JP3200867B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3200867B2 JP3200867B2 JP12530291A JP12530291A JP3200867B2 JP 3200867 B2 JP3200867 B2 JP 3200867B2 JP 12530291 A JP12530291 A JP 12530291A JP 12530291 A JP12530291 A JP 12530291A JP 3200867 B2 JP3200867 B2 JP 3200867B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム複合酸化物を
正極活物質とする非水電解質二次電池に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode active material.
【0002】[0002]
【従来の技術】近年、カメラ一体型VTR、セルラーフ
ォン、ラップトップパソコン等の新しいポータブル用機
器が出現し、これらの電源として高エネルギー密度の高
い二次電池の開発が強く望まれている。従来、これらポ
ータブル用電源として普及している電池としては、鉛電
池やNi−Cd電池等の二次電池が挙げられるが、これ
らの電池は、軽量化が難しく、また環境保全等の問題を
残している。2. Description of the Related Art In recent years, new portable devices such as a camera-integrated VTR, a cellular phone, and a laptop personal computer have appeared, and development of a secondary battery having a high energy density as a power source for these devices has been strongly desired. Conventionally, secondary batteries, such as lead batteries and Ni-Cd batteries, have been widely used as portable power sources. However, these batteries are difficult to reduce in weight and leave problems such as environmental protection. ing.
【0003】かかる状況から、無公害な電池、エネルギ
ー密度の高い電池として非水電解質二次電池に大きな期
待が寄せられている。この非水電解質二次電池において
は、よりエネルギー密度が高い電池を得るため、例えば
特開昭63−59507公報等において、正極活物質と
してリチウム複合酸化物Lix MY O2 (MはCoまた
はNiを表わす)を用いた非水電解質二次電池が提案さ
れている。この電池は、高い充放電電圧を示すため、高
エネルギー密度が得られるという利点を有している。[0003] Under these circumstances, great expectations are placed on non-aqueous electrolyte secondary batteries as non-polluting batteries and batteries having a high energy density. In this non-aqueous electrolyte secondary battery, in order to obtain a more high energy density batteries, for example, in JP-63-59507 Publication, lithium composite oxide as the positive electrode active material Li x M Y O 2 (M is Co or Non-aqueous electrolyte secondary batteries using Ni) have been proposed. This battery has an advantage that a high energy density can be obtained because it exhibits a high charge / discharge voltage.
【0004】ところで、従来の鉛電池,Ni−Cd電池
と代替可能な二次電池として要求される性能の中に低温
負荷特性及び高温寿命特性がある。特に、カメラ一体型
VTR、セルラーフォン、ラップトップパソコン等のポ
ータブル用機器は自動車の室内に放置されたり、充電さ
れたりする可能性があり、高温でのサイクル寿命が重要
な電池性能の一つに位置づけられる。[0004] Among the performances required as secondary batteries that can be substituted for conventional lead batteries and Ni-Cd batteries, there are low-temperature load characteristics and high-temperature life characteristics. In particular, portable equipment such as a camera-integrated VTR, cellular phone, and laptop personal computer may be left in a car room or charged, and high cycle life at high temperatures is one of the important battery performances. Is positioned.
【0005】そこで、LixMO2 を正極活物質とし、
炭素材料を負極活物質とする非水電解質二次電池の電池
特性を評価すると、サイクル寿命としては、常温で使用
する限り、100%の放電深度でも約1200サイクル
という長寿命が確認されている。また、低温(少なくと
も−20℃)にしても常温の70%以上の容量を保持す
ることができ、従来の鉛電池、Ni−Cd電池に代りう
る性能を有することが確認されている。Therefore, Li x MO 2 is used as a positive electrode active material,
When battery characteristics of a nonaqueous electrolyte secondary battery using a carbon material as a negative electrode active material are evaluated, a long cycle life of about 1200 cycles is confirmed even at a discharge depth of 100% as long as the battery is used at room temperature. Further, even at a low temperature (at least −20 ° C.), it is possible to maintain a capacity of 70% or more of a normal temperature, and it has been confirmed that the battery has a performance that can replace conventional lead batteries and Ni—Cd batteries.
【0006】[0006]
【発明が解決しようとする課題】ところが、この電池は
高温で充放電サイクルを繰返すと著しい容量以下を引き
起こす欠点があり、45℃の雰囲気で充放電サイクルを
行うと常温の1/10以下程度の寿命になってしまう。
そこで本発明は、かかる従来の実情に鑑みて提案された
ものであって、リチウム複合酸化物を正極とし炭素材料
を負極とする非水電解質二次電池の高温使用における充
放電サイクル寿命の改善を図ることを目的とする。However, this battery has a drawback that when the charge / discharge cycle is repeated at a high temperature, the capacity is significantly reduced. When the charge / discharge cycle is performed in an atmosphere of 45 ° C., the battery has a drawback of about 1/10 or less of the normal temperature. It will be the life.
