JPH0982361A - Square nonaqueous electrolyte secondary battery - Google Patents

Square nonaqueous electrolyte secondary battery

Info

Publication number
JPH0982361A
JPH0982361A JP7231718A JP23171895A JPH0982361A JP H0982361 A JPH0982361 A JP H0982361A JP 7231718 A JP7231718 A JP 7231718A JP 23171895 A JP23171895 A JP 23171895A JP H0982361 A JPH0982361 A JP H0982361A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
prismatic
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7231718A
Other languages
Japanese (ja)
Inventor
Hideya Takahashi
秀哉 高橋
Ayaki Watanabe
綾樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7231718A priority Critical patent/JPH0982361A/en
Publication of JPH0982361A publication Critical patent/JPH0982361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a square nonaqueous electrolyte secondary battery by which an internal short circuit is hardly caused and whose battery capacity is comparatively large. SOLUTION: An electrode layered body by successively layering a rectangular positive electrode 7 where a positive electrode active material 7b is applied to a positive electrode current collecting body 7a and a rectangular negative electrode 5 where a negative electrode active material 5b is applied to a negative electrode current collecting body 5a through a separator 6, is housed in a square battery vessel 10. Corner parts 7c, 7d and 5c, 5d on the inserting side of these rectangular positive electrode 7 and negative electrode 5 to at least this square battery vessel 10, are formed in a circular arc shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は例えば携帯用カメラ
一体形VTR、携帯用CDプレーヤ、ラップトップ・コ
ンピュータ、セルラーテレフォン等のポータブル用電子
機器の電源として使用して好適な角形非水電解液二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectangular non-aqueous electrolyte solution suitable for use as a power source for portable electronic equipment such as a VTR with a built-in camera, a portable CD player, a laptop computer and a cellular telephone. Regarding the next battery.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、小型化、ポータブル化が進み、このポータブ
ル電子機器に使用される高エネルギー密度電池の要求が
強まっている。従来、このポータブル電子機器に使用さ
れる二次電池としては、ニッケル・カドミウム電池や鉛
電池等が挙げられるが、これらの電池では放電電位が低
く、エネルギー密度の高い電池の要求には十分に応えら
れていないのが実情である。
2. Description of the Related Art In recent years, advances in electronic technology have led to advances in performance, miniaturization, and portability of electronic equipment, and the demand for high energy density batteries used in such portable electronic equipment is increasing. Conventionally, secondary batteries used in this portable electronic device include nickel-cadmium batteries and lead batteries, but these batteries have a low discharge potential and sufficiently meet the demand for batteries with high energy density. The reality is that they are not.

【0003】最近、リチウム二次電池はこれらの要求を
満たす電池システムとして注目され、盛んに研究が行わ
れている。しかし、金属リチウムやリチウム合金を負極
とするリチウム二次電池はサイクル寿命、安全性、急速
充電性能等の問題点が認識されるようになり、実用化に
対する大きな障害となっている。
[0003] Recently, lithium secondary batteries have attracted attention as a battery system that meets these requirements, and are being actively studied. However, lithium secondary batteries using lithium metal or lithium alloy as a negative electrode have come to recognize problems such as cycle life, safety, and quick charging performance, which are major obstacles to practical use.

【0004】これらの問題点は負極である金属リチウム
の溶解、析出時のデンドライト生成、微細化に起因する
と考えられ、一部コイン型で実用化されているにすぎな
い。
It is considered that these problems are caused by dissolution of metallic lithium as a negative electrode, generation of dendrites at the time of precipitation, and miniaturization, and they are only partially used in a coin type.

【0005】これらの問題を解決するために、炭素材料
のようなリチウムイオンをドープ且つ脱ドープ可能な物
質を負極活物質とするリチウムイオン二次電池(非水電
解液二次電池)の研究開発が盛んに行われている。この
リチウムイオン二次電池はリチウムが金属状態で存在し
ないため、金属リチウム負極に起因するサイクル劣化や
安全性に関する問題はなく、正極活物質に酸化還元電位
の高いリチウム化合物を用いることにより、電池の電圧
が高くなるため、高エネルギー密度を有する特長を持っ
ている。
In order to solve these problems, research and development of a lithium ion secondary battery (non-aqueous electrolyte secondary battery) using as a negative electrode active material a substance capable of doping and dedoping lithium ions such as a carbon material. Is being actively conducted. Since lithium is not present in a metallic state in this lithium-ion secondary battery, there is no problem regarding cycle deterioration or safety due to the metallic lithium negative electrode, and by using a lithium compound having a high redox potential as the positive electrode active material, Since the voltage is high, it has the feature of high energy density.

【0006】さらに、このリチウムイオン二次電池は自
己放電もニッケル・カドミウム電池と比較して少なく、
二次電池として非常に優れている電池である。
Furthermore, this lithium-ion secondary battery has less self-discharge than the nickel-cadmium battery,
It is a very good secondary battery.

【0007】従来、このリチウムイオン二次電池の例と
して図5及び図6に示す如き角形リチウムイオン二次電
池が提案されている。この従来例においては、短冊状の
負極電極5、短冊状のセパレータ6、短冊状の正極電極
7、短冊状のセパレータ6‥‥短冊状の負極電極5と順
次所定枚数が積層された電極積層体を例えばニッケルメ
ッキをした鉄板より成る例えば厚さ8mm、幅34m
m、高さが48mmの角形電池容器10に収納する如く
する。
Conventionally, as an example of this lithium ion secondary battery, a prismatic lithium ion secondary battery as shown in FIGS. 5 and 6 has been proposed. In this conventional example, a strip-shaped negative electrode 5, strip-shaped separator 6, strip-shaped positive electrode 7, strip-shaped separator 6 ... Strip-shaped negative electrode 5 and a predetermined number of electrode laminates are sequentially stacked. Made of, for example, a nickel-plated iron plate, for example, having a thickness of 8 mm and a width of 34 m
The prismatic battery container 10 has a height of m and a height of 48 mm.

【0008】この正極電極7は次のように作成した。こ
の正極電極7の正極活物質としては炭酸リチウムと酸化
コバルトとをLi:Co=1:1となるように混合し、
空気中で900℃、5時間焼成することにより得たLi
CoO2 を用いる。この材料LiCoO2 についてX線
回析測定を行った結果、JCPDSカードと良く一致し
ていた。
The positive electrode 7 was prepared as follows. As the positive electrode active material of the positive electrode 7, lithium carbonate and cobalt oxide are mixed so that Li: Co = 1: 1,
Li obtained by firing at 900 ° C. for 5 hours in air
CoO 2 is used. As a result of X-ray diffraction measurement of this material LiCoO 2 , it was in good agreement with the JCPDS card.

【0009】その後、粉砕して、所望の粒子径を有する
LiCoO2 を得、このLiCoO 2 を正極活物質と
し、このLiCoO2 を91重量%、導電材としてグラ
ファイトを6重量%、ポリフッ化ビニリデン3重量%を
混合して正極合剤を作成し、これをN−メチル−2−ピ
ロリドンに分散させてスラリー状とし、このスラリー状
の正極合剤7bを正極集電体7aである厚さ20μmの
アルミニウム箔の両面に塗布し、乾燥後、ローラープレ
ス機で圧縮成型を行なった。
After that, it is pulverized to have a desired particle size.
LiCoO2And obtain this LiCoO 2As the positive electrode active material
And this LiCoO291% by weight, as a conductive material
6% by weight of phyto and 3% by weight of polyvinylidene fluoride
A positive electrode mixture is prepared by mixing, and this is mixed with N-methyl-2-pi
Disperse it in loridone to make a slurry.
Of the positive electrode mixture 7b having a thickness of 20 μm, which is the positive electrode current collector 7a.
Apply to both sides of aluminum foil, dry, and then roll
It was compression-molded with a machine.

【0010】その後、カットして図6に示す如く、正極
集電体7aの正極合剤7bの未塗布部をリード部とし、
このリード部に延長した短冊状の正極電極7を形成する
如くした。
After that, as shown in FIG. 6, by cutting, the uncoated portion of the positive electrode mixture 7b of the positive electrode current collector 7a is used as a lead portion,
The strip-shaped positive electrode 7 extended to this lead portion was formed.

【0011】また、負極電極5は次のように作成した。
この負極電極5の負極活物質としては、出発原料に石油
ピッチを用い、これを酸素を含む官能基を10〜20%
導入(酸素架橋)した後、不活性ガス中1000℃で焼
成して得られたガラス状炭素材料に近い性質の難黒鉛化
炭素材料を用いた。
The negative electrode 5 was prepared as follows.
As the negative electrode active material of the negative electrode 5, petroleum pitch was used as a starting material, and a functional group containing oxygen was added in an amount of 10 to 20%.
A non-graphitizable carbon material having properties close to those of a glassy carbon material obtained by introducing (oxygen crosslinking) and firing at 1000 ° C. in an inert gas was used.

【0012】このようにして得られた炭素材料を90重
量%、結着材としてポリフッ化ビニリデン10重量%の
割合で混合して負極合剤を作成し、この負極合剤をN−
メチル−2−ピロリドンに分散させてスラリー状とし、
このスラリー状の負極合剤5bを負極集電体5aである
厚さ10μmの銅箔の両面に塗布し、乾燥後、ローラー
プレス機で圧縮成型を行なった。
90% by weight of the carbon material thus obtained and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, and this negative electrode mixture was mixed with N--
Disperse in methyl-2-pyrrolidone to form a slurry,
This slurry-like negative electrode mixture 5b was applied to both surfaces of a negative electrode current collector 5a of a copper foil having a thickness of 10 μm, dried, and then compression molded with a roller press.

【0013】その後、カットして、図6に示す如く、負
極集電体5aの負極合剤5bの未塗布部をリード部と
し、このリード部に延長した短冊状の負極電極5を形成
する如くした。
Then, as shown in FIG. 6, after cutting, the uncoated portion of the negative electrode mixture 5b of the negative electrode current collector 5a is used as a lead portion, and the strip-shaped negative electrode 5 extended to this lead portion is formed. did.

【0014】上述の如く作成した短冊状の負極電極5と
正極電極7とを厚さが30μmの微多孔性ポリプロピレ
ンフィルムからなるセパレータ6を介して積層し、電極
積層体を作製し、この電極積層体の両側に夫々金属の押
え板8を配すると共にこの押え板8の外周より粘着テー
プ9を巻回して一体化する如くする。
The strip-shaped negative electrode 5 and positive electrode 7 prepared as described above are laminated with a separator 6 made of a microporous polypropylene film having a thickness of 30 μm interposed therebetween to prepare an electrode laminated body, and this electrode laminated body is formed. Metal pressing plates 8 are arranged on both sides of the body, and an adhesive tape 9 is wound around the pressing plates 8 so as to be integrated.

【0015】この粘着テープ9により一体化された電極
積層体を角形電池容器10にバネ材より成る電極圧迫材
12とともに収納する。この場合、この電池容器10内
の底部に絶縁シート11を配する如くする。
The electrode laminated body integrated by the adhesive tape 9 is housed in the prismatic battery container 10 together with the electrode pressing member 12 made of a spring material. In this case, the insulating sheet 11 is arranged at the bottom of the battery container 10.

【0016】また、正極電極7のリード部4を互いに接
続すると共にこのリード部4をアルミニウムのサブリー
ド14を介して、この電池容器10の蓋1の中央にガス
ケット2を介して固定した正極端子3に接続する。
Further, the lead portions 4 of the positive electrode 7 are connected to each other, and the lead portions 4 are fixed to the center of the lid 1 of the battery container 10 via the aluminum sub lead 14 and the gasket 2 to fix the positive terminal 3. Connect to.

【0017】また負極電極5のリード部を互いに接続
し、このリード部の接続点を銅のリード13を介して電
池容器10に接続し、この電池容器10を負極端子とす
る。
Further, the lead portions of the negative electrode 5 are connected to each other, and the connection point of the lead portions is connected to the battery container 10 via the copper lead 13, and this battery container 10 serves as a negative electrode terminal.

【0018】またこの電池容器10内に電解液を注入す
る如くする。この電解液としてはプロピレンカーボネー
トとジエチルカーボネートとを5:5の比率で混合した
有機溶媒中にLiPF6 を1モル/lの割合で溶解した
ものを用いた。
An electrolytic solution is injected into the battery container 10. As this electrolytic solution, LiPF 6 was dissolved in an organic solvent in which propylene carbonate and diethyl carbonate were mixed at a ratio of 5: 5 at a ratio of 1 mol / l.

【0019】斯る従来例の角形リチウムイオン二次電池
の30個の平均電池容量は732mAhであった。
The average battery capacity of 30 of such prismatic lithium ion secondary batteries of the conventional example was 732 mAh.

【0020】[0020]

【発明が解決しようとする課題】斯る従来の角形リチウ
ムイオン二次電池はニッケル・カドミウム電池やニッケ
ル水素電池と同じように、短冊状の電極を積層すること
により電極積層体を形成していた。しかし、このリチウ
ムイオン二次電池(非水電解液二次電池)の電解液の導
電率は、水溶液系の電池の電解液の導電率と比較して1
/40程度と小さいため、正極及び負極電極7及び5の
厚さを薄くして電極の枚数を多くする必要がある。
In the conventional prismatic lithium-ion secondary battery, an electrode laminate is formed by laminating strip-shaped electrodes like the nickel-cadmium battery and the nickel-hydrogen battery. . However, the conductivity of the electrolyte of this lithium-ion secondary battery (non-aqueous electrolyte secondary battery) is 1 compared with the conductivity of the electrolyte of an aqueous battery.
Since it is as small as about / 40, it is necessary to reduce the thickness of the positive and negative electrodes 7 and 5 and increase the number of electrodes.

【0021】その結果、この正極電極7及び負極電極5
の積層工程及び組立工程が非常に複雑になる不都合があ
ると共にこの短冊状の正極電極7及び負極電極5を積層
した電極積層体を角形電池容器10に挿入する際、この
短冊状の正極電極7及び負極電極5のコーナー部が角形
電池容器10に接触し、正極及び負極活物質が脱落した
り、電極が折れ曲がったりする不都合が生じ、このため
電池の内部ショート不良率が増加し、生産性の低いもの
となる不都合があった。
As a result, the positive electrode 7 and the negative electrode 5
And the strip-shaped positive electrode 7 is inserted into the prismatic battery container 10 when the strip-shaped positive electrode 7 and the negative electrode 5 are stacked. Also, the corners of the negative electrode 5 come into contact with the prismatic battery container 10, and the positive electrode and the negative electrode active material may fall off, or the electrodes may be bent, which increases the defective rate of internal short circuit of the battery and improves productivity. There was an inconvenience that it was low.

【0022】因みに上述従来例の角形リチウムイオン二
次電池を、充電電圧4.20V、充電電流800mA、
充電時間2.5時間の条件で充電を行ない、内部ショー
ト発生率を調査し、また400mA定電流、カットオフ
2.75Vで放電を行ない、これを常温(23℃)で3
0日間放置後の内部ショート数は11/30であり、約
37%の電池に内部ショートが発生し、またこの正極及
び負極活物質の脱落等によりこの30個の平均電池容量
が732mAhと比較的低いものであった。
By the way, the prismatic lithium ion secondary battery of the above-mentioned conventional example is used in a charging voltage of 4.20 V, a charging current of 800 mA,
Charging was performed under the condition of charging time of 2.5 hours, the occurrence rate of internal short circuit was investigated, and discharging was performed at a constant current of 400 mA and a cutoff of 2.75 V.
The number of internal short-circuits after left for 0 days was 11/30, about 37% of the batteries had internal short-circuits, and the average battery capacity of these 30 batteries was 732 mAh, due to the dropout of the positive and negative electrode active materials. It was low.

【0023】本発明は斯る点に鑑み、内部ショートの少
ない生産性の高い且つ電池容量の比較的大きい角形非水
電解液二次電池を得ることを目的とする。
In view of the above problems, an object of the present invention is to obtain a prismatic non-aqueous electrolyte secondary battery which has few internal short circuits, is highly productive, and has a relatively large battery capacity.

【0024】[0024]

【課題を解決するための手段】本発明角形非水電解液二
次電池は正極集電体に正極活物質が塗布された矩形状の
正極電極と負極集電体に負極活物質が塗布された矩形状
の負極電極とをセパレータを介して順次積層された電極
積層体を角形電池容器に収納するようにした角形非水電
解液二次電池において、この矩形状の正極電極及び負極
電極の少なくともこの角形電池容器への挿入側のコーナ
ー部を円弧形状としたものである。
Means for Solving the Problems In a prismatic non-aqueous electrolyte secondary battery of the present invention, a positive electrode current collector is coated with a positive electrode active material, and a rectangular positive electrode and a negative electrode current collector are coated with a negative electrode active material. In a rectangular non-aqueous electrolyte secondary battery in which a rectangular negative electrode and an electrode laminate sequentially laminated via a separator are housed in a rectangular battery container, at least this rectangular positive electrode and negative electrode The corner portion on the insertion side into the prismatic battery container has an arc shape.

【0025】本発明によれば矩形状の正極及び負極電極
の角形電池容器への挿入側のコーナー部を円弧形状とし
たので、正極及び負極電極と角形電池容器との接触によ
る正極及び負極活物質の脱落が抑制され、またこの正極
及び負極電極の折れ曲がりが抑制され、これにより電池
の内部ショートが無くなり、電池容量も比較的大きく維
持される。
According to the present invention, since the corners of the rectangular positive and negative electrodes on the side of insertion into the prismatic battery container are arcuate, the positive and negative electrode active materials are formed by the contact between the positive and negative electrodes and the rectangular battery container. Is suppressed, and the bending of the positive electrode and the negative electrode is suppressed, whereby internal short circuit of the battery is eliminated, and the battery capacity is maintained relatively large.

【0026】[0026]

【発明の実施の形態】以下、図面を参照して本発明角形
非水電解液二次電池の実施例につき説明しよう。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the prismatic non-aqueous electrolyte secondary battery of the present invention will be described below with reference to the drawings.

【0027】本例による角形リチウムイオン二次電池も
図5に示す如く、短冊状の負極電極5、短冊状のセパレ
ータ6、短冊状の正極電極7、短冊状のセパレータ6、
‥‥短冊状の負極電極5と順次所定枚数が積層された電
極積層体を例えばニッケルメッキが施された鉄板より成
る例えば厚さ8mm、幅34mm、高さが48mmの角
形電池容器10に収納する如くする。
As shown in FIG. 5, the prismatic lithium-ion secondary battery according to this example also has a strip-shaped negative electrode 5, strip-shaped separator 6, strip-shaped positive electrode 7, strip-shaped separator 6,
The strip-shaped negative electrode 5 and a predetermined number of stacked electrode laminates are housed in a rectangular battery container 10 made of, for example, a nickel-plated iron plate having a thickness of 8 mm, a width of 34 mm, and a height of 48 mm. I will do it.

【0028】この正極電極7は次のように作成した。こ
の正極電極7の正極活物質としては炭酸リチウムと酸化
コバルトとをLi:Co=1:1なるように所定量混合
し、これを空気中で900℃、5時間焼成することによ
り得たLiCoO2 を用いる。この材料LiCoO2
ついて、X線回析測定を行なった結果、JCPDSカー
ドと良く一致していた。
The positive electrode 7 was prepared as follows. As the positive electrode active material of the positive electrode 7, LiCoO 2 obtained by mixing a predetermined amount of lithium carbonate and cobalt oxide so that Li: Co = 1: 1 and calcining this in air at 900 ° C. for 5 hours. To use. As a result of X-ray diffraction measurement of this material LiCoO 2 , it was in good agreement with the JCPDS card.

【0029】その後、粉砕して、所望の粒子径を有する
LiCoO2 を得、このLiCoO 2 を正極活物質と
し、このLiCoO2 を91重量%、導電材としてグラ
ファイトを6重量%、ポリフッ化ビニリデン3重量%を
混合して正極合剤を作成し、これをN−メチル−2−ピ
ロリドンに分散させてスラリー状とし、このスラリー状
の正極合剤7bを正極集電体7aである厚さ20μmの
アルミニウム箔の両面に塗布し、乾燥後、ローラープレ
ス機で圧縮成型を行なった。
Then, it is pulverized to have a desired particle size.
LiCoO2And obtain this LiCoO 2As the positive electrode active material
And this LiCoO291% by weight, as a conductive material
6% by weight of phyto and 3% by weight of polyvinylidene fluoride
A positive electrode mixture is prepared by mixing, and this is mixed with N-methyl-2-pi
Disperse it in loridone to make a slurry.
Of the positive electrode mixture 7b having a thickness of 20 μm, which is the positive electrode current collector 7a.
Apply to both sides of aluminum foil, dry, and then roll
It was compression-molded with a machine.

【0030】その後、カットして、図1に示す如く、正
極集電体7aの正極合剤7bの未塗布部をリード部と
し、このリード部に延長した短冊状の正極電極7を形成
する。
After that, it is cut, and as shown in FIG. 1, the uncoated portion of the positive electrode mixture 7b of the positive electrode current collector 7a is used as a lead portion, and a strip-shaped positive electrode 7 extending to this lead portion is formed.

【0031】本例においては、この短冊状の正極電極7
の角形電池容器10への挿入側(矢印aはこの挿入方向
を示す。)のコーナー部7c,7dを円弧形状とする。
この場合、図4に示す如く、このコーナー部7c,7d
の円弧形状の円弧の半径Rを例えば0.5mmとする。
In this example, the strip-shaped positive electrode 7 is used.
The corners 7c and 7d on the side of the insertion into the prismatic battery container 10 (arrow a indicates this insertion direction) are arcuate.
In this case, as shown in FIG. 4, the corner portions 7c, 7d
The radius R of the circular arc is set to, for example, 0.5 mm.

【0032】また、この正極電極7の正極活物質として
は上述LiCoO2 の外にLiNiO2 ,LiNiy
o−yO2 ,LiMn2 4 等のリチウム複合酸化物が
好ましい。之等リチウム複合酸化物は例えばリチウム、
コバルト、ニケッル、マンガンの炭酸塩、硝酸塩、酸化
物、水酸化物等を出発原料とすることが可能であり、之
等リチウム複合酸化物は組成に応じて混合し、酸素存在
雰囲気下、600℃〜1000℃の温度範囲で焼成する
ことにより得られる。
Further, as the positive electrode active material of the positive electrode 7, LiNiO 2 , LiNi y C may be used in addition to LiCoO 2.
Lithium composite oxides such as o-yO 2 and LiMn 2 O 4 are preferable. The lithium composite oxide is, for example, lithium,
It is possible to use cobalt, nickel, manganese carbonates, nitrates, oxides, hydroxides, etc. as starting materials. The lithium composite oxides are mixed according to the composition, and the mixture is heated at 600 ° C. in an oxygen atmosphere. It is obtained by firing in a temperature range of up to 1000 ° C.

【0033】また、負極電極5は次のように作成した。
この負極電極5の負極活物質としては、出発原料に石油
ピッチを用い、これを酸素を含む官能基を10〜20%
導入(酸化架橋)した後、不活性ガス中、1000℃で
焼成して得られたガラス状炭素材料に近い性質の難黒鉛
化炭素材料を用いた。
The negative electrode 5 was prepared as follows.
As the negative electrode active material of the negative electrode 5, petroleum pitch was used as a starting material, and a functional group containing oxygen was added in an amount of 10 to 20%.
A non-graphitizable carbon material having properties close to those of a glassy carbon material obtained by introducing (oxidative crosslinking) and then firing at 1000 ° C. in an inert gas was used.

【0034】このようにして得られた炭素材料を90重
量%、結着材として、ポリフッ化ビニリデン10重量%
の割合で混合して負極合剤を作成し、この負極合剤をN
−メチル−2−ピロリドンに分散させてスラリー状と
し、このスラリー状の負極合剤5bを負極集電体5aで
ある厚さ10μmの銅箔の両面に塗布し、乾燥後、ロー
ラープレス機で圧縮成型を行なった。
90% by weight of the carbon material thus obtained and 10% by weight of polyvinylidene fluoride as a binder
To prepare a negative electrode mixture, and mix this negative electrode mixture with N
-Methyl-2-pyrrolidone is dispersed to form a slurry, and the slurry-like negative electrode mixture 5b is applied to both surfaces of a negative electrode current collector 5a of a copper foil having a thickness of 10 μm, dried, and then compressed with a roller press. Molded.

【0035】その後、カットして、図1に示す如く、負
極集電体5aの負極合剤5bの未塗布部をリード部と
し、このリード部に延長した短冊状の負極電極5を形成
する。
Then, as shown in FIG. 1, after cutting, the uncoated part of the negative electrode mixture 5b of the negative electrode current collector 5a is used as a lead part, and the strip-shaped negative electrode 5 extended to this lead part is formed.

【0036】本例においては、この短冊状の負極電極5
の角形電池容器10への挿入側(矢印aはこの挿入方向
を示す。)のコーナー部5c,5dを円弧形状とする。
この場合、図4に示す如く、このコーナー部5c,5d
の円弧形状の円弧の半径Rを例えば0.5mmとする。
In this example, the strip-shaped negative electrode 5 is used.
The corners 5c and 5d on the insertion side of the prismatic battery container 10 (arrow a indicates this insertion direction) are arcuate.
In this case, as shown in FIG. 4, the corner portions 5c, 5d
The radius R of the circular arc is set to, for example, 0.5 mm.

【0037】また、この負極電極5に使用する負極活物
質としては、充放電反応に伴いリチウムをドープ且つ脱
ドープ可能な炭素材料を用いることができるが、この負
極活物質はリチウムをドープ、脱ドープ可能なものであ
ればなんでも良く、2000℃以下の比較的低い温度で
焼成して得られる低結晶性炭素材料や、結晶化しやすい
原料を3000℃近くの高温で処理した人造黒鉛や、天
然黒鉛等の高結晶性材料が用いられる。
As the negative electrode active material used for the negative electrode 5, a carbon material capable of doping and dedoping lithium with charge / discharge reaction can be used. The negative electrode active material is doped with lithium and dedoped. Any material that can be doped may be used, such as a low crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or lower, artificial graphite obtained by treating a raw material that is easily crystallized at a high temperature of around 3000 ° C., and natural graphite. Highly crystalline materials such as

【0038】例えば熱分解炭素類、コークス類(ピッチ
コークス、ニードルコークス、石油コークス等)、黒鉛
類、ガラス状炭素類、有機高分子化合物焼成体(フラン
樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊
維、活性炭等が使用可能である。
For example, pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound calcined products (furan resin, etc. are calcined at an appropriate temperature to carbonize. Used), carbon fiber, activated carbon, etc. can be used.

【0039】この場合、炭素材料としては、(002)
面の面間隔が0.370nm以上、真比重が1.70未
満であり、且つ空気気流中における示差熱分析で700
℃以上に発熱ピークを有しない低結晶性炭素材料や、高
い負極合剤充填性を得るために、真比重が2.10g/
cm3 以上である高結晶性の黒鉛材料を用いることが好
ましい。
In this case, the carbon material is (002)
The surface spacing is 0.370 nm or more, the true specific gravity is less than 1.70, and the value is 700 in the differential thermal analysis in the air flow.
The true specific gravity is 2.10 g / in order to obtain a low crystalline carbon material having no exothermic peak above ℃ and a high negative electrode mixture filling property.
It is preferable to use a highly crystalline graphite material having a cm 3 or more.

【0040】更に低結晶性炭素材料や高結晶性黒鉛材料
を単独で用いるだけでなく、黒鉛材料と結晶性の低い炭
素質材料との共存体とすることも可能である。共存体に
おける低結晶性炭素の割合は、負極炭素共存体全重量に
対して10%から90%に限定され、20%から80%
であることがより好ましい。
Further, not only the low crystalline carbon material and the high crystalline graphite material can be used alone, but also a coexisting body of the graphite material and the carbonaceous material having low crystallinity can be used. The proportion of low crystalline carbon in the coexisting body is limited to 10% to 90%, and 20% to 80% based on the total weight of the negative electrode carbon coexisting body.
Is more preferable.

【0041】上述の如く作成した短冊状の負極電極5と
正極電極7とを厚さが30μmの微多孔性ポリプロピレ
ンフィルムからなるセパレータ6を介して積層して、電
極積層体を作製する。この場合負極電極5及び正極電極
7の夫々のリード部は上側で且つ互いに逆側に位置する
如くする。
The strip-shaped negative electrode 5 and positive electrode 7 produced as described above are laminated with the separator 6 made of a microporous polypropylene film having a thickness of 30 μm interposed therebetween to produce an electrode laminate. In this case, the lead portions of the negative electrode 5 and the positive electrode 7 are located on the upper side and the opposite sides.

【0042】この電極積層体の両側に図5に示す如く夫
々例えばステンレス板より成る押え板8を配すると共に
この押え板8の外周より粘着テープ9を巻回して一体化
する如くする。この粘着テープ9により一体化された電
極積層体を図5に示す如く、角形電池容器10にバネ材
より成る電極圧迫材12とともに収納する。この場合、
この電池容器10内の底部に絶縁シート11を配する如
くする。
As shown in FIG. 5, a holding plate 8 made of, for example, a stainless steel plate is arranged on both sides of the electrode laminated body, and an adhesive tape 9 is wound around the holding plate 8 so as to be integrated. As shown in FIG. 5, the electrode laminated body integrated with the adhesive tape 9 is housed in a prismatic battery container 10 together with an electrode pressing member 12 made of a spring material. in this case,
The insulating sheet 11 is arranged on the bottom of the battery container 10.

【0043】また、図5に示す如く、正極電極7のリー
ド部4を互いに接続すると共にこのリード部4をアルミ
ニウムより成るサブリード14を介して、この電池容器
10の例えばニッケルメッキした鉄板より成る蓋1の中
央にシール及び絶縁用のガスケット2を介して固定した
正極端子3に接続する。
As shown in FIG. 5, the lead portions 4 of the positive electrode 7 are connected to each other, and the lead portions 4 are connected via the sub-leads 14 made of aluminum to the lid of the battery case 10 made of, for example, a nickel-plated iron plate. It is connected to the positive electrode terminal 3 fixed in the center of 1 through a gasket 2 for sealing and insulation.

【0044】また負極電極5のリード部を互いに接続
し、このリード部の接続点を銅のリード13を介して、
電池容器10に接続し、この電池容器10を負極端子と
する如くする。
Further, the lead parts of the negative electrode 5 are connected to each other, and the connection point of the lead parts is connected via the copper lead 13.
It is connected to the battery container 10, and this battery container 10 is used as a negative electrode terminal.

【0045】また、この電池容器10内に電解液を注入
する如くする。この電解液として本例ではプロピレンカ
ーボネートとジエチルカーボネートとを5:5の比率で
混合した有機溶媒中にLiPF6 を1モル/lの割合で
溶解したものを用いた。
An electrolytic solution is injected into the battery container 10. In this example, as this electrolyte, LiPF 6 was dissolved in an organic solvent in which propylene carbonate and diethyl carbonate were mixed at a ratio of 5: 5 at a ratio of 1 mol / l.

【0046】この場合電解液としては、リチウム塩を支
持電解質とし、これを有機溶媒に溶解させた電解液が用
いられる。ここで有機溶媒としては、環状炭酸エステル
類と鎖状炭酸エステル類との混合溶媒が用いられる。
In this case, as the electrolytic solution, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used. Here, as the organic solvent, a mixed solvent of cyclic carbonic acid esters and chain carbonic acid esters is used.

【0047】この環状炭酸エステル類としては、プロピ
レンカーボネート、ブチレンカーボネート等が使用可能
である。また、鎖状炭酸エステル類としては、対称鎖状
炭酸エステルであるジメチルカーボネート、ジエチルカ
ーボネート、ジプロピルカーボネートや、非対称鎖状炭
酸エステルであるメチルエチルカーボネート、メチルプ
ロピルカーボネート、エチルプロピルカーボネート等が
使用可能である。
As the cyclic carbonic acid esters, propylene carbonate, butylene carbonate and the like can be used. As the chain carbonic acid ester, symmetric carbonic acid ester such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate, and asymmetrical carbonic acid ester such as methyl ethyl carbonate, methyl propyl carbonate and ethyl propyl carbonate can be used. Is.

【0048】支持電解質としては、一般に、リチウム電
池用として使用されるLiCl,LiBr,LiCF3
SO3 ,LiAsF6 ,LiPF6 ,LiBF4 等の単
独もしくは2種類以上の混合使用も可能である。
As the supporting electrolyte, LiCl, LiBr and LiCF 3 which are generally used for lithium batteries are used.
SO 3 , LiAsF 6 , LiPF 6 , LiBF 4, etc. can be used alone or in combination of two or more kinds.

【0049】またこの非水電解液は液体状に限定される
ものではなく、固体であってもよく従来より公知の固定
電解質を用いることができる。
The non-aqueous electrolyte is not limited to a liquid state, and may be a solid, and a conventionally known fixed electrolyte can be used.

【0050】斯る本例によれば短冊状の正極及び負極電
極7及び5の角形電池容器10への挿入側のコーナー部
7c,7d及び5c,5dを円弧形状としたので、正極
及び負極電極7及び5と角形電池容器10との接触によ
る正極及び負極活物質の脱落が抑制され、また正極及び
負極電極7及び5の折れ曲がりが抑制され、これにより
電池の内部ショートが無くなり、電池容量も比較的大き
く維持される。
According to this example, since the corner portions 7c, 7d and 5c, 5d on the insertion side of the strip-shaped positive and negative electrodes 7 and 5 into the prismatic battery container 10 are arcuate, the positive and negative electrodes are formed. The positive electrode and the negative electrode active material are prevented from falling off due to the contact between 7 and 5 and the prismatic battery container 10, and the bending of the positive electrode and the negative electrode 7 and 5 is suppressed, thereby eliminating the internal short circuit of the battery and comparing the battery capacities. Is maintained as large as possible.

【0051】因みに上述実施例を、実施例1とし、上述
実施例の正極及び負極電極7及び5の角形電池容器10
への挿入側のコーナー部7c,7d及び5c,5dの夫
々の円弧の半径Rを0.01mmとし、その他を上述実
施例と同様に構成した角形リチウムイオン二次電池を実
施例2とし、また上述実施例の正極及び負極電極7及び
5の角形電池容器10への挿入側のコーナー部7c,7
d及び5c,5dの夫々の円弧の半径Rを1mmとし、
その他を上述実施例と同様に構成した角形リチウムイオ
ン二次電池を実施例3とし、更に上述実施例の正極及び
負極電極7及び5の角形電池容器10への挿入側のコー
ナー部7c,7d及び5c,5dの夫々の円弧の半径R
を1.5mmとし、その他を上述実施例と同様に構成し
たものを実施例4とし、また上述実施例の正極及び負極
電極7及び5の角形電池容器10への挿入側のコーナー
部7c,7d及び5c,5dの夫々の円弧の半径Rを2
mmとし、その他を上述実施例と同様に構成した角形リ
チウムイオン二次電池を比較例とした。
Incidentally, the above embodiment is referred to as Embodiment 1, and the prismatic battery container 10 of the positive and negative electrodes 7 and 5 of the above embodiment is used.
The radius R of the circular arcs of the corners 7c, 7d and 5c, 5d on the insertion side into is set to 0.01 mm, and the others are configured in the same manner as in the above-described embodiment to form a prismatic lithium-ion secondary battery as Embodiment 2, and Corner portions 7c, 7 on the side of insertion of the positive and negative electrodes 7 and 5 of the above embodiment into the prismatic battery container 10.
The radius R of each arc of d, 5c, and 5d is 1 mm,
A prismatic lithium-ion secondary battery having the other configurations similar to those of the above-described embodiment is referred to as Embodiment 3, and further, corner portions 7c, 7d on the insertion side of the positive and negative electrodes 7 and 5 of the above-described embodiment into the prismatic battery container 10 and Radius R of arcs of 5c and 5d
Is 1.5 mm, and the others are configured in the same manner as in the above-described embodiment, which is referred to as Embodiment 4, and the corner portions 7c and 7d on the insertion side of the positive and negative electrodes 7 and 5 of the above-described embodiment into the prismatic battery container 10. And the radius R of each arc of 5c and 5d is 2
mm, and a rectangular lithium ion secondary battery having the same configuration as in the above-described example was used as a comparative example.

【0052】このようにして作製した角形リチウムイオ
ン二次電池を充電電圧4.20V、充電電流800m
A、充電時間2.5時間の条件で充電し、その後内部シ
ョート発生率を調査し、また400mA定電流、カット
オフ2.75Vで放電を行ない、これを常温(23℃)
で30日放置後の内部ショート数は表1に示す如くであ
った。
The prismatic lithium ion secondary battery thus manufactured was charged with a charging voltage of 4.20 V and a charging current of 800 m.
A, charge under the condition of charging time 2.5 hours, then investigate the rate of occurrence of internal short circuit, discharge at 400mA constant current, cut-off 2.75V, and then perform normal temperature (23 ° C)
The number of internal short-circuits after standing for 30 days was as shown in Table 1.

【0053】表1において従来例は正極及び負極電極7
及び5の角形電池容器10への挿入側のコーナー部は円
弧形状となされていない、円弧の半径Rが0のものであ
り、またこの表1の電池容量は夫々30個の平均の電池
容量である。
In Table 1, the conventional example is the positive electrode 7 and the negative electrode 7.
The corners on the insertion side of the rectangular battery container 10 of Nos. 5 and 5 are not arcuate, and the radius R of the arc is 0, and the battery capacities in Table 1 are average battery capacities of 30 batteries, respectively. is there.

【0054】[0054]

【表1】 [Table 1]

【0055】この表1より従来例の半径Rを0としたと
きには前述したように正極及び負極電極7及び5を角形
電池容器10に挿入する際にこの電極7及び5のコーナ
ー部が電池容器10に接触し、正極及び負極活物質が脱
落したり、この電極7及び5が折れ曲がったりすること
による内部ショートが発生しやすく、30個中11個に
内部ショートがあり、また電池容量も低かった。
From Table 1, when the radius R of the conventional example is set to 0, as described above, when the positive and negative electrodes 7 and 5 are inserted into the prismatic battery container 10, the corner portions of the electrodes 7 and 5 are located in the battery container 10. When the positive electrode and the negative electrode active material fell off and the electrodes 7 and 5 were bent, an internal short circuit was likely to occur, and 11 out of 30 had an internal short circuit, and the battery capacity was low.

【0056】これに対しコーナー部7c,7d及び5
c,5dを円弧形状とし、この半径Rを0.5mm,
0.01mm,1mm,1.5mm及び2mmとした実
施例1,2,3,4及び比較例では、その半径Rの大小
に関係無く30個中に内部ショートを発生したものはな
く、内部ショート率は0%であった。
On the other hand, the corner portions 7c, 7d and 5
c and 5d have an arc shape, and the radius R is 0.5 mm,
In Examples 1, 2, 3, 4 and Comparative Examples with 0.01 mm, 1 mm, 1.5 mm and 2 mm, no internal short circuit occurred in 30 regardless of the size of the radius R, and an internal short circuit occurred. The rate was 0%.

【0057】ただし、この半径Rを2mmとした比較例
は平均電池容量が728mAhと低かった。これは、こ
の円弧形状としたことにより正極及び負極電極7及び5
の面積が小さくなることによりインプットできる正極及
び負極活物質の量が減ってしまうことによる容量低下と
考えられる。
However, in the comparative example in which the radius R was 2 mm, the average battery capacity was as low as 728 mAh. This is because the positive and negative electrodes 7 and 5 are formed by the arc shape.
It is considered that the capacity decreases due to the decrease in the amount of the positive electrode and negative electrode active materials that can be input due to the decrease in the area.

【0058】これに対して、この半径Rを0.5mm,
0.01mm,1mm及び1.5mmとした実施例1,
2,3及び4はこの電池容量が800mAh以上と比較
的大きいものが得られた。
On the other hand, the radius R is 0.5 mm,
Example 1 with 0.01 mm, 1 mm and 1.5 mm
The batteries 2, 3, and 4 having a relatively large battery capacity of 800 mAh or more were obtained.

【0059】斯る実施例1,2,3及び4においては、
正極及び負極電極7及び5を角形電池容器10に挿入す
るときに、このコーナー部7c,7d及び5c,5dが
円弧形状となされているので、この正極及び負極電極7
及び5と角形電池容器10との接触が少なく、正極及び
負極活物質の脱落が抑制され、またこの正極及び負極電
極7及び5の折れ曲がりが抑制され、これによる電池の
内部ショートが無くなり、またこの半径R=0.01m
m〜1.5mmでは、この正極及び負極電極7及び5の
面積の減少は小さく、電池容量の低下にあまり影響がな
いものと考えられる。
In Examples 1, 2, 3 and 4 described above,
When the positive and negative electrodes 7 and 5 are inserted into the prismatic battery container 10, since the corners 7c, 7d and 5c, 5d are arcuate, the positive and negative electrodes 7 and 7 are formed.
And 5 and the prismatic battery container 10 are less in contact with each other, the positive electrode and the negative electrode active material are prevented from falling off, the bending of the positive electrode and the negative electrode 7 and 5 is suppressed, and the internal short circuit of the battery is eliminated. Radius R = 0.01m
In the range of m to 1.5 mm, the decrease in the areas of the positive and negative electrodes 7 and 5 is small, and it is considered that the decrease in the battery capacity is not so affected.

【0060】尚、上述実施例では正極電極7及び負極電
極5の角形電池容器10への挿入側のコーナー部7c,
7d及び5c,5dを円弧形状としたが、図2に示す如
くリード部以外の他のコーナー部7e(5e)をも円弧
形状としても良いし、また図3に示す如く、この正極電
極7及び負極電極5のリード部を中央側に形成したとき
には之等電極7及び5の夫々の4つのコーナー部7c,
7d,7e,7f及び5c,5d,5e,5fを夫々円
弧形状とするようにしても良い。
In the above-mentioned embodiment, the corner portions 7c of the positive electrode 7 and the negative electrode 5 on the side of insertion into the prismatic battery container 10,
Although 7d, 5c, and 5d have an arc shape, the corner portion 7e (5e) other than the lead portion may have an arc shape as shown in FIG. 2, and as shown in FIG. When the lead portion of the negative electrode 5 is formed on the center side, the four corner portions 7c of each of the equal electrodes 7 and 5,
Each of 7d, 7e, 7f and 5c, 5d, 5e, 5f may have an arc shape.

【0061】この正極及び負極電極7及び5を図2又は
図3に示す如くしたときにも上述実施例と同様の作用効
果が得られることは容易に理解できよう。
It can be easily understood that the same effects as those of the above-mentioned embodiment can be obtained when the positive and negative electrodes 7 and 5 are arranged as shown in FIG. 2 or FIG.

【0062】また上述実施例においては、正極及び負極
電極7及び5の形状を短冊状とした例につき述べたが、
この形状はその他の矩形状であっても同様である。
Further, in the above-mentioned embodiments, the example in which the shape of the positive electrode and the negative electrode 7 and 5 is a strip shape has been described.
This shape is the same even if it is another rectangular shape.

【0063】また本発明は上述実施例に限ることなく本
発明の要旨を逸脱することなく、その他種々の構成が採
り得ることは勿論である。
Further, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0064】[0064]

【発明の効果】本発明によれば矩形状の正極及び負極電
極の少なくとも角形電池容器への挿入側のコーナー部を
円弧形状としたので、正極及び負極電極と角形電池容器
との接触による正極及び負極活物質の脱落が抑制され、
また正極及び負極電極の折れ曲がりが抑制され、これに
より電池の内部ショートが無くなり、電池容量も比較的
大きく維持される利益がある。
According to the present invention, since at least the corners of the rectangular positive and negative electrodes on the side of insertion into the prismatic battery container are arcuate, the positive and negative electrodes due to contact between the positive and negative electrodes and the prismatic battery container are The negative electrode active material is prevented from falling off,
Further, the bending of the positive electrode and the negative electrode is suppressed, which eliminates the internal short circuit of the battery and has the advantage that the battery capacity is maintained relatively large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明角形非水電解液二次電池の一実施例の正
極及び負極電極の例を示す平面図である。
FIG. 1 is a plan view showing an example of a positive electrode and a negative electrode of an embodiment of a prismatic non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明による正極およひ負極電極の他の例を示
す平面図である。
FIG. 2 is a plan view showing another example of the positive electrode and the negative electrode according to the present invention.

【図3】本発明による正極及び負極電極の他の例を示す
平面図である。
FIG. 3 is a plan view showing another example of the positive electrode and the negative electrode according to the present invention.

【図4】本発明の説明に供する線図である。FIG. 4 is a diagram for describing the present invention.

【図5】角形非水電解液二次電池の例を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing an example of a prismatic non-aqueous electrolyte secondary battery.

【図6】従来の正極及び負極電極の例を示す平面図であ
る。
FIG. 6 is a plan view showing an example of a conventional positive electrode and negative electrode.

【符号の説明】[Explanation of symbols]

1 蓋 2 ガスケット 3 正極端子 5 負極電極 5a 負極集電体 5b 負極合剤 5c,5d,5e,5f コーナー部 6 セパレータ 7 正極電極 7a 正極集電体 7b 正極合剤 7c,7d,7e,7f コーナー部 10 角形電池容器 DESCRIPTION OF SYMBOLS 1 Lid 2 Gasket 3 Positive electrode terminal 5 Negative electrode 5a Negative electrode current collector 5b Negative electrode mixture 5c, 5d, 5e, 5f Corner part 6 Separator 7 Positive electrode electrode 7a Positive electrode current collector 7b Positive electrode mixture 7c, 7d, 7e, 7f Corner Part 10 prismatic battery container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体に正極活物質が塗布された矩
形状の正極電極と負極集電体に負極活物質が塗布された
矩形状の負極電極とをセパレータを介して順次積層され
た電極積層体を角形電池容器に収納するようにした角形
非水電解液二次電池において、 前記矩形状の正極電極及び負極電極の少なくとも前記角
形電池容器への挿入側のコーナー部を円弧形状としたこ
とを特徴とする角形非水電解液二次電池。
1. A rectangular positive electrode in which a positive electrode active material is applied to a positive electrode current collector and a rectangular negative electrode in which a negative electrode active material is applied to a negative electrode current collector are sequentially laminated via a separator. In a prismatic non-aqueous electrolyte secondary battery adapted to house the electrode laminate in a prismatic battery container, at least a corner portion of the rectangular positive electrode and the negative electrode on the side of insertion into the prismatic battery container has an arc shape. A prismatic non-aqueous electrolyte secondary battery characterized by the above.
【請求項2】 請求項1記載の角形非水電解液二次電池
において、前記コーナー部の円弧形状の円弧の半径をR
としたとき、0.01mm≦R≦1.5mmとしたこと
を特徴とする角形非水電解液二次電池。
2. The prismatic non-aqueous electrolyte secondary battery according to claim 1, wherein a radius of an arc of the arc shape of the corner portion is R.
When it is set to 0.01 mm <= R <= 1.5 mm, the prismatic nonaqueous electrolyte secondary battery characterized by the above-mentioned.
JP7231718A 1995-09-08 1995-09-08 Square nonaqueous electrolyte secondary battery Pending JPH0982361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7231718A JPH0982361A (en) 1995-09-08 1995-09-08 Square nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7231718A JPH0982361A (en) 1995-09-08 1995-09-08 Square nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0982361A true JPH0982361A (en) 1997-03-28

Family

ID=16927938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7231718A Pending JPH0982361A (en) 1995-09-08 1995-09-08 Square nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0982361A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797350A1 (en) * 1999-08-05 2001-02-09 Honda Motor Co Ltd ELECTRODE PLATE FOR ACCUMULATOR
WO2013137693A1 (en) * 2012-03-16 2013-09-19 주식회사 엘지화학 Battery cell having asymmetric structure and battery pack comprising same
WO2013141279A1 (en) * 2012-03-21 2013-09-26 新神戸電機株式会社 Electrode plate for rectangular nonaqueous electrolyte storage cell
EP2782166A1 (en) * 2012-11-21 2014-09-24 LG Chem, Ltd. Electrode sheet comprising notched portion
JP2015032386A (en) * 2013-07-31 2015-02-16 株式会社豊田自動織機 Power storage device
JP2015122338A (en) * 2015-03-30 2015-07-02 株式会社Gsユアサ Battery
US9196898B2 (en) 2012-11-13 2015-11-24 Lg Chem, Ltd. Stepped electrode assembly
US9225034B2 (en) 2012-05-29 2015-12-29 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
JP2016004781A (en) * 2015-05-22 2016-01-12 株式会社豊田自動織機 Power storage device and secondary battery
JP2016502742A (en) * 2013-03-08 2016-01-28 エルジー・ケム・リミテッド Electrode assembly including round corners
US9252452B2 (en) 2012-03-20 2016-02-02 Lg Chem, Ltd. Electrode assembly and composite electrode assembly of stair-like structure
US9276287B2 (en) 2011-10-28 2016-03-01 Apple Inc. Non-rectangular batteries for portable electronic devices
US9300006B2 (en) 2012-04-05 2016-03-29 Lg Chem, Ltd. Battery cell of stair-like structure
US9318733B2 (en) 2012-12-27 2016-04-19 Lg Chem, Ltd. Electrode assembly of stair-like structure
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9620789B2 (en) 2012-03-08 2017-04-11 Lg Chem, Ltd. Battery pack of the stair-like structure
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
WO2017208531A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Secondary battery
US9929393B2 (en) 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
US20180175453A1 (en) * 2016-12-21 2018-06-21 Fdk Corporation Electrode plate of laminated power storage element, laminated power storage element, and method for manufacturing electrode plate for laminated power storage element
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
JPWO2021230250A1 (en) * 2020-05-13 2021-11-18

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797350A1 (en) * 1999-08-05 2001-02-09 Honda Motor Co Ltd ELECTRODE PLATE FOR ACCUMULATOR
US11024887B2 (en) 2010-07-16 2021-06-01 Apple Inc. Construction of non-rectangular batteries
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
US9276287B2 (en) 2011-10-28 2016-03-01 Apple Inc. Non-rectangular batteries for portable electronic devices
US9620789B2 (en) 2012-03-08 2017-04-11 Lg Chem, Ltd. Battery pack of the stair-like structure
US9478773B2 (en) 2012-03-16 2016-10-25 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same
WO2013137693A1 (en) * 2012-03-16 2013-09-19 주식회사 엘지화학 Battery cell having asymmetric structure and battery pack comprising same
US9203058B2 (en) 2012-03-16 2015-12-01 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same
US9252452B2 (en) 2012-03-20 2016-02-02 Lg Chem, Ltd. Electrode assembly and composite electrode assembly of stair-like structure
JPWO2013141279A1 (en) * 2012-03-21 2015-08-03 新神戸電機株式会社 Square non-aqueous electrolyte storage cell electrode plate
WO2013141279A1 (en) * 2012-03-21 2013-09-26 新神戸電機株式会社 Electrode plate for rectangular nonaqueous electrolyte storage cell
US9548517B2 (en) 2012-04-05 2017-01-17 Lg Chem, Ltd. Battery cell of stair-like structure
US9300006B2 (en) 2012-04-05 2016-03-29 Lg Chem, Ltd. Battery cell of stair-like structure
US9685679B2 (en) 2012-05-29 2017-06-20 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
US9225034B2 (en) 2012-05-29 2015-12-29 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
US9196898B2 (en) 2012-11-13 2015-11-24 Lg Chem, Ltd. Stepped electrode assembly
US10026994B2 (en) 2012-11-13 2018-07-17 Lg Chem, Ltd. Stepped electrode assembly
EP2782166A4 (en) * 2012-11-21 2014-11-12 Lg Chemical Ltd Electrode sheet comprising notched portion
US9299988B2 (en) 2012-11-21 2016-03-29 Lg Chem, Ltd. Electrode sheet including notching portion
EP2782166A1 (en) * 2012-11-21 2014-09-24 LG Chem, Ltd. Electrode sheet comprising notched portion
US9318733B2 (en) 2012-12-27 2016-04-19 Lg Chem, Ltd. Electrode assembly of stair-like structure
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
JP2016502742A (en) * 2013-03-08 2016-01-28 エルジー・ケム・リミテッド Electrode assembly including round corners
JP2015032386A (en) * 2013-07-31 2015-02-16 株式会社豊田自動織機 Power storage device
JP2015122338A (en) * 2015-03-30 2015-07-02 株式会社Gsユアサ Battery
JP2016004781A (en) * 2015-05-22 2016-01-12 株式会社豊田自動織機 Power storage device and secondary battery
US9929393B2 (en) 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
US11784302B2 (en) 2016-02-26 2023-10-10 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
JPWO2017208531A1 (en) * 2016-05-31 2018-10-04 株式会社村田製作所 Secondary battery
WO2017208531A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Secondary battery
US11342590B2 (en) 2016-05-31 2022-05-24 Murata Manufacturing Co., Ltd. Secondary battery
US20180175453A1 (en) * 2016-12-21 2018-06-21 Fdk Corporation Electrode plate of laminated power storage element, laminated power storage element, and method for manufacturing electrode plate for laminated power storage element
JPWO2021230250A1 (en) * 2020-05-13 2021-11-18
WO2021230250A1 (en) * 2020-05-13 2021-11-18 株式会社村田製作所 Secondary battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6884546B1 (en) Secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3436600B2 (en) Rechargeable battery
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
US10411250B2 (en) Nonaqueous electrolyte battery, battery pack, and vehicle
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000268879A (en) Lithium secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2002075444A (en) Nonaqueous electrolyte cell
JP2002117903A (en) Nonaqueous electrolyte battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH10270079A (en) Nonaqueous electrolyte battery
JPH0963562A (en) Nonaqueous-electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH1012278A (en) Organic electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH0896839A (en) Lithium ion secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery