JPH0845498A - Nonaqueous electrolytic liquid secondary battery - Google Patents

Nonaqueous electrolytic liquid secondary battery

Info

Publication number
JPH0845498A
JPH0845498A JP6255463A JP25546394A JPH0845498A JP H0845498 A JPH0845498 A JP H0845498A JP 6255463 A JP6255463 A JP 6255463A JP 25546394 A JP25546394 A JP 25546394A JP H0845498 A JPH0845498 A JP H0845498A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
composite oxide
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6255463A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
尚之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6255463A priority Critical patent/JPH0845498A/en
Publication of JPH0845498A publication Critical patent/JPH0845498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolytic liquid secondary battery having a high energy density and an excellent cycle life. CONSTITUTION:A nonaqueous electrolytic liquid second battery is provided with a positive pole 2 using a lithium compound as a positive pole active material, a negative pole 1 using cabonic material capable of doping and deposing lithium as a negative pole active material and nonaqueous electrolytic liquid. A lithium and mangan synthetic oxide represented by LixMn2O4 (x is x>=0.95) and a lithium, nickel and cobalt synthetic oxide represented by LiNiyCo1-yO2 (y is 0.3<=y<=1.0) are used as a positive pole active material. Preferably, a mixture rate of the lithium and mangan synthetic oxide in the mixture is 20 to 80wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム化合物を正極
活物質とする正極を有してなる非水電解液二次電池に関
し、特にサイクル特性の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a positive electrode containing a lithium compound as a positive electrode active material, and more particularly to improving cycle characteristics.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、小型化、ポータブル化が進み、これら電子機
器に使用される電池においてはますます高エネルギー密
度であることが求められるようになっている。
2. Description of the Related Art In recent years, due to advances in electronic technology, higher performance, smaller size, and more portable electronic devices have been developed, and batteries used in these electronic devices are required to have ever higher energy densities. Has become.

【0003】従来、これら電子機器に使用される二次電
池としては、鉛電池やニッケル・カドミウム電池等の水
溶液系二次電池が主流であるが、これらの水溶液系二次
電池は、放電電位が低く、エネルギー密度が十分満足で
きるものとは言い難い。
Conventionally, an aqueous solution type secondary battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery used in these electronic devices. However, these aqueous solution type secondary batteries have a discharge potential of It is low and it is hard to say that the energy density is sufficiently satisfactory.

【0004】これに対して、最近、金属リチウムやリチ
ウム合金を負極として使用し、また正極にリチウム化合
物を使用したリチウム二次電池が上述のような要求を満
たす電池システムとして注目され、研究・開発が盛んに
行われている。
On the other hand, recently, a lithium secondary battery using metallic lithium or a lithium alloy as a negative electrode and a lithium compound as a positive electrode has attracted attention as a battery system satisfying the above-mentioned requirements, and research and development have been carried out. Is being actively conducted.

【0005】しかしながら、このリチウム二次電池にお
いては、サイクル寿命や安全性、急速充電性能等の点で
問題があることが認識されるようになり、実用化に対す
る大きな障害となっている。これは、負極である金属リ
チウムの溶解、析出時のデンドライトの生成や微細化に
起因すると考えられている。このため、上記リチウム二
次電池は、一部コイン型で実用化されているに過ぎな
い。
However, this lithium secondary battery has come to be recognized as having problems in terms of cycle life, safety, quick charging performance, etc., which is a major obstacle to practical use. It is considered that this is due to the dissolution of metallic lithium, which is the negative electrode, and the generation and miniaturization of dendrites during precipitation. Therefore, the lithium secondary battery is only partially put into practical use as a coin type.

【0006】そこで、これらの問題を解決するために、
コークス等の炭素質材料を負極活物質として使用するリ
チウムイオン二次電池(非水電解液二次電池)が提案さ
れている。
Therefore, in order to solve these problems,
A lithium ion secondary battery (non-aqueous electrolyte secondary battery) using a carbonaceous material such as coke as a negative electrode active material has been proposed.

【0007】このリチウムイオン二次電池は、リチウム
が金属状態で存在しないために、金属リチウム負極に起
因するサイクル特性の劣化や安全性に関する問題はな
く、更に正極に酸化還元電位の高いリチウム化合物を用
いることにより、電池の電圧を高くすることができ、高
エネルギー密度が得られるという特長を有している。
In this lithium ion secondary battery, since lithium does not exist in a metallic state, there is no problem of deterioration of cycle characteristics and safety due to the metallic lithium negative electrode, and further, a lithium compound having a high redox potential is used for the positive electrode. By using it, the voltage of the battery can be increased and a high energy density can be obtained.

【0008】また、このリチウムイオン二次電池は、自
己放電がニッケル・カドミウム電池と比較して少なく、
二次電池としては非常に優れた電池である。このため、
このリチウムイオン二次電池は、例えば8mmビデオテ
ープレコーダ(VTR)、コンパクトディスク(CD)
プレーヤー、ラップトップ・コンピュータ、セルラーテ
レフォン等のポータブル用電子機器の電源として既に商
品化が開始されており、今後も大いに期待されている。
Further, this lithium-ion secondary battery has less self-discharge than the nickel-cadmium battery,
It is a very good secondary battery. For this reason,
This lithium ion secondary battery is, for example, an 8 mm video tape recorder (VTR), compact disc (CD).
It has already been commercialized as a power source for portable electronic devices such as players, laptop computers, and cellular telephones, and there are great expectations in the future.

【0009】[0009]

【発明が解決しようとする課題】ところで、上記リチウ
ムイオン二次電池(非水電解液二次電池)において、正
極活物質としては、高い酸化還元電位を有するリチウム
・コバルト複合酸化物やリチウム・ニッケル複合酸化
物、リチウム・マンガン複合酸化物等が知られている。
中でも、原料の価格及び原料の供給安定性の観点から、
リチウム・マンガン複合酸化物が有望であり、このリチ
ウム・マンガン複合酸化物を正極活物質とし、負極活物
質としてリチウムをドープ・脱ドープし得る炭素質材料
と組み合わせた非水電解液二次電池が様々な研究機関よ
り提案されている。
In the above lithium ion secondary battery (non-aqueous electrolyte secondary battery), the positive electrode active material is a lithium-cobalt composite oxide or lithium nickel having a high redox potential. Composite oxides, lithium-manganese composite oxides, etc. are known.
Above all, from the viewpoint of raw material price and raw material supply stability,
A lithium-manganese composite oxide is promising, and a non-aqueous electrolyte secondary battery combining this lithium-manganese composite oxide as a positive electrode active material and a carbonaceous material that can be doped or dedoped with lithium as a negative electrode active material has been developed. Proposed by various research institutes.

【0010】しかしながら、この非水電解液二次電池に
は、正極に起因する二つの欠点が存在する。即ち、先ず
サイクル特性の劣化が大きいこと、そして電池容量が小
さいことである。
However, this non-aqueous electrolyte secondary battery has two drawbacks due to the positive electrode. That is, first, the deterioration of the cycle characteristics is large, and the battery capacity is small.

【0011】これに対して、例えば、J.M.Tara
scon氏等により、正極活物質にリチウム・マンガン
複合酸化物としてLiMn2 4 を用いると、サイクル
劣化が大きく、異種金属としてTi,Ge,Ni,Z
n,Feを添加することにより、サイクル特性を改善で
きることが報告されている〔J.Electrochem.Soc.,vol13
8,No.10,p2859(1991) 参照〕。
On the other hand, for example, J. M. Tara
According to Scon et al., when LiMn 2 O 4 is used as a lithium-manganese composite oxide in the positive electrode active material, cycle deterioration is large and Ti, Ge, Ni, Z as different metals
It has been reported that the cycle characteristics can be improved by adding n and Fe [J. Electrochem. Soc., vol13.
8, No. 10, p2859 (1991)].

【0012】しかし、上述のように異種金属を添加する
方法では、サイクル劣化を抑えることはできるものの、
逆に電池容量は小さくなり、良好な結果を得ることはで
きない。
However, although the method of adding different metals as described above can suppress cycle deterioration,
On the contrary, the battery capacity becomes small, and good results cannot be obtained.

【0013】一方、電池容量の向上を図る技術として、
特開平4−147573号公報等に開示されるように、
リチウム・マンガン複合酸化物に予め電気化学的及び化
学的にリチウムをドープしたLi1+x Mn2 4 (x>
0)を正極活物質として用いる方法が知られている。
On the other hand, as a technique for improving the battery capacity,
As disclosed in JP-A-4-147573,
Li 1 + x Mn 2 O 4 (x> where lithium-manganese composite oxide is electrochemically and chemically doped with lithium in advance
A method using 0) as a positive electrode active material is known.

【0014】ところが、この方法では、サイクル劣化が
従来と比べて大差なく、早急な解決が望まれている。
However, in this method, the cycle deterioration is not so different from the conventional one, and an urgent solution is desired.

【0015】従って、リチウム・マンガン複合酸化物を
正極活物質とする非水電解液二次電池においては、電池
容量とサイクル特性の両者を満足させる技術は未だ確立
されていないのが実情である。
Therefore, in the non-aqueous electrolyte secondary battery using a lithium-manganese composite oxide as a positive electrode active material, the fact is that the technology for satisfying both battery capacity and cycle characteristics has not yet been established.

【0016】そこで、本発明はこのような実情に鑑みて
提案されたものであって、高エネルギー密度で且つサイ
クル寿命の優れた非水電解液二次電池を提供することを
目的とする。
Therefore, the present invention has been proposed in view of such circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery having a high energy density and an excellent cycle life.

【0017】[0017]

【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意研究の結果、正極活物質である
リチウム・マンガン複合酸化物に第二の活物質としてリ
チウム・ニッケル系複合酸化物を混合することにより、
充放電に伴う正極活物質の体積変化を小さくすることが
でき、サイクル特性が向上することを見出し、本発明を
完成するに至った。
Means for Solving the Problems The inventors of the present invention have earnestly studied that they cannot achieve the above-mentioned object, and as a result, the lithium-manganese composite oxide, which is a positive electrode active material, has a lithium-nickel-based material as a second active material. By mixing the composite oxide,
The inventors have found that it is possible to reduce the volume change of the positive electrode active material due to charge and discharge and improve the cycle characteristics, and have completed the present invention.

【0018】即ち、本発明は、リチウム化合物を正極活
物質とする正極と、リチウムをドープ・脱ドープし得る
炭素質材料を負極活物質とする負極と、非水電解液とを
具備してなる非水電解液二次電池において、上記正極活
物質がリチウム・マンガン複合酸化物とリチウム・ニッ
ケル系複合酸化物の混合物からなることを特徴とするも
のである。
That is, the present invention comprises a positive electrode using a lithium compound as a positive electrode active material, a negative electrode using a carbonaceous material capable of doping and dedoping lithium as a negative electrode active material, and a non-aqueous electrolyte. The non-aqueous electrolyte secondary battery is characterized in that the positive electrode active material comprises a mixture of a lithium-manganese composite oxide and a lithium-nickel composite oxide.

【0019】本発明の非水電解液二次電池では、正極活
物質として、リチウム・マンガン複合酸化物とリチウム
・ニッケル系複合酸化物の混合物が使用される。
In the non-aqueous electrolyte secondary battery of the present invention, a mixture of lithium / manganese composite oxide and lithium / nickel composite oxide is used as the positive electrode active material.

【0020】上記リチウム・マンガン複合酸化物として
は、Lix Mn2 4 (但し、xはx≧0.95であ
る)で表されるものが好適である。
As the lithium-manganese composite oxide, one represented by Li x Mn 2 O 4 (where x is x ≧ 0.95) is preferable.

【0021】上記リチウム・ニッケル系複合酸化物とし
ては、LiNiy Co1-y 2 (但し、yは0.3≦y
≦1.0である)で表されるものが好適である。
As the lithium-nickel composite oxide, LiNi y Co 1-y O 2 (where y is 0.3 ≦ y
≦ 1.0) is preferable.

【0022】このように、Lix Mn2 4 (但し、x
はx≧0.95である)で表されるリチウム・マンガン
複合酸化物を正極活物質とする正極に、LiNiy Co
1-y2 (但し、yは0.3≦y≦1.0である)で表
されるリチウム・ニッケル系複合酸化物を混合すること
により、Lix Mn2 4 を正極活物質とする非水電解
液二次電池のサイクル特性の低下の原因と考えられる充
放電に伴う正極活物質の収縮、膨張による体積変化を小
さくすることができ、正極活物質自身にかかるストレス
を抑えることができる。この結果、Lix Mn2 4
正極活物質とする非水電解液二次電池が有する大きな電
池容量を十分に確保しつつ、サイクル特性の向上を図る
ことができる。
Thus, Li x Mn 2 O 4 (however, x
Is x ≧ 0.95) and a lithium-manganese composite oxide represented by the formula: LiNi y Co
By mixing a lithium-nickel-based composite oxide represented by 1-y O 2 (where y is 0.3 ≦ y ≦ 1.0), Li x Mn 2 O 4 is used as a positive electrode active material. It is possible to reduce the volume change due to contraction and expansion of the positive electrode active material due to charging and discharging, which is considered to be the cause of the deterioration of the cycle characteristics of the non-aqueous electrolyte secondary battery, and to suppress the stress applied to the positive electrode active material itself. it can. As a result, the cycle characteristics can be improved while sufficiently securing the large battery capacity of the non-aqueous electrolyte secondary battery using Li x Mn 2 O 4 as the positive electrode active material.

【0023】かかるリチウム・マンガン複合酸化物とリ
チウム・ニッケル系複合酸化物の混合物においては、該
混合物中のリチウム・マンガン複合酸化物の混合比が2
0〜80重量%であることが好ましい。上記リチウム・
マンガン複合酸化物の混合比が上記範囲を越える場合に
は、充放電に伴う正極活物質の収縮、膨張による体積変
化を十分に抑制することができず、逆に上記範囲を下回
る場合には、リチウム・ニッケル系複合酸化物の影響が
大きすぎて、やはり体積変化によるサイクル劣化が顕著
となる。
In such a mixture of the lithium-manganese composite oxide and the lithium-nickel composite oxide, the mixture ratio of the lithium-manganese composite oxide in the mixture is 2
It is preferably from 0 to 80% by weight. Lithium
When the mixing ratio of the manganese composite oxide exceeds the above range, it is not possible to sufficiently suppress the volume change due to the contraction and expansion of the positive electrode active material due to charge and discharge, and conversely, when it is less than the above range, The effect of the lithium-nickel composite oxide is too great, and the cycle deterioration due to the volume change becomes remarkable.

【0024】一方、負極に使用する負極活物質としては
炭素材料が使用されるが、この炭素材料としてはリチウ
ムをドープ・脱ドープ可能なものであれば良く、例えば
熱分解炭素類、コークス類(ピッチコークス、ニードル
コークス、石油コークス等)、黒鉛類、ガラス状炭素
類、有機高分子化合物焼成体(フラン樹脂等を適当な温
度で焼成し炭素化したもの)、炭素繊維、活性炭等がい
ずれも使用可能である。
On the other hand, a carbon material is used as the negative electrode active material used for the negative electrode, and any carbon material may be used so long as it can be doped or dedoped with lithium, such as pyrolytic carbons, cokes ( Pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (carbonized by firing furan resin at an appropriate temperature), carbon fibers, activated carbon, etc. It can be used.

【0025】この負極活物質となる炭素材料としては、
(002)面の面間隔が3.70オングストローム以
上、真密度1.70g/cc未満であり、且つ空気気流
中における示差熱分析で700℃以上の温度域に発熱ピ
ークを有しない炭素材料が好ましい。
As the carbon material which becomes the negative electrode active material,
A carbon material having a (002) plane spacing of 3.70 angstroms or more and a true density of less than 1.70 g / cc and having no exothermic peak in a temperature range of 700 ° C. or more by differential thermal analysis in an air stream is preferable. .

【0026】また、電解液としては、リチウム塩を電解
質とし、これを有機溶媒に溶解させたものが使用され
る。
As the electrolytic solution, a solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used.

【0027】ここで、上記有機溶媒としては、特に限定
されるものではないが、例えばプロピレンカーボネー
ト、エチレンカーボネート、1,2−ジメトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、ジメチ
ルカーボネート、ジエチルカーボネート、メチルエチル
カーボネート、ジプロピルカーボネート等の単独若しく
は2種類以上の混合溶媒がいずれも使用可能である。
The organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate. It is possible to use either a single solvent such as dipropyl carbonate or a mixed solvent of two or more kinds.

【0028】上記電解質としては、例えばLiCl
4 、LiAsF6 、LiPF6 、LiBF4 等が使用
可能である。
Examples of the electrolyte include LiCl
O 4 , LiAsF 6 , LiPF 6 , LiBF 4, etc. can be used.

【0029】また、本発明の非水電解液二次電池におい
ては、より安全性の高い密閉型非水電解液二次電池を得
るために、過充電時の異常時に電池内圧上昇に応じて電
流を遮断を設けることが望ましい。
Further, in the non-aqueous electrolyte secondary battery of the present invention, in order to obtain a safer sealed non-aqueous electrolyte secondary battery, in order to obtain a more safe sealed non-aqueous electrolyte secondary battery, the current depending on the increase in the battery internal pressure at the time of an abnormality during overcharge It is desirable to provide a shutoff.

【0030】[0030]

【作用】正極活物質としてリチウム・マンガン複合酸化
物とリチウム・ニッケル系複合酸化物の混合物を用いる
ことにより、サイクル特性が向上する。
The cycle characteristics are improved by using a mixture of lithium-manganese composite oxide and lithium-nickel composite oxide as the positive electrode active material.

【0031】この理由は、以下のように考えられる。The reason for this is considered as follows.

【0032】即ち、リチウム化合物を正極活物質とする
正極と、リチウムをドープ・脱ドープし得る炭素質材料
を負極活物質とする負極と、非水電解液からなる非水電
解液二次電池では、充電反応において正極からリチウム
が脱ドープされる。その際に、リチウム・マンガン複合
酸化物は結晶構造格子が収縮するが、リチウム・ニッケ
ル系複合酸化物の結晶構造格子は膨張する。また、放電
反応においては、正極へリチウムがドープされる。その
際、リチウム・マンガン複合酸化物は結晶構造格子が膨
張するが、リチウム・ニッケル系複合酸化物の結晶構造
格子は収縮する。
That is, in a non-aqueous electrolyte secondary battery comprising a positive electrode using a lithium compound as a positive electrode active material, a negative electrode using a carbonaceous material capable of doping and dedoping lithium as a negative electrode active material, and a non-aqueous electrolyte solution. In the charging reaction, lithium is dedoped from the positive electrode. At that time, the crystal structure lattice of the lithium-manganese composite oxide contracts, but the crystal structure lattice of the lithium-nickel composite oxide expands. Further, in the discharge reaction, the positive electrode is doped with lithium. At that time, the crystal structure lattice of the lithium-manganese composite oxide expands, but the crystal structure lattice of the lithium-nickel composite oxide contracts.

【0033】従って、正極活物質全体として見た場合
に、充放電に伴う収縮、膨張による体積変化は小さくな
る。このため、充放電を長く繰り返しても、正極活物質
は体積変化によるストレスを殆ど受けることがなく、そ
の結果導電剤との接触を損ねることがきわめて少なくな
る。
Therefore, when viewed as the whole positive electrode active material, the volume change due to contraction and expansion due to charge and discharge becomes small. Therefore, even if charging and discharging are repeated for a long time, the positive electrode active material is hardly subjected to stress due to volume change, and as a result, contact with the conductive agent is hardly damaged.

【0034】[0034]

【実施例】以下、本発明の具体的な実施例について説明
するが、本発明がこの実施例に限定されるものでないこ
とはいうまでもない。
EXAMPLES Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

【0035】まず、本実施例で用いた正極活物質(リチ
ウム・マンガン複合酸化物、リチウム・ニッケル系複合
酸化物)の調製方法を以下に示す。
First, a method for preparing the positive electrode active material (lithium-manganese composite oxide, lithium-nickel composite oxide) used in this example is shown below.

【0036】<リチウム・マンガン複合酸化物の調製方
法1(熱化学的方法)>二酸化マンガン1モルと炭酸リ
チウム0.25モルからなる混合物を空気中にて850
℃で5時間焼成してLix Mn2 4 を得た。なお、こ
のLix Mn24 について、Li組成比xを原子吸光
法によって測定したところx=0.95であった。
<Preparation Method 1 of Lithium-Manganese Composite Oxide (Thermochemical Method)> A mixture of 1 mol of manganese dioxide and 0.25 mol of lithium carbonate was heated to 850 in air.
Li x Mn 2 O 4 was obtained by firing at 5 ° C. for 5 hours. The Li composition ratio x of this Li x Mn 2 O 4 was measured by an atomic absorption method and found to be x = 0.95.

【0037】<リチウム・マンガン複合酸化物の調製方
法2(電気化学的方法)>調製方法1で得たLi0.95
2 4 を86重量%、導電剤としてグラファイトを1
0重量%、ポリフッ化ビニリデン4重量%を混合して正
極合剤を作製し、これをN−メチル−2ピロリドンに分
散させて正極合剤スラリーとした。
<Preparation Method 2 of Lithium-Manganese Composite Oxide (Electrochemical Method)> Li 0.95 M obtained in Preparation Method 1
86% by weight of n 2 O 4 and 1 graphite as a conductive agent
0% by weight and 4% by weight of polyvinylidene fluoride were mixed to prepare a positive electrode mixture, which was dispersed in N-methyl-2pyrrolidone to prepare a positive electrode mixture slurry.

【0038】この正極合剤スラリーを帯状のアルミニウ
ム箔の両面に均一に塗布し、乾燥後、ローラープレス機
で圧縮成型を行って正極を得た。
This positive electrode mixture slurry was uniformly applied to both sides of a strip-shaped aluminum foil, dried, and compression-molded with a roller press to obtain a positive electrode.

【0039】一方、負極として、帯状の金属リチウムを
用意した。
On the other hand, strip-shaped metallic lithium was prepared as the negative electrode.

【0040】これら帯状の負極、正極及び帯状のセパレ
ータを順次積層して多数巻回し、渦巻式電極体を作製し
た。
The strip-shaped negative electrode, the positive electrode and the strip-shaped separator were successively laminated and wound many times to produce a spiral electrode body.

【0041】そして、この渦巻式電極体を電池缶に組み
込み、直径18mm、高さ65mmの円筒型電池を作製
した。
Then, the spirally wound electrode body was incorporated into a battery can to prepare a cylindrical battery having a diameter of 18 mm and a height of 65 mm.

【0042】次に、このようにして作製した電池に対し
て、0.2mA/cm2 で2.0Vまで放電を行い、正
極にリチウムをドープした。リチウムドープ後のLix
Mn2 4 について、Li組成比xを原子吸光法によっ
て測定したところx=1.85であった。
Next, the battery thus produced was discharged at 0.2 mA / cm 2 to 2.0 V to dope the positive electrode with lithium. Li x after lithium doping
When the Li composition ratio x of Mn 2 O 4 was measured by an atomic absorption method, it was x = 1.85.

【0043】<リチウム・マンガン複合酸化物の調製方
法3(化学的方法)>調製方法1で得たLi0.95Mn2
4 100gを、n−ブチルリチウムを15%含有する
ヘキサン溶液400ml中で数時間反応させ、この溶液
を濾過した。そして、濾過によって得られた残渣を、温
度120℃にて24時間真空乾燥を行った。得られたL
x Mn2 4 について、Li組成比xを原子吸光法に
よって測定したところx=2.05であった。
<Preparation Method 3 of Lithium-Manganese Composite Oxide (Chemical Method)> Li 0.95 Mn 2 obtained in Preparation Method 1
100 g of O 4 was reacted in 400 ml of a hexane solution containing 15% of n-butyllithium for several hours, and this solution was filtered. Then, the residue obtained by filtration was vacuum dried at a temperature of 120 ° C. for 24 hours. L obtained
The Li composition ratio x of i x Mn 2 O 4 was measured by an atomic absorption method and found to be x = 2.05.

【0044】<リチウム・ニッケル系複合酸化物の調製
方法1>酸化コバルトと酸化ニッケルと水酸化リチウム
をLi/Ni/Co=1/0.8/0.2となるように
混合し、酸素中で温度750℃で5時間焼成してLiN
0.8 Co0.2 2 を得た。
<Preparation Method 1 of Lithium-Nickel Composite Oxide> Cobalt oxide, nickel oxide and lithium hydroxide were mixed so that Li / Ni / Co = 1 / 0.8 / 0.2, and the mixture was mixed in oxygen. LiN by firing at 750 ° C for 5 hours
i 0.8 Co 0.2 O 2 was obtained.

【0045】<リチウム・ニッケル系複合酸化物の調製
方法2>酸化コバルトと酸化ニッケルと水酸化リチウム
をLi/Ni/Co=1/0.3/0.7となるように
混合し、酸素中で温度750℃で5時間焼成してLiN
0.3 Co0.7 2 を得た。
<Preparation Method 2 of Lithium / Nickel Composite Oxide> Cobalt oxide, nickel oxide and lithium hydroxide were mixed so that Li / Ni / Co = 1 / 0.3 / 0.7 and the mixture was mixed in oxygen. LiN by firing at 750 ° C for 5 hours
i 0.3 Co 0.7 O 2 was obtained.

【0046】<リチウム・ニッケル系複合酸化物の調製
方法3>酸化ニッケルと水酸化リチウムをLi/Ni=
1/1となるように混合し、酸素中で温度750℃で5
時間焼成してLiNiO2 を得た。
<Preparation Method 3 of Lithium-Nickel Composite Oxide> Nickel oxide and lithium hydroxide are mixed with Li / Ni =
Mix so that it becomes 1/1, and mix in oxygen at a temperature of 750 ° C for 5
It was calcined for an hour to obtain LiNiO 2 .

【0047】以下の実施例,比較例及び実験例ではこれ
ら正極活物質を用いて電池を作成し、サイクル特性を検
討した。
In the following Examples, Comparative Examples and Experimental Examples, batteries were prepared using these positive electrode active materials and the cycle characteristics were examined.

【0048】実施例1 先ず、本実施例で作製した非水電解液二次電池の構造を
説明する。
Example 1 First, the structure of the non-aqueous electrolyte secondary battery produced in this example will be described.

【0049】この非水電解液二次電池は、図1に示すよ
うに、負極集電体10に負極活物質を塗布してなる負極
1と、正極集電体11に正極活物質を塗布してなる正極
2とを、セパレータ3を介して巻回し、この巻回体の上
下に絶縁板4を載置した状態で電池缶5に収納してなる
ものである。
In this non-aqueous electrolyte secondary battery, as shown in FIG. 1, a negative electrode 1 formed by coating a negative electrode current collector 10 with a negative electrode active material and a positive electrode current collector 11 coated with a positive electrode active material. The positive electrode 2 formed as described above is wound around a separator 3, and the insulating plate 4 is placed on the upper and lower sides of the wound body and housed in a battery can 5.

【0050】上記電池缶5には、電池蓋7が封口ガスケ
ット6を介してかしめることによって取付けられ、それ
ぞれ負極リード12及び正極リード13を介して負極1
或いは正極2と電気的に接続され、電池の負極或いは正
極として機能するように構成されている。
A battery lid 7 is attached to the battery can 5 by caulking with a sealing gasket 6, and the negative electrode 1 is provided with a negative electrode lead 12 and a positive electrode lead 13, respectively.
Alternatively, it is electrically connected to the positive electrode 2 and is configured to function as a negative electrode or a positive electrode of a battery.

【0051】そして、本実施例の非水電解液二次電池で
は、前記正極リード13は安全弁装置8に溶接されて取
付けられ、この安全弁装置8を介して電池蓋7との電気
的接続が図られている。
In the non-aqueous electrolyte secondary battery of this embodiment, the positive electrode lead 13 is attached to the safety valve device 8 by welding, and electrical connection with the battery lid 7 is achieved through the safety valve device 8. Has been.

【0052】このような構成を有する非水電解液二次電
池においては、電池内の圧力が上昇すると、上記安全弁
装置8が押し上げられて変形する。すると、上記正極リ
ード13が上記安全弁装置8と溶接された部分を残して
切断され、電流が遮断される。
In the non-aqueous electrolyte secondary battery having such a structure, when the pressure inside the battery rises, the safety valve device 8 is pushed up and deformed. Then, the positive electrode lead 13 is cut, leaving the portion welded to the safety valve device 8, and the current is cut off.

【0053】本実施例では、以上のような構成の非水電
解液二次電池を以下のようにして作成した。
In this example, the non-aqueous electrolyte secondary battery having the above structure was prepared as follows.

【0054】先ず、負極1を次のようにして作製した。First, the negative electrode 1 was manufactured as follows.

【0055】負極活物質としては、出発原料に石油ピッ
チを用い、これに酸素を含む官能基を10〜20%導入
(酸素架橋)した後、不活性ガス中温度1000℃にて
焼成して得られたガラス状炭素材料に近い性質の難黒鉛
化炭素材料を用いた。
As the negative electrode active material, petroleum pitch was used as a starting material, 10 to 20% of oxygen-containing functional groups were introduced (oxygen cross-linking), and the mixture was calcined at a temperature of 1000 ° C. in an inert gas. A non-graphitizable carbon material having properties close to those of the glassy carbon material was used.

【0056】そして、上記炭素材料を90重量%及び結
着剤としてポリフッ化ビニリデンを10重量%の割合で
混合して負極合剤を作製し、これをN−メチル−2ピロ
リドンに分散させて負極合剤スラリーとした。
90% by weight of the above carbon material and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2pyrrolidone. It was a mixture slurry.

【0057】そして、この負極合剤スラリーを負極集電
体である厚さ10μmの銅箔の両面に均一に塗布し、乾
燥後、ローラープレス機で圧縮成型を行うことで帯状負
極を作製した。
Then, this negative electrode mixture slurry was uniformly applied on both sides of a 10 μm-thick copper foil as a negative electrode current collector, dried and then compression-molded with a roller press machine to prepare a strip-shaped negative electrode.

【0058】次に、正極2を次のようにして作製した。Next, the positive electrode 2 was manufactured as follows.

【0059】上述の調製方法2で得られたリチウム・マ
ンガン複合酸化物Li1.85Mn2 4 を80重量%と、
調製方法1で得られたリチウム・ニッケル系複合酸化物
LiNi0.8 Co0.2 を20重量%混合した混合物を正
極活物質とし、これを91重量%、導電剤としてグラフ
ァイトを6重量%、ポリフッ化ビニリデン3重量%を混
合して正極合剤を作製し、N−メチル−2ピロリドンに
分散させて正極合剤スラリーとした。
80% by weight of the lithium-manganese composite oxide Li 1.85 Mn 2 O 4 obtained by the above-mentioned preparation method 2,
A mixture of 20% by weight of lithium-nickel composite oxide LiNi 0.8 Co 0.2 obtained in Preparation Method 1 was used as a positive electrode active material, and 91% by weight thereof was used, 6% by weight of graphite was used as a conductive agent, and 3% of polyvinylidene fluoride. A positive electrode mixture was prepared by mixing the components in a weight percentage and dispersed in N-methyl-2pyrrolidone to prepare a positive electrode mixture slurry.

【0060】そして、この正極合剤スラリーを厚さが2
0μmの正極集電体であるアルミニウム箔の両面に均一
に塗布し、乾燥後、ローラープレス機で圧縮成型を行う
ことで帯状正極を作製した。
The positive electrode mixture slurry having a thickness of 2
A strip-shaped positive electrode was prepared by uniformly coating both surfaces of an aluminum foil, which is a positive electrode current collector having a thickness of 0 μm, and drying and then compression molding with a roller press.

【0061】続いて、上述のようにして作製した帯状の
負極、正極及び厚さが25μmの微多孔性ポリプロピレ
ンフィルムからなるセパレータを順次積層して多数巻回
し、渦巻式電極体を作製した。
Subsequently, the strip-shaped negative electrode, the positive electrode, and the separator made of the microporous polypropylene film having a thickness of 25 μm, which were manufactured as described above, were successively laminated and wound in large numbers to manufacture a spiral electrode body.

【0062】この渦巻式電極体をニッケル鍍金を施した
鉄製の電池缶に収納し、渦巻式電極体上下両面に絶縁板
を配置した。そして、正極及び負極の集電を行うため
に、アルミニウムリードを正極集電体から導出して電流
遮断装置及びPTC素子を有する安全弁装置に、またニ
ッケルリードを負極集電体から導出して電池缶にそれぞ
れ溶接した。
This spiral electrode body was housed in a nickel-plated iron battery can, and insulating plates were arranged on the upper and lower surfaces of the spiral electrode body. Then, in order to collect the current of the positive electrode and the negative electrode, the aluminum lead is led out from the positive electrode current collector to the safety valve device having the current interruption device and the PTC element, and the nickel lead is led out from the negative electrode current collector to the battery can. Welded to each.

【0063】次に、上記電池缶の中に、プロピレンカー
ボネート50体積%とジエチルカーボネート50体積%
の混合溶媒にLiPF6 を1モル溶解させた電解液を注
入した。
Next, in the above battery can, 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate were added.
An electrolyte solution in which 1 mol of LiPF 6 was dissolved in the mixed solvent of was injected.

【0064】そして、電池缶に、アスファルトを塗布し
たガスケットを介してかしめることで電池蓋を固定し、
直径18mm、高さ65mmの円筒型電池を作製した。
Then, the battery lid is fixed to the battery can by caulking with a gasket coated with asphalt,
A cylindrical battery having a diameter of 18 mm and a height of 65 mm was produced.

【0065】実施例2 正極活物質として、Li1.85Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ60重量%,40重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 2 As the positive electrode active material, Li 1.85 Mn 2 O 4 and LiNi 0.8
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture of Co 0.2 O 2 and 60 wt% and 40 wt% respectively was used.

【0066】実施例3 正極活物質として、Li1.85Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ40重量%,60重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 3 As the positive electrode active material, Li 1.85 Mn 2 O 4 and LiNi 0.8
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture of Co 0.2 O 2 and 40 wt% and 60 wt% respectively was used.

【0067】実施例4 正極活物質として、Li1.85Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ20重量%,80重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 4 As the positive electrode active material, Li 1.85 Mn 2 O 4 and LiNi 0.8
A cylindrical battery was produced in the same manner as in Example 1 except that Co 0.2 O 2 was mixed in the proportions of 20% by weight and 80% by weight, respectively.

【0068】実施例5 正極活物質として、Li1.85Mn2 4 とリチウム・ニ
ッケル系複合酸化物の調製方法2で得られたLiNi
0.3 Co0.7 2 を、それぞれ80重量%,20重量%
なる割合で混合した混合物を用いること以外は実施例1
と同様にして円筒型電池を作製した。
Example 5 Li 1.85 Mn 2 O 4 as a positive electrode active material and LiNi obtained by the preparation method 2 of lithium-nickel composite oxide
0.3 Co 0.7 O 2 , 80 wt%, 20 wt%
Example 1 except using a mixture mixed in the following proportions
A cylindrical battery was produced in the same manner as in.

【0069】実施例6 正極活物質として、Li1.85Mn2 4 とLiNiO2
を、それぞれ80重量%,20重量%なる割合で混合し
た混合物を用いること以外は実施例1と同様にして円筒
型電池を作製した。
Example 6 Li 1.85 Mn 2 O 4 and LiNiO 2 were used as positive electrode active materials.
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture in which each of the above components was mixed at a ratio of 80% by weight and 20% by weight was used.

【0070】実施例7 正極活物質として、リチウム・マンガン複合酸化物の調
製方法3で得られたLi2.05Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ80重量%,20重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 7 As the positive electrode active material, Li 2.05 Mn 2 O 4 and LiNi 0.8 obtained by the preparation method 3 of lithium-manganese composite oxide were used.
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture of Co 0.2 O 2 and 80 wt% and 20 wt% respectively was used.

【0071】実施例8 正極活物質として、リチウム・マンガン複合酸化物の調
製方法1で得られたLi0.95Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ80重量%,20重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 8 As positive electrode active materials, Li 0.95 Mn 2 O 4 and LiNi 0.8 obtained by the preparation method 1 of lithium-manganese composite oxide were used.
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture of Co 0.2 O 2 and 80 wt% and 20 wt% respectively was used.

【0072】実施例9 正極活物質として、Li1.85Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ90重量%、10重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 9 As the positive electrode active material, Li 1.85 Mn 2 O 4 and LiNi 0.8
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture of Co 0.2 O 2 and 90 wt% or 10 wt% was used.

【0073】実施例10 正極活物質として、Li1.85Mn2 4 とLiNi0.8
Co0.2 2 を、それぞれ10重量%、90重量%なる
割合で混合した混合物を用いること以外は実施例1と同
様にして円筒型電池を作製した。
Example 10 As the positive electrode active material, Li 1.85 Mn 2 O 4 and LiNi 0.8
A cylindrical battery was produced in the same manner as in Example 1 except that a mixture of Co 0.2 O 2 and 10 wt% and 90 wt% respectively was used.

【0074】比較例1 正極活物質として、リチウム・マンガン複合酸化物の調
製方法2で得られたLi1.85Mn2 4 を100重量%
用いること以外は実施例1と同様にして円筒型電池を作
製した。
Comparative Example 1 As a positive electrode active material, 100% by weight of Li 1.85 Mn 2 O 4 obtained by the method 2 for preparing a lithium-manganese composite oxide was used.
A cylindrical battery was produced in the same manner as in Example 1 except that it was used.

【0075】比較例2 正極活物質として、リチウム・ニッケル系複合酸化物の
調製方法1で得られたLiNi0.8 Co0.2 2 を10
0重量%用いること以外は実施例1と同様にして円筒型
電池を作製した。
Comparative Example 2 As the positive electrode active material, 10 LiNi 0.8 Co 0.2 O 2 obtained by the preparation method 1 of the lithium-nickel composite oxide was used.
A cylindrical battery was produced in the same manner as in Example 1 except that 0% by weight was used.

【0076】以上のようにして作製した円筒型電池につ
いて、以下に示すようにしてサイクル寿命試験を行っ
た。
A cycle life test was conducted on the cylindrical battery manufactured as described above as follows.

【0077】即ち、先ず各電池における充電電圧を4.
20V、充電電流1000mA及び充電時間2.5時間
の条件で充電を行った後、放電電流500mA、終止電
圧2.75Vの条件で放電を行う充放電サイクルを繰り
返し、各電池における2サイクル目の容量に対する20
0サイクル目の容量維持率をそれぞれ調べた。
That is, first, the charging voltage of each battery is set to 4.
After charging under the conditions of 20 V, charging current 1000 mA and charging time 2.5 hours, the charging / discharging cycle of discharging under the conditions of discharge current 500 mA and end voltage 2.75 V is repeated, and the capacity of the second cycle of each battery Against 20
The capacity retention rate at the 0th cycle was examined.

【0078】この結果を下記の表1に記す。The results are shown in Table 1 below.

【0079】[0079]

【表1】 [Table 1]

【0080】表1からわかるように、正極活物質として
リチウム・マンガン複合酸化物とリチウム・ニッケル系
複合酸化物の混合物を用いた実施例1〜実施例10の電
池、とりわけリチウム・マンガン複合酸化物の混合比率
が20〜80重量%である実施例1〜実施例8の電池
は、比較例1,比較例2の電池に比べて高い容量維持率
が得られる。
As can be seen from Table 1, the batteries of Examples 1 to 10 using the mixture of the lithium-manganese composite oxide and the lithium-nickel composite oxide as the positive electrode active material, especially the lithium-manganese composite oxide. The batteries of Examples 1 to 8 having a mixing ratio of 20 to 80% by weight have a higher capacity retention rate than the batteries of Comparative Examples 1 and 2.

【0081】これは、正極活物質としてリチウム・マン
ガン複合酸化物とリチウム・ニッケル系複合酸化物の混
合物を用いた場合には、リチウム・マンガン複合酸化物
とリチウム・ニッケル系複合酸化物とが、充放電に伴う
それぞれの体積変化を互いに相殺し合い、正極活物質全
体の体積変化が小さくなるからである。特に、リチウム
・マンガン複合酸化物の混合比率が20〜80重量%で
あると、このような作用が適度に働き、充放電に伴う体
積変化がより一層抑えられる。
This is because when a mixture of a lithium-manganese composite oxide and a lithium-nickel composite oxide is used as the positive electrode active material, the lithium-manganese composite oxide and the lithium-nickel composite oxide are This is because the volume changes of the positive electrode active material as a whole are reduced by canceling out the volume changes associated with charge and discharge. In particular, when the mixing ratio of the lithium-manganese composite oxide is 20 to 80% by weight, such an action works properly, and the volume change due to charge and discharge is further suppressed.

【0082】比較例1のように、リチウム・マンガン複
合酸化物だけでは、その充放電に伴う体積変化が正極活
物質全体の体積に大きく影響し、サイクル劣化が大きく
なる。また、比較例2のように、リチウム・ニッケル系
複合酸化物だけでは、同様にその充放電に伴う体積変化
が正極活物質全体の体積に大きく影響し、サイクル劣化
が大きくなる。
As in Comparative Example 1, only with the lithium-manganese composite oxide, the volume change due to the charging and discharging thereof greatly affects the volume of the whole positive electrode active material, and the cycle deterioration becomes large. Further, as in Comparative Example 2, only with the lithium-nickel-based composite oxide, similarly, the volume change due to charging / discharging greatly affects the volume of the whole positive electrode active material, and the cycle deterioration becomes large.

【0083】なお、リチウム・ニッケル系複合酸化物L
iNiy Co1-y の組成については、ここではLiNi
0.8 Co0.2 2 、LiNi0.3 Co0.7 2 、LiN
iO2 を用いているが、いずれを用いた場合でも同様の
効果が得られている。
The lithium-nickel composite oxide L
For the composition of iNi y Co 1-y , here is LiNi
0.8 Co 0.2 O 2 , LiNi 0.3 Co 0.7 O 2 , LiN
Although iO 2 is used, the same effect is obtained regardless of which is used.

【0084】また、リチウム・マンガン複合酸化物Li
x Mn2 4 については、熱化学的方法で調製したLi
0.95Mn2 4 、電気化学的方法で調製したLi1.85
24 、化学的方法で調製したLi2.05Mn2 4
用いているが、やはりいずれの場合にも同様の効果が得
られる。
Further, lithium-manganese composite oxide Li
For x Mn 2 O 4 , Li prepared by thermochemical method
0.95 Mn 2 O 4 , Li 1.85 M prepared by electrochemical method
Although n 2 O 4 and Li 2.05 Mn 2 O 4 prepared by a chemical method are used, the same effect can be obtained in any case.

【0085】このことから、リチウム・マンガン複合酸
化物Lix Mn2 4 のLi組成比xは0.95以上、
リチウム・ニッケル系複合酸化物LiNiy Co1-y
2 のNiの組成比yは0.3以上、1.0以下が適当で
あることが確認された。
From this, the Li composition ratio x of the lithium-manganese composite oxide Li x Mn 2 O 4 is 0.95 or more,
Lithium-nickel composite oxide LiNi y Co 1-y O
It was confirmed that the composition ratio y of Ni of 2 is suitably 0.3 or more and 1.0 or less.

【0086】なお、本実施例では、本発明を円筒型電池
に適用したが、角型,コイン型,ボタン型に適用した場
合でも本発明が同様の効果を発揮するのは勿論である。
Although the present invention is applied to the cylindrical battery in the present embodiment, it is needless to say that the present invention exerts the same effect even when applied to the prismatic type, coin type and button type.

【0087】[0087]

【発明の効果】以上の説明からも明らかなように、本発
明においては、正極活物質としてリチウム・マンガン複
合酸化物とリチウム・ニッケル系複合酸化物の混合物を
用いているので、リチウム・マンガン複合酸化物とリチ
ウム・ニッケル系複合酸化物の互いの性質を相殺し合
い、正極活物質全体としての充放電に伴う体積変化を小
さくすることができる。この結果、正極活物質が体積変
化によるストレスを受けることが殆どなくなり、導電剤
との接触が良好に保たれるので、サイクル寿命が向上す
る。
As is apparent from the above description, in the present invention, since the mixture of the lithium-manganese composite oxide and the lithium-nickel composite oxide is used as the positive electrode active material, the lithium-manganese composite oxide is used. It is possible to offset the mutual properties of the oxide and the lithium-nickel-based composite oxide, and reduce the volume change of the positive electrode active material as a whole due to charge and discharge. As a result, the positive electrode active material hardly receives stress due to volume change, and good contact with the conductive agent is maintained, so that the cycle life is improved.

【0088】従って、本発明によれば、高エネルギー密
度を確保しつつ、優れたサイクル特性を有する非水電解
液二次電池を提供することができ、その工業的価値は大
きい。
Therefore, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having excellent cycle characteristics while ensuring a high energy density, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の一構成例を示す
断面図である。
FIG. 1 is a cross-sectional view showing a configuration example of a non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 1 negative electrode 2 positive electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム化合物を正極活物質とする正極
と、リチウムをドープ・脱ドープし得る炭素質材料を負
極活物質とする負極と、非水電解液とを具備してなる非
水電解液二次電池において、 上記正極活物質がリチウム・マンガン複合酸化物とリチ
ウム・ニッケル系複合酸化物の混合物からなることを特
徴とする非水電解液二次電池。
1. A nonaqueous electrolytic solution comprising a positive electrode using a lithium compound as a positive electrode active material, a negative electrode using a carbonaceous material capable of doping and dedoping lithium as a negative electrode active material, and a nonaqueous electrolytic solution. A secondary battery, wherein the positive electrode active material is a mixture of a lithium-manganese composite oxide and a lithium-nickel composite oxide.
【請求項2】 上記リチウム・マンガン酸化物がLix
Mn2 4 (但し、xはx≧0.95である)であるこ
とを特徴とする請求項1記載の非水電解液二次電池。
2. The lithium-manganese oxide is Li x
The non-aqueous electrolyte secondary battery according to claim 1, wherein Mn 2 O 4 (where x is x ≧ 0.95).
【請求項3】 上記リチウム・ニッケル系複合酸化物が
LiNiy Co1-y 2 (但し、yは0.3≦y≦1.
0である)であることを特徴とする請求項1又は2記載
の非水電解液二次電池。
3. The lithium-nickel composite oxide is LiNi y Co 1 -y O 2 (where y is 0.3 ≦ y ≦ 1.
It is 0), The non-aqueous electrolyte secondary battery according to claim 1 or 2.
【請求項4】 上記混合物中のリチウム・マンガン複合
酸化物の混合比が20〜80重量%であることを特徴と
する請求項1又は2又は3記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the mixture ratio of the lithium-manganese composite oxide in the mixture is 20 to 80% by weight.
JP6255463A 1994-05-26 1994-10-20 Nonaqueous electrolytic liquid secondary battery Pending JPH0845498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6255463A JPH0845498A (en) 1994-05-26 1994-10-20 Nonaqueous electrolytic liquid secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-112785 1994-05-26
JP11278594 1994-05-26
JP6255463A JPH0845498A (en) 1994-05-26 1994-10-20 Nonaqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JPH0845498A true JPH0845498A (en) 1996-02-16

Family

ID=26451873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6255463A Pending JPH0845498A (en) 1994-05-26 1994-10-20 Nonaqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JPH0845498A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2001319647A (en) * 2000-05-08 2001-11-16 Univ Saga Positive electrode for lithium secondary battery and lithium ion battery using the same
JP2001345102A (en) * 2000-03-30 2001-12-14 Sony Corp Secondary battery
JP2002063940A (en) * 2000-08-14 2002-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
JP2002216761A (en) * 2001-01-24 2002-08-02 Sagaken Chiiki Sangyo Shien Center Lithium ion cell positive electrode and rocking chair type lithium ion cell
WO2002069417A1 (en) * 2001-02-27 2002-09-06 Nec Corporation Secondary cell
JP2002319435A (en) * 2001-04-19 2002-10-31 Sony Corp Nonaqueous electrolyte secondary cell and manufacturing method of the same
US6746800B1 (en) 1999-03-01 2004-06-08 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
KR100441524B1 (en) * 2002-01-24 2004-07-23 삼성에스디아이 주식회사 Positive active material slurry composition for rechargeable lithium battery
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2007027100A (en) * 2005-06-14 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008293988A (en) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery
JP2011040410A (en) * 2010-10-20 2011-02-24 Sony Corp Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147573A (en) * 1990-10-09 1992-05-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH04171660A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Nonaqueous-electrolyte secondary battery
JPH05290890A (en) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH06275273A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH07307164A (en) * 1994-05-11 1995-11-21 Asahi Chem Ind Co Ltd Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147573A (en) * 1990-10-09 1992-05-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH04171660A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Nonaqueous-electrolyte secondary battery
JPH05290890A (en) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH06275273A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH07307164A (en) * 1994-05-11 1995-11-21 Asahi Chem Ind Co Ltd Lithium ion secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746800B1 (en) 1999-03-01 2004-06-08 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2001345102A (en) * 2000-03-30 2001-12-14 Sony Corp Secondary battery
JP2001319647A (en) * 2000-05-08 2001-11-16 Univ Saga Positive electrode for lithium secondary battery and lithium ion battery using the same
JP2002063940A (en) * 2000-08-14 2002-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP4524881B2 (en) * 2000-08-14 2010-08-18 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
JP2002216761A (en) * 2001-01-24 2002-08-02 Sagaken Chiiki Sangyo Shien Center Lithium ion cell positive electrode and rocking chair type lithium ion cell
WO2002069417A1 (en) * 2001-02-27 2002-09-06 Nec Corporation Secondary cell
JP2002319435A (en) * 2001-04-19 2002-10-31 Sony Corp Nonaqueous electrolyte secondary cell and manufacturing method of the same
JP2008293988A (en) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery
KR100441524B1 (en) * 2002-01-24 2004-07-23 삼성에스디아이 주식회사 Positive active material slurry composition for rechargeable lithium battery
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2007027100A (en) * 2005-06-14 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4541324B2 (en) * 2005-06-14 2010-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2011040410A (en) * 2010-10-20 2011-02-24 Sony Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
CA2055305C (en) Nonaqueous electrolyte secondary battery
US6884546B1 (en) Secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3173225B2 (en) Non-aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
JP2008159419A (en) Nonaqueous electrolyte secondary battery
JPH07235291A (en) Secondary battery
JP2019207755A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JPH07296853A (en) Method for charging
JP3451763B2 (en) Manufacturing method of positive electrode active material
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JPH09171813A (en) Nonaqueous electrolyte battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
KR100635741B1 (en) Positive active material for lithium secondary battery and thereof method
JP5103698B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH08180878A (en) Lithium secondary battery
JP4938923B2 (en) Secondary battery
JPH0963562A (en) Nonaqueous-electrolyte secondary battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001126760A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817