Therefore, the present invention has been proposed in view of such conventional circumstances, and aims to improve the charge / discharge cycle life of a nonaqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode and a carbon material as a negative electrode at a high temperature. The purpose is to aim.
【0007】上記目的を達成するために、本発明者ら
は、種々の検討を重ねた結果、正極活物質中に含有され
る炭酸分(CO 3 2−)を0.41%重量以下にすれ
ば、高温で使用しても容量低下が抑えられることを見出
した。本発明は、かかる知見に基づいて完成されたもの
で、LiXMO2(但し、Mは遷移金属の少なくとも一
種、好ましくはCoまたはNiの少なくとも1種を表わ
し、0.05≦X≦1.10である。)からなる正極活
物質を集電体の両面に塗布し成型された正極と、リチウ
ムをドープ脱ドープし得る炭素質材料からなる負極活物
質を集電体の両面に塗布し成型された負極と、非水電解
質とを備えた非水電解質二次電池において、上記正極活
物質中に含有される炭酸分が0.41重量%以下である
ことを特徴とするものである。In order to achieve the above object, the present inventors have made various studies and found that the content of carbonic acid ( CO 3 2- ) contained in the positive electrode active material was reduced to 0.41% by weight or less. Then, it was found that the capacity reduction can be suppressed even when used at a high temperature. The present invention has been completed on the basis of such findings, and Li X MO 2 (where M represents at least one transition metal, preferably at least one of Co or Ni, and 0.05 ≦ X ≦ 1. 10). A positive electrode formed by applying a positive electrode active material comprising a positive electrode and a negative electrode active material comprising a carbonaceous material capable of doping and undoping lithium is applied to both surfaces of the current collector. in the negative electrode and the nonaqueous electrolyte and the non-aqueous electrolyte secondary battery provided with a that is, is characterized in that carbon content contained in the positive electrode active material is not higher 0.41 wt% or less.
【0008】なお、本発明においては、負極活物質とし
て炭素材料を用いるが、この炭素材料としては、リチウ
ムをドープ、脱ドープ可能なものであれば良く、熱分解
炭素類、コークス類(ピッチコークス、ニードルコーク
ス、石油コークス等)、グラファイト類、ガラス炭素
類、有機高分子化合物の焼成体(フェノール樹脂、フラ
ン樹脂等を適当な温度で焼成し炭素化したもの)、炭素
繊維、活性炭等を用いることができる。In the present invention, a carbon material is used as the negative electrode active material, and any carbon material may be used as long as it can be doped with lithium and dedoped, and pyrolytic carbons, cokes (pitch coke) , Needle coke, petroleum coke, etc.), graphites, glass carbons, fired products of organic high molecular compounds (fired and carbonized phenol resin, furan resin, etc. at an appropriate temperature), carbon fibers, activated carbon, etc. be able to.
【0009】また、電解質としては、LiClO4 、L
iAS F6 、LiPF6 、LiBF4 、LiB(C6 H
5 )4 、LiCl、LiBr、CH2 SO3 Li、CF
3 SO3 Li等の材料が使用できる。有機溶媒として
は、プロピレンカーボネート、エンヒレンカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,3−ジオキソラン、ス
ルホラン、アセトニトリル、ジエチルカーボネート、ジ
プロピルカーボネート等の単独もしくは2種類以上の混
合溶媒を用いることができる。The electrolyte may be LiClO 4 , L
iA S F 6, LiPF 6, LiBF 4, LiB (C 6 H
5 ) 4 , LiCl, LiBr, CH 2 SO 3 Li, CF
Material such as 3 SO 3 Li, it can be used. Examples of the organic solvent include propylene carbonate, enylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran,
A single solvent such as methyltetrahydrofuran, 1,3-dioxolan, sulfolane, acetonitrile, diethyl carbonate, dipropyl carbonate, or a mixture of two or more solvents can be used.
【0010】[0010]
【作用】高温でのサイクルに伴う容量低下に及ぼす正極
活物質中の炭酸分の作用に関して詳細は不明であるが、
高温で充放電サイクルを繰返すうちに、正極活物質から
炭酸分が電解液中に溶解し、充電時に、負極活物質であ
る炭素材料にドープされるリチウムを不活性なリチウム
にしてしまうため、容量低下を引きおこすものと考えら
れる。[Action] Although the details of the action of carbonic acid in the positive electrode active material on the capacity decrease due to the cycle at high temperature are unknown,
As the charge / discharge cycle is repeated at high temperature, carbonic acid dissolves in the electrolyte from the positive electrode active material, and during charging, the lithium doped in the carbon material, which is the negative electrode active material, becomes inactive lithium. It is thought to cause a decline.
【0011】本発明においては、前記炭酸分を0.41
重量%以下としているので、この炭酸分に起因する容量
低下が抑えられ、特に高温での充放電サイクル性能が改
善される。In the present invention, the carbon content is 0.41
Since the content is not more than% by weight, the decrease in capacity due to the carbonic acid content is suppressed, and the charge / discharge cycle performance at high temperatures is particularly improved.
【0012】[0012]
【実施例】以下、本発明を適用した具体的な実施例につ
いて、図面を参照しながら詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below in detail with reference to the drawings.
【0013】実施例1 本実施例において作成した非水電解質二次電池は、図1
に示すような円筒形の渦巻き型電池である。先ず、 正
極活物質としてLiNiY Co1-Y O2 (Y=0.6)
で表わされるLiNi0.6 Co0.4 O2 の合成を行っ
た。炭酸リチウムと炭酸コバルトを各々0.5モル対
0.6モル対0.4モルの比で混合し、900℃,7時
間空気中で焼成し、その後自動乳鉢にて粉砕を行った。
この焼成→粉砕の作業をさらに4回繰返し、LiNi
0.6 Co0.4 O2を得た。 Embodiment 1 A non-aqueous electrolyte secondary battery prepared in this embodiment is shown in FIG.
This is a cylindrical spiral type battery as shown in FIG. First, as a positive electrode active material, LiNi Y Co 1- YO 2 (Y = 0.6)
The synthesis of LiNi 0.6 Co 0.4 O 2 represented by Lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol: 0.6 mol: 0.4 mol, respectively, and calcined in air at 900 ° C. for 7 hours, and then ground in an automatic mortar.
This operation of baking → pulverization was further repeated four times to obtain LiNi.
0.6 Co 0.4 O 2 was obtained.
【0014】得られたLiNi0.6 Co0.4 O2に含有
される炭酸分は、試料を硫酸で分解し、生成したCo2
を塩化バリウムと水酸化ナトリウム溶液に導入して吸収
させ、塩酸標準溶液で滴定し求めた。その結果、炭酸分
は0.32重量%であった。このようにして得たLiN
i0.6 Co0.4 O2 を91重量部、導電剤としてグラフ
ァイトを6重量部、結着剤としてポリフッ化ビニリデン
3重量部を混合し正極合剤を作製し、これにN−メチル
−2−ピロリドンに分散させてスラリ状とした。The carbonate contained in the obtained LiNi 0.6 Co 0.4 O 2 is obtained by decomposing a sample with sulfuric acid and producing Co 2
Was introduced into a barium chloride and sodium hydroxide solution to be absorbed and titrated with a hydrochloric acid standard solution. As a result, the carbonic acid content was 0.32% by weight. LiN thus obtained
91 parts by weight of i 0.6 Co 0.4 O 2 , 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, and N-methyl-2-pyrrolidone was added thereto. It was dispersed to form a slurry.
【0015】次に、正極集電体10として厚さ20μm
の帯状のアルミニウム箔の両面に上記正極のスラリーを
均一に塗布し乾燥後ロールプレス機で圧縮成型して帯状
正極2を作製した。負極活物質として、出発原料に石油
ピッチを用い、これに酸素を含む官能基を10〜20%
導入(いわゆる酸素架橋)した後、不活性ガス気流中1
000℃で焼成してガラス状炭素に近い性質の難黒鉛炭
素材料を得た。この材料について、X線回折測定を行っ
た結果、(002)面の面間隔は3.76Åで、真比重
は1.58であった。この様にして得た炭素材料を90
重量部、結着剤としてポリフッ化ビニリデン10重量部
と混合し負極合剤を作製し、これをN−メチル−2−ピ
ロリドンに分散させてスラリ状とした。Next, as the positive electrode current collector 10, a thickness of 20 μm
The slurry of the above-mentioned positive electrode was uniformly applied to both sides of the strip-shaped aluminum foil, dried, and then compression-molded with a roll press to produce a strip-shaped positive electrode 2. Petroleum pitch is used as a starting material as a negative electrode active material, and oxygen-containing functional groups are added in an amount of 10 to 20%.
After introduction (so-called oxygen cross-linking), 1
Calcination was performed at 000 ° C. to obtain a non-graphitic carbon material having properties similar to glassy carbon. X-ray diffraction measurement of this material showed that the (002) plane spacing was 3.76 ° and the true specific gravity was 1.58. The carbon material obtained in this way is 90
Parts by weight and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry.
【0016】次に、負極集電体9として厚さ10μmの
帯状の銅箔を用意し、その両面に上記負極のスラリを均
一に塗布し、乾燥後ロールプレス機で圧縮成型して帯状
の負極1を作製した。セパレータ3としては、厚さ25
μmの微孔性ポリプロピレンフィルムを使用し、負極
1、正極2、セパレータ3を渦巻型に巻回し、図1に示
したような電極素子を作製した。この様にして得た電極
素子をニッケルメッキを施した鉄製の缶5に収納した。
渦巻式電極素子上下両面に絶縁板4を配置し、アルミニ
ウム製正極リード12を正極集電体10から導出して電
池蓋7に、ニッケル製負極リード11を負極集電体9か
ら導出して電池缶5に溶接した。Next, a strip-shaped copper foil having a thickness of 10 μm is prepared as the negative electrode current collector 9, the slurry of the negative electrode is uniformly applied to both surfaces thereof, dried, and compression-molded by a roll press to form a strip-shaped negative electrode. 1 was produced. The thickness of the separator 3 is 25
The negative electrode 1, the positive electrode 2, and the separator 3 were spirally wound using a microporous polypropylene film having a thickness of μm, thereby producing an electrode element as shown in FIG. The electrode element thus obtained was stored in a nickel-plated iron can 5.
The insulating plate 4 is arranged on both upper and lower surfaces of the spiral electrode element, the aluminum positive electrode lead 12 is led out from the positive electrode current collector 10, and the nickel negative electrode lead 11 is led out from the negative electrode current collector 9. Welded to can 5.
【0017】次に、この電池缶の中にプロピレンカーボ
ネート50容量%と1,2−ジメトキシエタン50容量
%混合溶媒にLiPF6 を1モル/l溶解させた電解液
を注入した。アスファルトを塗布した絶縁ガスケット6
を介して上記電池缶5と電池蓋7をかしめて封口し、直
径20mm、高さ50mmの円筒形の渦巻き型電池を作
製した。Next, into the battery can, an electrolyte obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of 1,2-dimethoxyethane was injected. Insulating gasket 6 coated with asphalt
Then, the battery can 5 and the battery lid 7 were caulked and sealed to form a cylindrical spiral-shaped battery having a diameter of 20 mm and a height of 50 mm.
【0018】実施例2 実施例1と同様に、炭酸リチウムと炭酸ニッケルと炭酸
コバルトを各々0.5モル対0.6モル対0.4モルの
比で混合し、900℃,7時間空気中にて焼成し、その
後自動乳鉢にて粉砕を行った。次に、この材料4kgを
純水20リットルの入った容器に入れ30分間攪拌し、
その後ガラスフィルターによりろ過を行い、LiNi
0.6 Co0.4 O2 を得た。得られたLiNi0.6 Co
0.4 O2 に含有される炭酸分を測定した結果0.41重
量%であった。これを正極活物質として使用した他は、
実施例1と同様にして同筒形の渦巻き型電池を作製し
た。 Example 2 In the same manner as in Example 1, lithium carbonate, nickel carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol: 0.6 mol: 0.4 mol, respectively, and the mixture was heated at 900 ° C. for 7 hours in air. And then crushed in an automatic mortar. Next, 4 kg of this material was placed in a container containing 20 liters of pure water and stirred for 30 minutes.
After that, filtration with a glass filter is performed, and LiNi
0.6 Co 0.4 O 2 was obtained. The resulting LiNi 0.6 Co
As a result of measuring the carbon content contained in 0.4 O 2 , it was 0.41% by weight. Other than using this as a positive electrode active material,
In the same manner as in Example 1, the same cylindrical spiral battery was manufactured.
【0019】実施例3 実施例2と同様の手法でLiNi0.6 Co0.4 O2 を合
成し、これに対して水洗ろ過を5回繰返し行った。得ら
れたLiNi0.6 Co0.4 O2 の炭酸分は、0.16重
量%であった。これを正極活物質として使用した他は、
実施例1と同様にして円筒形の渦巻き型電池を作製し
た。 Example 3 LiNi 0.6 Co 0.4 O 2 was synthesized in the same manner as in Example 2, and washing and filtration with water were repeated five times. The carbon content of the obtained LiNi 0.6 Co 0.4 O 2 was 0.16% by weight. Other than using this as a positive electrode active material,
A cylindrical spiral battery was manufactured in the same manner as in Example 1.
【0020】実施例4 活物質の合成は次の様に行った。炭酸リチウムと炭酸ニ
ッケルと炭酸コバルトを0.425モル対0.6モル体
0.4モルの比で混合し、900℃,7時間空気中にて
焼成し、その後自動乳鉢で粉砕を行いLi0.85Ni0.6
Co0.4 O2 を得た。得られたLi0.85Ni0.6 Co
0.4 O2 の炭酸分は、0.068重量%であった。これ
を正極活物質として使用した他は、実施例1と同様にし
て円筒形の渦巻き型電池を作製した。 Example 4 Synthesis of an active material was carried out as follows. Lithium carbonate and nickel carbonate and cobalt carbonate were mixed in 0.425 mol versus 0.6 mol body 0.4 mole ratio, 900 ° C., and calcined at 7 hours in air, subjected to subsequent ground in an automatic mortar Li 0.85 Ni 0.6
Co 0.4 O 2 was obtained. The obtained Li 0.85 Ni 0.6 Co
The carbon content of 0.4 O 2 was 0.068% by weight. Except that this was used as a positive electrode active material, a cylindrical spiral battery was manufactured in the same manner as in Example 1.
【0021】比較例1 実施例1と同じ様に炭酸リチウムと炭酸ニッケルと炭酸
コバルトを各々0.5モル対0.6モル対0.4モルの
比で混合し、900℃,7時間空気中にて焼成し、その
後自動乳鉢にて粉砕を行ない、この焼成→粉砕の作業を
さらに2回繰返しLiNi0.6 Co0.4 O2 を得た。得
られたLiNi0.6 Co0.4 O2 に含有される炭酸分を
測定した結果1.65重量%であった。これを正極活物
質として使用した他は、実施例1と同様にして同筒形の
渦巻き型電池を作製した。[0021] Comparative Example 1 were mixed in Example 1 and the same for each 0.5 mole-for-0.6 mol versus 0.4 mole lithium carbonate and nickel carbonate and cobalt carbonate as a ratio, 900 ° C., 7 hours in air , And then pulverized in an automatic mortar, and this operation of baking → pulverization was further repeated twice to obtain LiNi 0.6 Co 0.4 O 2 . As a result of measuring the carbon content contained in the obtained LiNi 0.6 Co 0.4 O 2 , it was 1.65% by weight. Except that this was used as a positive electrode active material, the same cylindrical spiral-type battery was produced in the same manner as in Example 1.
【0022】比較例2 実施例1と同様に炭酸リチウムと炭酸ニッケルと炭酸コ
バルトを各々0.5モル対0.6モル対0.4モル比で
混合し、900℃,7時間空気中にて焼成し、その後自
動乳鉢により粉砕を行ないLiNi0.6 Co0.4 O2 を
得た。得られたLiNi0.6 Co0.4 O2 の炭酸分は、
3.78重量%であった。これを正極活物質として使用
した他は、実施例1と同様にして円筒形の渦巻き型電池
を作製した。COMPARATIVE EXAMPLE 2 As in Example 1, lithium carbonate, nickel carbonate and cobalt carbonate were mixed in a molar ratio of 0.5 mol: 0.6 mol: 0.4 mol, respectively, and the mixture was heated at 900 ° C. for 7 hours in air. It was calcined and then pulverized with an automatic mortar to obtain LiNi 0.6 Co 0.4 O 2 . The carbonate content of the obtained LiNi 0.6 Co 0.4 O 2 is
3.78% by weight. Except that this was used as a positive electrode active material, a cylindrical spiral battery was manufactured in the same manner as in Example 1.
【0023】上述の実施例1,2,3,4及び比較例
1,2による電池を、60℃の雰囲気で、充電電圧を
4.1V(最大)にて設定し、1A定電流で3時間充電
を行った。放電は、同じく60℃の雰囲気で終止電圧
2.75Vまで6.2Ωの定抵抗放電を行った。各サイ
クルでの放電容量を図2に示す。図2に示す通り、正極
活物質中の含有炭酸分の多い比較例2の電池は、サイク
ルに伴う容量低下が大きく、100サイクル目の容量が
201wh/lから74wh/l(37%)に低下して
しまっている。また、比較的含有炭酸分の多い比較例1
の電池でも、100サイクル目の容量が初期の容量に対
して56%に低下してしまっている。The batteries of Examples 1, 2, 3, 4 and Comparative Examples 1 and 2 were set at a charging voltage of 4.1 V (maximum) in an atmosphere of 60 ° C. and at a constant current of 1 A for 3 hours. Charged. For the discharge, a constant resistance discharge of 6.2Ω was performed in the same atmosphere at 60 ° C. until the final voltage was 2.75V. FIG. 2 shows the discharge capacity in each cycle. As shown in FIG. 2, in the battery of Comparative Example 2 having a large amount of carbonate contained in the positive electrode active material, the capacity was significantly reduced due to the cycle, and the capacity at the 100th cycle was reduced from 201 wh / l to 74 wh / l (37%). Has been done. Comparative Example 1 having relatively high carbon content
In the battery of the above, the capacity at the 100th cycle is reduced to 56% of the initial capacity.
【0024】それに対して、正極活物質中の含有炭酸分
の少ない実施例1,2,3,4の電池では、サイクルに
伴う容量低下が小さく、100サイクル目の容量は初期
の容量に対して76%から89%の値を示した。このよ
うに、正極活物質中の含有炭酸分の多い電池は、高温で
の充放電サイクルを繰返すと大きな容量低下を来たすの
に対して、含有炭酸分を0.41重量%以下に抑えた電
池は、高温でのサイクルに伴う容量低下を小さくするこ
とが可能となり、その効果は大きいことがわかる。On the other hand, in the batteries of Examples 1, 2, 3, and 4 in which the amount of carbonic acid contained in the positive electrode active material is small, the capacity decrease due to the cycle is small, and the capacity at the 100th cycle is smaller than the initial capacity. It showed a value of 76% to 89%. As described above, the battery containing a large amount of carbonic acid in the positive electrode active material causes a large capacity decrease when the charge / discharge cycle is repeated at a high temperature, whereas the battery containing a large amount of carbonic acid is suppressed to 0.41% by weight or less. Can reduce the capacity decrease due to the high-temperature cycle, and the effect is large.
【0025】実施例5 正極活物質としてLiCoO2 の合成を行った。炭酸リ
チウムと炭酸コバルトを各々0.5モルの比で混合し、
900℃で7時間空気中で焼成し、その後、自動乳鉢に
て粉砕を行いLiCoO2 を得た。得られたLiCoO
2 の炭酸分を測定した結果0.01重量%であった。こ
れを正極活物質として使用したほかは、実施例1と同様
にして円筒形の渦巻き型電池を作製した。 Example 5 LiCoO 2 was synthesized as a positive electrode active material. Lithium carbonate and cobalt carbonate are each mixed at a ratio of 0.5 mol,
It was baked in air at 900 ° C. for 7 hours, and then pulverized in an automatic mortar to obtain LiCoO 2 . LiCoO obtained
As a result of measuring the carbon content of 2 , it was 0.01% by weight. A cylindrical spiral battery was manufactured in the same manner as in Example 1 except that this was used as a positive electrode active material.
【0026】比較例3 実施例5と同様に炭酸リチウムと炭酸コバルトを各々
0.55モル対1.0モルの比で混合し、900℃で7
時間空気中で焼成し、その後自動乳鉢にて粉砕を行いL
iCoO2 を得た。得られたLiCoO2 の炭酸分を測
定したところ、2.97重量%であった。これを正極活
物質として使用した他は、実施例1と同様にして円筒形
の渦巻き型電池を作製した。上記実施例5及び比較例3
の電池を、60℃の雰囲気で充電々圧を4.1V(最
大)に設定し1A定電流で3時間の充電を行った。COMPARATIVE EXAMPLE 3 As in Example 5, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.55 mol to 1.0 mol, respectively.
Baked in air for hours, then crushed in an automatic mortar
iCoO 2 was obtained. The carbon content of the obtained LiCoO 2 was measured and found to be 2.97% by weight. Except that this was used as a positive electrode active material, a cylindrical spiral battery was manufactured in the same manner as in Example 1. Example 5 and Comparative Example 3
Was charged at 4.1 V (maximum) in an atmosphere of 60 ° C., and charged at a constant current of 1 A for 3 hours.
【0027】放電は、同じく60℃の雰囲気で終止電圧
2.75Vまで6.2Ωの定抵抗放電を行ない、各サイ
クルでの放電容量を図3に示した。LiNi0.6 Co
0.4 O2 の場合と同様、LiCoO2 の場合において
も、正極活物質中の含有炭酸分の多い比較例2の電池
は、充放電サイクルに伴う容量低下が大きい。それに対
して含有炭酸分の少ない実施例5の電池は、容量低下は
小さく、100サイクル目の容量は初期の容量の82%
の値を示した。For the discharge, a constant resistance discharge of 6.2 Ω was performed in an atmosphere at 60 ° C. to a final voltage of 2.75 V, and the discharge capacity in each cycle is shown in FIG. LiNi 0.6 Co
As in the case of 0.4 O 2, in the case of LiCoO 2 , the battery of Comparative Example 2 having a large amount of carbonic acid contained in the positive electrode active material has a large capacity decrease accompanying the charge / discharge cycle. On the other hand, in the battery of Example 5 having a small content of carbonate, the capacity decrease was small, and the capacity at the 100th cycle was 82% of the initial capacity.
The value of was shown.
【0028】このように、正極活物質がLiCoO2の
場合でも、含有炭酸分を0.41重量%以下にすること
により、高温でのサイクルに伴う容量低下を小さくする
ことが可能となり、その効果は大きいことが確認され
た。以上の実施例から、LiXMO2(但し、Mは遷移
金属、好しくはCo又はNiの少なくとも1種を表わ
し、0.05≦X≦1.10である)で表わされる正極
活物質中に含有される炭酸分(CO 3 2−)を0.41
重量%以下にすることにより、高温で充放電サイクル性
能を著しく改善できることが確認された。As described above, even when the positive electrode active material is LiCoO 2 , by lowering the content of carbon dioxide to 0.41% by weight or less, it is possible to reduce the capacity decrease due to the cycle at a high temperature. Was confirmed to be large. From the above examples, the positive electrode active material represented by Li X MO 2 (where M represents a transition metal, preferably at least one of Co and Ni and 0.05 ≦ X ≦ 1.10.) Carbonic acid ( CO 3 2- ) contained in
It was confirmed that by setting the content to not more than% by weight, the charge / discharge cycle performance at a high temperature can be remarkably improved.
【0029】なお、本発明は、実施例で示した円筒形の
渦巻き型二次電池だけに適用し得るものでなく、ボタン
型、コイン型、角型等の各種電池にも当然適用し得るも
のである。The present invention can be applied not only to the cylindrical spiral type secondary battery shown in the embodiment but also to various types of batteries such as a button type, a coin type and a square type. It is.
【0030】[0030]
【発明の効果】以上の説明からも明らかなように、本発
明においては、リチウム複合酸化物を正極とし炭素材料
を負極とした非水電解質二次電池において、正極活物質
中の炭酸分を0.41重量%にしているので、高温での
充放電サイクルに伴う容量低下を小さくすることが可能
である。As is apparent from the above description, in the present invention, in a nonaqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode and a carbon material as a negative electrode, the carbon content in the positive electrode active material is reduced to 0. Since the content is set to 0.41% by weight, it is possible to reduce a decrease in capacity due to a charge / discharge cycle at a high temperature.
【0031】これにより、高エネルギー密度を有し、充
放電サイクル性能が優れた二次電池を提供することがで
きるようになり、その工業的価値は大きい。As a result, a secondary battery having a high energy density and excellent charge / discharge cycle performance can be provided, and its industrial value is great.
【図1】渦巻き型非水電解質二次電池の構成例を示す概
略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example of a spiral type nonaqueous electrolyte secondary battery.
【図2】LiNi0.6 Co0.4 O2 に含まれる炭酸分に
よる充放電サイクル特性の相違を示す特性図である。FIG. 2 is a characteristic diagram showing a difference in charge / discharge cycle characteristics depending on carbonic acid contained in LiNi 0.6 Co 0.4 O 2 .
【図3】LiCoO2 に含まれる炭酸分による充放電サ
イクル特性の相違を示す特性図である。FIG. 3 is a characteristic diagram showing a difference in charge / discharge cycle characteristics due to carbonic acid contained in LiCoO 2 .
1・・・負極 2・・・正極 3・・・セパレータ DESCRIPTION OF SYMBOLS 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator
フロントページの続き (56)参考文献 特開 平6−342657(JP,A) 特開 平3−64860(JP,A) 特開 昭63−121260(JP,A) 特開 平2−56871(JP,A) 特開 平1−279578(JP,A) 特開 平3−49155(JP,A) 特開 平3−84872(JP,A) 特開 平2−66856(JP,A) 実開 平2−79566(JP,U) 実開 平2−150760(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 H01M 4/58 Continuation of the front page (56) References JP-A-6-342657 (JP, A) JP-A-3-64860 (JP, A) JP-A-63-121260 (JP, A) JP-A-2-56871 (JP) JP-A-1-279578 (JP, A) JP-A-3-49155 (JP, A) JP-A-3-84872 (JP, A) JP-A-2-66856 (JP, A) 2-79566 (JP, U) Hikaru 2-150760 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04 H01M 4 / 58
Claims (5)
なくとも一種を表わし、0.05≦X≦1.10であ
る。)からなる正極活物質を集電体の両面に塗布し成型
された正極と、リチウムをドープ脱ドープし得る炭素質
材料からなる負極活物質を集電体の両面に塗布し成型さ
れた負極と、非水電解質とを備えた非水電解質二次電池
において、 上記正極活物質中に含有される炭酸分が0.41重量%
以下であることを特徴とする非水電解質二次電池。1. A positive electrode active material comprising Li X MO 2 (where M represents at least one transition metal and 0.05 ≦ X ≦ 1.10.) Is applied to both surfaces of a current collector and molded.
A negative electrode active material made of a carbonaceous material capable of doping and undoping lithium is applied to both surfaces of the current collector and molded.
The negative electrode and non-aqueous non-aqueous electrolyte secondary battery comprising an electrolyte
In the above, the carbon content contained in the positive electrode active material is 0.41% by weight.
A nonaqueous electrolyte secondary battery characterized by the following.
巻回されてなる渦巻型電極素子を備えてなることを特徴
とする請求項1記載の非水電解質電池。 2. The method according to claim 1, wherein the positive electrode and the negative electrode are connected via a separator.
It is characterized by comprising a spirally wound electrode element that is wound
The non-aqueous electrolyte battery according to claim 1, wherein
徴とする請求項2記載の非水電解質二次電池。 3. The method according to claim 2, wherein the current collector is made of a metal foil.
The non-aqueous electrolyte secondary battery according to claim 2.
上含有することを特徴とする請求項1記載の非水電解質
二次電池。 4. The method according to claim 1, wherein the positive electrode has a carbonic acid content of 0.01% by weight or less.
2. The non-aqueous electrolyte according to claim 1, further comprising:
Rechargeable battery.
導入した後、焼成して得た炭素質材料であることを特徴
とする請求項1記載の非水電解質二次電池。 5. The method according to claim 1, wherein the negative electrode has an oxygen functional group on a petroleum pitch.
It is a carbonaceous material obtained by firing after introduction.
The non-aqueous electrolyte secondary battery according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12530291A JP3200867B2 (en) | 1991-04-26 | 1991-04-26 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12530291A JP3200867B2 (en) | 1991-04-26 | 1991-04-26 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04328277A JPH04328277A (en) | 1992-11-17 |
JP3200867B2 true JP3200867B2 (en) | 2001-08-20 |
Family
ID=14906728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12530291A Expired - Lifetime JP3200867B2 (en) | 1991-04-26 | 1991-04-26 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3200867B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102341941A (en) * | 2009-03-31 | 2012-02-01 | Jx日矿日石金属株式会社 | Positive electrode active material for lithium ion battery |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3493873B2 (en) * | 1995-04-28 | 2004-02-03 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
KR100691542B1 (en) * | 2001-08-17 | 2007-03-09 | 주식회사 엘지화학 | Method for preparing transition metal oxide based negative electrode material for lithium secondary batteries and the same |
JP4702511B2 (en) * | 2003-09-17 | 2011-06-15 | ソニー株式会社 | Secondary battery |
JP4920475B2 (en) * | 2007-03-30 | 2012-04-18 | ソニー株式会社 | Positive electrode active material, positive electrode and non-aqueous electrolyte battery |
CN102290573B (en) | 2007-03-30 | 2015-07-08 | 索尼株式会社 | Cathode active material, cathode and nonaqueous electrolyte battery |
KR20110094023A (en) | 2008-12-04 | 2011-08-19 | 도다 고교 가부시끼가이샤 | Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell |
KR101450978B1 (en) | 2009-12-18 | 2014-10-15 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery |
EP2518802B1 (en) | 2009-12-22 | 2020-11-25 | JX Nippon Mining & Metals Corporation | Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery |
US9231249B2 (en) | 2010-02-05 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
WO2011096522A1 (en) | 2010-02-05 | 2011-08-11 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9240594B2 (en) | 2010-03-04 | 2016-01-19 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
JP5313392B2 (en) | 2010-03-04 | 2013-10-09 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9216913B2 (en) | 2010-03-04 | 2015-12-22 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
EP2544273A4 (en) | 2010-03-04 | 2014-06-25 | Jx Nippon Mining & Metals Corp | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
JP5467144B2 (en) | 2010-03-05 | 2014-04-09 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US8986571B2 (en) | 2010-06-09 | 2015-03-24 | Toda Kogyo Corporation | Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery |
US20130143121A1 (en) | 2010-12-03 | 2013-06-06 | Jx Nippon Mining & Metals Corporation | Positive Electrode Active Material For Lithium-Ion Battery, A Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery |
KR101667867B1 (en) | 2011-01-21 | 2016-10-19 | 제이엑스금속주식회사 | Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery |
EP2704237B1 (en) | 2011-03-29 | 2016-06-01 | JX Nippon Mining & Metals Corporation | Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries |
US9214676B2 (en) | 2011-03-31 | 2015-12-15 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
JP6292739B2 (en) | 2012-01-26 | 2018-03-14 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JP6292738B2 (en) | 2012-01-26 | 2018-03-14 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9911518B2 (en) | 2012-09-28 | 2018-03-06 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery |
CN106550615B (en) | 2014-03-24 | 2021-03-12 | 株式会社半导体能源研究所 | Lithium ion secondary battery |
US10128529B2 (en) | 2015-11-13 | 2018-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Lithium-ion secondary battery, fabricating method therof, and electronic device |
-
1991
- 1991-04-26 JP JP12530291A patent/JP3200867B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102341941A (en) * | 2009-03-31 | 2012-02-01 | Jx日矿日石金属株式会社 | Positive electrode active material for lithium ion battery |
CN102341941B (en) * | 2009-03-31 | 2014-10-15 | Jx日矿日石金属株式会社 | Positive electrode active material for lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JPH04328277A (en) | 1992-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3200867B2 (en) | Non-aqueous electrolyte secondary battery | |
CA2055305C (en) | Nonaqueous electrolyte secondary battery | |
KR20090093165A (en) | Cathode active material and cathode and lithium battery containing the material | |
JPH10302779A (en) | Production of positive electrode active material | |
JPH0982325A (en) | Manufacture of positive active material | |
JPH10189044A (en) | Nonaqueous electrolytic secondary battery | |
JP3196226B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3709628B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH09204918A (en) | Negative electrode material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous secondary battery | |
JP4798741B2 (en) | Non-aqueous secondary battery | |
JPH07211311A (en) | Nonaqueous-electrolyte secondary battery | |
JPH11233140A (en) | Nonaqueous electrolyte secondary battery | |
JPH09293508A (en) | Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it | |
JP3564756B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH117958A (en) | Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery | |
JPH0845498A (en) | Nonaqueous electrolytic liquid secondary battery | |
JPH1131513A (en) | Nonaqueous electrolyte secondary battery | |
JP2002025617A (en) | Nonaqueous electrolyte secondary battery | |
JP4166295B2 (en) | Non-aqueous electrolyte battery | |
JP2002075444A (en) | Nonaqueous electrolyte cell | |
KR19980019096A (en) | Non-Aqueous Liquid Electrolyte Secondary Battery and Method for Producing Cathode Material | |
JP3458389B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003197259A (en) | Nonaqueous electrolyte secondary battery | |
JPH11250914A (en) | Nonaqueous electrolyte secondary battery | |
JP4080110B2 (en) | Non-aqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001121 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010522 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080622 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |