 SO3 Li、L
iN(CF3 SO2 2 、LiC(CF3 SO2 3
LiCl、LiBr等が使用可能である。
As the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li, L
iN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 ,
LiCl, LiBr and the like can be used.

【0020】[0020]

【実施例】つぎに、本発明に係わる非水電解液二次電池
と正極バインダーについて、図1と、作成した実施例1
〜8、および比較例1〜9の構成と特性測定結果を参照
して説明する。尚、本発明はこれら実施例に何ら限定さ
れるものではない。
FIG. 1 shows a non-aqueous electrolyte secondary battery and a positive electrode binder according to the present invention.
This will be described with reference to the configurations and characteristics measurement results of Comparative Examples 1 to 9 and Comparative Examples 1 to 9. Note that the present invention is not limited to these examples.

【0021】実施例1 正極を次のようにして作製した。炭酸コバルトと炭酸リ
チウムをLi/Co=1の比率で混合し、これを空気
中、900℃で5時間焼成しLiCoO2 を得た。この
材料についてX線回折測定を行った結果、JCPDSカ
ードと良く一致していた。
Example 1 A positive electrode was produced as follows. Cobalt carbonate and lithium carbonate were mixed at a ratio of Li / Co = 1, and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . X-ray diffraction measurement of this material showed a good match with the JCPDS card.

【0022】このLiCoO2 を89重量%、導電剤と
してグラファイトを6重量%、バインダーとしてポリフ
ッ化ビニリデンとポリイミドの混合体を5重量%の割合
で混合して正極合剤を作製し、溶剤となるN−メチル−
2−ピロリドンに分散させてペースト状のスラリーに
し、このスラリーを正極集電体となるアルミニウム箔の
両面に塗布し、乾燥後、ローラープレス機で圧縮成型を
行い正極を形成した。このとき、ポリフッ化ビニリデン
とポリイミドの混合体の混合比は、ポリフッ化ビニリデ
ンを95.0重量%、ポリイミドを5.0重量%とし
た。尚、ポリイミドとしてソニ−・ケミカル株式会社製
のNIV1001を使用し、その体積膨張率は2%であ
った。
89% by weight of this LiCoO 2 , 6% by weight of graphite as a conductive agent, and 5% by weight of a mixture of polyvinylidene fluoride and polyimide as a binder to prepare a positive electrode mixture, which is used as a solvent. N-methyl-
The slurry was dispersed in 2-pyrrolidone to form a paste-like slurry. The slurry was applied to both surfaces of an aluminum foil serving as a positive electrode current collector, dried, and then compression-molded with a roller press to form a positive electrode. At this time, the mixing ratio of the mixture of polyvinylidene fluoride and polyimide was 95.0% by weight of polyvinylidene fluoride and 5.0% by weight of polyimide. In addition, NI1001 manufactured by Sony Chemical Co., Ltd. was used as the polyimide, and its volume expansion coefficient was 2%.

【0023】負極を次のようにして作製した。負極活物
質として、出発原料に石油ピッチを用い、これを酸素を
含む官能基を10〜20%導入して酸素架橋した後、不
活性ガス中1000℃で焼成し、得られたガラス状炭素
材料に近い性質の難黒鉛化炭素材料を用いた。この難黒
鉛化炭素材料を90重量%、バインダーとしてポリフッ
化ビニリデンを10重量%の割合で混合して負極合剤を
作製し、溶剤となるN−メチル−2−ピロリドンに分散
させてペースト状のスラリーにした。更に、このスラリ
ーを負極集電体となる銅箔の両面に塗布し、乾燥後、ロ
ーラープレス機で圧縮成型を行い負極を形成した。
A negative electrode was produced as follows. As a negative electrode active material, petroleum pitch was used as a starting material, and after introducing 10 to 20% of a functional group containing oxygen, oxygen-crosslinking was performed, followed by firing at 1000 ° C. in an inert gas to obtain a glassy carbon material. A non-graphitizable carbon material having properties close to the above was used. 90% by weight of this non-graphitizable carbon material and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone as a solvent to form a paste. Slurried. Further, this slurry was applied to both surfaces of a copper foil serving as a negative electrode current collector, dried, and then subjected to compression molding with a roller press to form a negative electrode.

【0024】ついで図1に示すように、上述したように
して作製した負極1および正極2を厚さ25μmの微多
孔性ポリプロピレンフィルムからなるセパレータ3を介
して、負極1、セパレータ3、正極2、セパレータ3の
順に積層して、これをセンターピン14を中心にして多
数回巻回し、渦巻型電極体を作製した。
Next, as shown in FIG. 1, the negative electrode 1, the positive electrode 2 and the negative electrode 1, the positive electrode 2, the negative electrode 1, the positive electrode 2, and the negative electrode 1 were formed through a separator 3 made of a microporous polypropylene film having a thickness of 25 μm. The separator 3 was laminated in this order, and this was wound many times around the center pin 14 to produce a spiral electrode body.

【0025】このようにして作製した渦巻型電極体を電
池缶5内に収納し、渦巻型電極の上下両面には絶縁板4
を配設し、アルミニウム製の正極リード13を正極集電
体11から導出して電池蓋7に、また、ニッケル製の負
極リード12を負極集電体10から導出して電池缶5に
溶接した。
The spirally wound electrode body manufactured in this manner is housed in a battery can 5, and an insulating plate 4 is formed on the upper and lower surfaces of the spirally wound electrode.
The aluminum positive electrode lead 13 was led out of the positive electrode current collector 11 and welded to the battery cover 7, and the nickel negative electrode lead 12 was drawn out of the negative electrode current collector 10 and welded to the battery can 5. .

【0026】この電池缶5の中に、プロピレンカーボネ
ート50体積%とジエチルカーボネート50体積%の混
合溶媒にLiPF6 を1mol/lの割合で溶解した電
解液を注入した。ついで、アスファルトを塗布した封口
ガスケット6を介して電池缶5をかしめることにより、
安全弁装置8、電池蓋7を固定し、直径18mm、高さ
65mmの円筒型非水電解液二次電池を作製した。
Into the battery can 5, an electrolytic solution obtained by dissolving LiPF 6 at a ratio of 1 mol / l in a mixed solvent of propylene carbonate 50% by volume and diethyl carbonate 50% by volume was injected. Then, by caulking the battery can 5 through the sealing gasket 6 coated with asphalt,
The safety valve device 8 and the battery cover 7 were fixed, and a cylindrical non-aqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm was produced.

【0027】実施例2〜実施例4 ポリフッ化ビニリデンとポリイミドNIV1001との
バインダー組成比が表1に示すものを用いたこと以外
は、実施例1と同様にして円筒型非水電解液二次電池を
作製した。
Examples 2 to 4 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the binder composition ratio between polyvinylidene fluoride and polyimide NV1001 was as shown in Table 1. Was prepared.

【0028】比較例1〜比較例3 ポリフッ化ビニリデンとポリイミドNIV1001との
バインダー組成比が表1に示すものを用いたこと以外
は、実施例1と同様にして円筒型非水電解液二次電池を
作製した。
Comparative Examples 1 to 3 A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the binder composition ratio between polyvinylidene fluoride and polyimide NV1001 was as shown in Table 1. Was prepared.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例5〜実施例8 バインダーを、ポリフッ化ビニリデンとソニー・ケミカ
ル株式会社製のポリイミドE1の混合体とし、その組成
比が表2に示すものを用いたこと以外は、実施例1と同
様にして円筒型非水電解液二次電池を作製した。尚、ポ
リイミドE1の体積膨張率は20%である。
Examples 5 to 8 Example 1 was repeated except that the binder was a mixture of polyvinylidene fluoride and polyimide E1 manufactured by Sony Chemical Co., Ltd., and the composition ratio was as shown in Table 2. In the same manner as in the above, a cylindrical nonaqueous electrolyte secondary battery was produced. Incidentally, the volume expansion coefficient of the polyimide E1 is 20%.

【0031】比較例4〜比較例5 バインダーを、ポリフッ化ビニリデンとソニー・ケミカ
ル株式会社製のポリイミドE1の混合体とし、その組成
比が表2に示すものを用いたこと以外は、実施例1と同
様にして円筒型非水電解液二次電池を作製した。
Comparative Examples 4 to 5 Example 1 was repeated except that the binder was a mixture of polyvinylidene fluoride and polyimide E1 manufactured by Sony Chemical Co., Ltd., and the composition ratio was as shown in Table 2. In the same manner as in the above, a cylindrical nonaqueous electrolyte secondary battery was produced.

【0032】[0032]

【表2】 [Table 2]

【0033】比較例6〜比較例9 バインダーを、ポリフッ化ビニリデンとソニー・ケミカ
ル株式会社製のポリイミドNIV1200の混合体と
し、その組成比が表3に示すものを用いたこと以外は、
実施例1と同様にして円筒型非水電解液二次電池を作製
した。尚、ポリイミドNIV1200の体積膨張率は3
4%である。
Comparative Examples 6 to 9 The binder was a mixture of polyvinylidene fluoride and polyimide NIV1200 manufactured by Sony Chemical Co., Ltd., except that the composition ratio was as shown in Table 3.
A cylindrical non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1. The volume expansion coefficient of the polyimide NIV1200 is 3
4%.

【0034】[0034]

【表3】 [Table 3]

【0035】上述したようにして作製した実施例1〜
8、比較例1〜9の円筒型非水電解液二次電池につい
て、23℃、45℃、60℃の各温度において、充電電
圧4.20V、充電電流1000mA、充電時間2.5
hの条件で充電を行い、その後、放電電流700mA、
終止電圧2.75Vの条件で放電を繰り返し行い、初回
の放電容量と200回目の放電容量の比を求めた。その
結果を前掲の表1〜3に示す。また、環境温度23℃、
1KHzにおける電池の内部インピーダンスを測定し、
その結果も表1〜3に示す。
Examples 1 to 5 produced as described above
8. Regarding the cylindrical nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 9, at each temperature of 23 ° C., 45 ° C., and 60 ° C., the charging voltage is 4.20 V, the charging current is 1000 mA, and the charging time is 2.5.
h, and then discharge current 700 mA,
Discharge was repeated under the condition of a final voltage of 2.75 V, and the ratio between the first discharge capacity and the 200th discharge capacity was determined. The results are shown in Tables 1 to 3 above. In addition, environmental temperature 23 ℃,
Measure the internal impedance of the battery at 1 KHz,
The results are also shown in Tables 1 to 3.

【0036】以上の結果から、ポリフッ化ビニリデンと
体積膨張率が20%以下のポリイミドの混合体を正極バ
インダーとして用い、且つ、バインダー中のポリイミド
の組成比を5重量%以上、90重量%以下とすることに
より、初回の充電容量が大きく、且つ高温環境下でのサ
イクル特性に優れた非水電解液二次電池が得られること
が分かる。
From the above results, a mixture of polyvinylidene fluoride and a polyimide having a volume expansion coefficient of 20% or less was used as the positive electrode binder, and the composition ratio of the polyimide in the binder was 5% by weight or more and 90% by weight or less. By doing so, it can be seen that a non-aqueous electrolyte secondary battery having a large initial charge capacity and excellent cycle characteristics under a high temperature environment can be obtained.

【0037】一方、ポリイミドの組成比が5重量%未満
の場合、高温環境下でのサイクル特性が改善されなかっ
た。また、ポリイミドの組成比が90重量%を越えた場
合、電池の内部インピーダンスが大きくなり、放電容量
が低下した。更に、ポリフッ化ビニリデンと体積膨張率
が20%を越えるポリイミドの混合体を正極バインダー
として用いた場合、高温環境下でのサイクル特性は改善
されなかった。
On the other hand, when the composition ratio of the polyimide was less than 5% by weight, the cycle characteristics in a high temperature environment were not improved. When the composition ratio of polyimide exceeded 90% by weight, the internal impedance of the battery increased, and the discharge capacity decreased. Furthermore, when a mixture of polyvinylidene fluoride and a polyimide having a volume expansion coefficient exceeding 20% was used as a positive electrode binder, the cycle characteristics in a high temperature environment were not improved.

【0038】尚、実施例1〜8において体積膨張率が2
0%以下のポリイミドとして、ソニー・ケミカル株式会
社製のポリイミドNIV1001、およびE1を用いた
が、これに限定するものではない。
In Examples 1 to 8, the volume expansion coefficient was 2
As polyimide of 0% or less, polyimide NIV1001 and E1 manufactured by Sony Chemical Co., Ltd. were used, but the polyimide is not limited to this.

【0039】つぎに、本発明に係わる非水電解液二次電
池と負極バインダーについて、図1と、作成した実施例
9〜14、および比較例10〜13の構成と特性測定結
果を参照して説明する。尚、負極バインダーに混合する
芳香族ポリアミドとして、ポリパラフェニレンテレフタ
ルアミド(以下、「PPTA」と略記する)を用いる。
Next, the nonaqueous electrolyte secondary battery and the negative electrode binder according to the present invention will be described with reference to FIG. 1 and the structures and the results of characteristic measurements of Examples 9 to 14 and Comparative Examples 10 to 13 prepared. explain. In addition, polyparaphenylene terephthalamide (hereinafter abbreviated as “PPTA”) is used as the aromatic polyamide to be mixed with the negative electrode binder.

【0040】実施例9 正極として実施例1と同様にして得られたLiCoO2
を用いた。このLiCoO2 を91重量%、導電剤とし
てグラファイトを6重量%、バインダーとしてポリフッ
化ビニリデンを3重量%の割合で混合して正極合剤を作
製し、溶剤となるN−メチル−2−ピロリドンに分散さ
せてペースト状のスラリーにし、このスラリーを正極集
電体となるアルミニウム箔の両面に塗布し、乾燥後、ロ
ーラープレス機で圧縮成型を行い正極を形成した。
Example 9 LiCoO 2 obtained in the same manner as in Example 1 as a positive electrode
Was used. 91% by weight of this LiCoO 2 , 6% by weight of graphite as a conductive agent, and 3% by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, which was added to N-methyl-2-pyrrolidone as a solvent. The slurry was dispersed to form a paste-like slurry. The slurry was applied to both surfaces of an aluminum foil serving as a positive electrode current collector, dried, and then compression-molded with a roller press to form a positive electrode.

【0041】負極として実施例1と同様にして得られた
難黒鉛化炭素材料を用いた。この難黒鉛化炭素材料を9
0重量%、バインダーとしてポリフッ化ビニリデンとP
PTAの混合体を10重量%の割合で混合して負極合剤
を作製し、溶剤となるN−メチル−2−ピロリドンに分
散させてペースト状のスラリーにした。このとき、ポリ
フッ化ビニリデンとPPTAとの混合比を99.0重量
%:1.0重量%とした。更に、このスラリーを負極集
電体となる銅箔の両面に塗布し、乾燥後、ローラープレ
ス機で圧縮成型を行い負極を形成した。
As the negative electrode, a non-graphitizable carbon material obtained in the same manner as in Example 1 was used. This non-graphitizable carbon material is
0% by weight, polyvinylidene fluoride as binder and P
A mixture of PTA was mixed at a ratio of 10% by weight to prepare a negative electrode mixture, and the mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a paste slurry. At this time, the mixing ratio of polyvinylidene fluoride and PPTA was 99.0% by weight: 1.0% by weight. Further, this slurry was applied to both surfaces of a copper foil serving as a negative electrode current collector, dried, and then subjected to compression molding with a roller press to form a negative electrode.

【0042】更に、上述したようにして作製した正極お
よび負極を用いて、実施例1と同様の円筒型非水電解液
二次電池を作製した。
Further, a cylindrical non-aqueous electrolyte secondary battery similar to that of Example 1 was produced using the positive electrode and the negative electrode produced as described above.

【0043】実施例10〜実施例14 バインダー組成比が表4に示すものであること以外は、
実施例9と同様にして円筒型非水電解液二次電池を作製
した。
Examples 10 to 14 Except that the binder composition ratio is as shown in Table 4,
A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 9.

【0044】比較例10〜比較例13 バインダー組成比が表4に示すものであること以外は、
実施例9と同様にして円筒型非水電解液二次電池を作製
した。
Comparative Examples 10 to 13 Except that the binder composition ratio is as shown in Table 4,
A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 9.

【0045】[0045]

【表4】 [Table 4]

【0046】上述したようにして作製した実施例9〜1
4、比較例10〜13の円筒型非水電解液二次電池につ
いて、23℃、45℃、60℃の各温度において、充電
電圧4.20V、充電電流1000mA、充電時間2.
5hの条件で充電を行い、その後、放電電流700m
A、終止電圧2.75Vの条件で放電を繰り返し行い、
初回の放電容量と200回目の放電容量の比を求めた。
その結果を前掲の表4に示す。また、環境温度23℃、
1KHzにおける電池の内部インピーダンスを測定し、
その結果も表4に示す。
Examples 9-1 produced as described above
4. Regarding the cylindrical non-aqueous electrolyte secondary batteries of Comparative Examples 10 to 13, the charging voltage is 4.20 V, the charging current is 1000 mA, and the charging time is 2.
The battery is charged under the condition of 5 h, and then the discharge current is 700 m
A, The discharge is repeatedly performed under the condition of a final voltage of 2.75 V,
The ratio between the first discharge capacity and the 200th discharge capacity was determined.
The results are shown in Table 4 above. In addition, environmental temperature 23 ℃,
Measure the internal impedance of the battery at 1 KHz,
Table 4 also shows the results.

【0047】以上の結果から、ポリフッ化ビニリデンと
芳香族ポリアミドの混合体を負極バインダーとして用
い、且つ、バインダー中の芳香族ポリアミドの組成比を
1重量%以上、90重量%以下とすることにより、初回
の充電容量が大きく、且つ高温環境下でのサイクル特性
に優れた非水電解液二次電池が得られることが分かる。
From the above results, by using a mixture of polyvinylidene fluoride and an aromatic polyamide as a negative electrode binder and setting the composition ratio of the aromatic polyamide in the binder to 1% by weight or more and 90% by weight or less, It can be seen that a nonaqueous electrolyte secondary battery having a large initial charge capacity and excellent cycle characteristics under a high temperature environment can be obtained.

【0048】一方、芳香族ポリアミドの組成比が1重量
%未満の場合、高温環境下でのサイクル特性は改善され
なかった。また、芳香族ポリアミドの組成比が90重量
%を越えた場合、電池の内部インピーダンスが大きくな
り、放電容量が低下することが観測された。
On the other hand, when the composition ratio of the aromatic polyamide was less than 1% by weight, the cycle characteristics in a high temperature environment were not improved. When the composition ratio of the aromatic polyamide exceeded 90% by weight, it was observed that the internal impedance of the battery increased and the discharge capacity decreased.

【0049】尚、実施例9〜14において芳香族ポリア
ミドとして、PPTAを用いたが、これに限定するもの
ではない。
In Examples 9 to 14, PPTA was used as the aromatic polyamide, but the present invention is not limited to this.

【0050】また、上述した実施例1〜14の正極活物
質としてLiX CoO2 を用いたが、これに限定するも
のでなく、、LiX NiO2 、LiX Mn2 4 、Li
X Coy Ni1-y 2 等のリチウム複合酸化物を用いて
もよい。更に、円筒型の電池に限ることなく、角型、扁
平型、コイン型、ボタン型に用いてもよいことは当然で
ある。
Although Li X CoO 2 was used as the positive electrode active material in Examples 1 to 14 described above, the present invention is not limited to this. Li X NiO 2 , Li X Mn 2 O 4 , Li X
X Co y Ni 1-y O 2 and lithium composite oxides may be used. Further, it goes without saying that the present invention is not limited to a cylindrical battery, but may be used for a square battery, a flat battery, a coin battery, and a button battery.

【0051】[0051]

【発明の効果】以上の説明からも明らかなように、ポリ
フッ化ビニリデンと体積膨張率が20%以下のポリイミ
ドの混合体を正極バインダーとして用い、且つ、バイン
ダー中のポリイミドの組成比を5重量%以上、90重量
%以下とすることにより、また、ポリフッ化ビニリデン
と芳香族ポリアミドの混合体を負極バインダーとして用
い、且つ、バインダー中の芳香族ポリアミドの組成比を
1重量%以上、90重量%以下とすることにより、高温
環境下でのサイクル特性に優れた非水電解液二次電池の
提供が可能となる。
As is clear from the above description, a mixture of polyvinylidene fluoride and a polyimide having a volume expansion coefficient of 20% or less is used as a positive electrode binder, and the composition ratio of the polyimide in the binder is 5% by weight. When the content is 90% by weight or less, a mixture of polyvinylidene fluoride and an aromatic polyamide is used as a negative electrode binder, and the composition ratio of the aromatic polyamide in the binder is 1% by weight or more and 90% by weight or less. By doing so, it becomes possible to provide a nonaqueous electrolyte secondary battery having excellent cycle characteristics under a high temperature environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる非水電解液二次電池の側面断
面図である。
FIG. 1 is a side sectional view of a nonaqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレータ、4…絶縁板、5
…電池缶、6…封口ガスケット、7…電池蓋、8…安全
弁装置、10…負極集電体、11…正極集電体、12…
負極リード、13…正極リード、14…センターピン
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulating plate, 5
... battery can, 6 ... sealing gasket, 7 ... battery lid, 8 ... safety valve device, 10 ... negative electrode current collector, 11 ... positive electrode current collector, 12 ...
Negative electrode lead, 13 ... Positive electrode lead, 14 ... Center pin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有化合物を用いた正極と、リ
チウムをドープし、且つ脱ドープ可能な材料を用いた負
極と、非水電解液とからなる非水電解液二次電池におい
て、 正極および負極の少なくとも一方のバインダーとして、
ポリフッ化ビニリデンを有し、 更に、前記正極のバインダーにはポリイミドが混合され
ると共に、前記負極のバインダーには芳香族ポリアミド
が混合されていることを特徴とする非水電解液二次電
池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode using a lithium-containing compound, a negative electrode using a lithium-doped and undoped material, and a non-aqueous electrolyte. As at least one of the binders,
A non-aqueous electrolyte secondary battery comprising polyvinylidene fluoride, wherein a polyimide is mixed in the binder of the positive electrode, and an aromatic polyamide is mixed in the binder of the negative electrode.
【請求項2】 前記ポリイミドの体積膨張率は20%以
下であることを特徴とする、請求項1に記載の非水電解
液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the polyimide has a volume expansion coefficient of 20% or less.
【請求項3】 前記正極のバインダーに混合される前記
ポリイミドの組成比は、5重量%以上、90重量%以下
であることを特徴とする、請求項1に記載の非水電解液
二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a composition ratio of the polyimide mixed with the binder of the positive electrode is 5% by weight or more and 90% by weight or less. .
【請求項4】 前記負極のバインダーに混合される前記
芳香族ポリアミドの組成比は、1重量%以上、90重量
%以下であることを特徴とする、請求項1に記載の非水
電解液二次電池。
4. The non-aqueous electrolyte solution according to claim 1, wherein the composition ratio of the aromatic polyamide mixed with the binder of the negative electrode is 1% by weight or more and 90% by weight or less. Next battery.
JP9212228A 1997-05-13 1997-08-06 Nonaqueous electrolyte secondary battery Pending JPH1131513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9212228A JPH1131513A (en) 1997-05-13 1997-08-06 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-122628 1997-05-13
JP12262897 1997-05-13
JP9212228A JPH1131513A (en) 1997-05-13 1997-08-06 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1131513A true JPH1131513A (en) 1999-02-02

Family

ID=26459722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9212228A Pending JPH1131513A (en) 1997-05-13 1997-08-06 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1131513A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345103A (en) * 2000-03-29 2001-12-14 Toyo Tanso Kk Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
EP1217674A2 (en) * 2000-12-15 2002-06-26 Wilson Greatbatch Ltd. Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector
EP1221732A3 (en) * 2000-11-29 2002-07-17 Wilson Greatbatch Ltd. Electrodes containing a heat-treated polyamic acid-pvdf binder mixture
KR20030047038A (en) * 2001-12-07 2003-06-18 삼성에스디아이 주식회사 Composite binder of lithium battery
WO2007125712A1 (en) * 2006-04-27 2007-11-08 Dupont Teijin Advanced Papers, Ltd. Method for producing electrode sheet
JP2007305574A (en) * 2006-04-12 2007-11-22 Toray Ind Inc Lithium ion secondary battery
WO2010060348A1 (en) * 2008-11-27 2010-06-03 Byd Company Limited Silicon negative electrode, lithium ion battery and method of preparing the same
WO2010092977A1 (en) * 2009-02-12 2010-08-19 ダイキン工業株式会社 Electrode mixture slurry for lithium secondary batteries, and electrode and lithium secondary battery that use said slurry
JP2011175751A (en) * 2010-02-23 2011-09-08 Toray Ind Inc Binder for lithium ion secondary battery electrode
JP2013093123A (en) * 2011-10-24 2013-05-16 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
CN113711396A (en) * 2020-11-27 2021-11-26 东莞新能源科技有限公司 Electrochemical device and electronic device
JP2021534566A (en) * 2018-08-08 2021-12-09 ブライトボルト, インク.Brightvolt, Inc. Solid Polymer Matrix Electrolyte (PME) for Rechargeable Lithium Batteries and Batteries Made With It
WO2023236104A1 (en) * 2022-06-08 2023-12-14 宁德时代新能源科技股份有限公司 Secondary battery and preparation method therefor, and electric device comprising secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345103A (en) * 2000-03-29 2001-12-14 Toyo Tanso Kk Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
EP1221732A3 (en) * 2000-11-29 2002-07-17 Wilson Greatbatch Ltd. Electrodes containing a heat-treated polyamic acid-pvdf binder mixture
EP1217674A2 (en) * 2000-12-15 2002-06-26 Wilson Greatbatch Ltd. Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector
EP1217674A3 (en) * 2000-12-15 2004-10-20 Wilson Greatbatch Ltd. Electrochemical cell having an electrode of silver vanadium oxide coated to a current collector
KR20030047038A (en) * 2001-12-07 2003-06-18 삼성에스디아이 주식회사 Composite binder of lithium battery
JP2007305574A (en) * 2006-04-12 2007-11-22 Toray Ind Inc Lithium ion secondary battery
WO2007125712A1 (en) * 2006-04-27 2007-11-08 Dupont Teijin Advanced Papers, Ltd. Method for producing electrode sheet
JPWO2007125712A1 (en) * 2006-04-27 2009-09-10 デュポン帝人アドバンスドペーパー株式会社 Electrode sheet manufacturing method
WO2010060348A1 (en) * 2008-11-27 2010-06-03 Byd Company Limited Silicon negative electrode, lithium ion battery and method of preparing the same
KR101236453B1 (en) 2008-11-27 2013-02-22 비와이디 컴퍼니 리미티드 Silicon Negative Electrode, Lithium Ion Battery and a Method of Preparing the Same
WO2010092977A1 (en) * 2009-02-12 2010-08-19 ダイキン工業株式会社 Electrode mixture slurry for lithium secondary batteries, and electrode and lithium secondary battery that use said slurry
JPWO2010092977A1 (en) * 2009-02-12 2012-08-16 ダイキン工業株式会社 Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP5625917B2 (en) * 2009-02-12 2014-11-19 ダイキン工業株式会社 Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP2011175751A (en) * 2010-02-23 2011-09-08 Toray Ind Inc Binder for lithium ion secondary battery electrode
JP2013093123A (en) * 2011-10-24 2013-05-16 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP2021534566A (en) * 2018-08-08 2021-12-09 ブライトボルト, インク.Brightvolt, Inc. Solid Polymer Matrix Electrolyte (PME) for Rechargeable Lithium Batteries and Batteries Made With It
CN113711396A (en) * 2020-11-27 2021-11-26 东莞新能源科技有限公司 Electrochemical device and electronic device
CN113711396B (en) * 2020-11-27 2022-12-27 东莞新能源科技有限公司 Electrochemical device and electronic device
WO2023236104A1 (en) * 2022-06-08 2023-12-14 宁德时代新能源科技股份有限公司 Secondary battery and preparation method therefor, and electric device comprising secondary battery

Similar Documents

Publication Publication Date Title
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
US5292601A (en) Nonaqueous electrolyte secondary battery
JP3200867B2 (en) Non-aqueous electrolyte secondary battery
JP3173225B2 (en) Non-aqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2001345101A (en) Secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP2001176545A (en) Secondary battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2001057233A (en) Non-aqueous electrolyte secondary battery
JP2001283906A (en) Nonaqueous electrolyte battery
JP2001023685A (en) Electrolyte and secondary battery using it
JP4166295B2 (en) Non-aqueous electrolyte battery
JP2002075444A (en) Nonaqueous electrolyte cell
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3303320B2 (en) Non-aqueous electrolyte secondary battery
JP4938923B2 (en) Secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001057230A (en) Non-aqueous electrolyte secondary battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery