JPH05174818A - Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof - Google Patents

Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof

Info

Publication number
JPH05174818A
JPH05174818A JP3335326A JP33532691A JPH05174818A JP H05174818 A JPH05174818 A JP H05174818A JP 3335326 A JP3335326 A JP 3335326A JP 33532691 A JP33532691 A JP 33532691A JP H05174818 A JPH05174818 A JP H05174818A
Authority
JP
Japan
Prior art keywords
lithium
boron
active material
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3335326A
Other languages
Japanese (ja)
Other versions
JP3008228B2 (en
Inventor
Kensuke Tawara
謙介 田原
Hideki Ishikawa
英樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP3335326A priority Critical patent/JP3008228B2/en
Publication of JPH05174818A publication Critical patent/JPH05174818A/en
Application granted granted Critical
Publication of JP3008228B2 publication Critical patent/JP3008228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve formation efficiency and activator utilization efficiency of negative electrode active material by using composite oxide of lithium and boron shown by a specific composition formula or boron oxide. CONSTITUTION:A counter electrode case 1 serves also as a counter electrode terminal and is made by drawing stainless steel plate nickel-plated on the outer face one side. A counter electrode collector 2 is made of stainless steel net and is spot-welded to the case 1. A counter electrode 3, which is made by punching aluminum plate of a predetermined thickness in a predetermined diameter, is fixed to the collector 2 and lithium foil of a predetermined thickness punched in a predetermined diameter is brought in pressure contact thereon. A working electrode 7 also serves as a working electrode terminal and a working electrode 5 comprises a specific active material. A composite oxide of lithium and boron shown by a composition formula LixByO3 or boron oxide is used as negative electrode active material. When conditions x>=0 and y>0 are applicate, charge and discharge capacity becomes large and polarization becomes small for improving formation efficiency and activator utilization efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質とし、リチウムイオン導電性の非
水電解質を用いる非水電解質二次電池に関するものであ
り、特に、高電圧、高エネルギー密度で且つ充放電特性
が優れ、サイクル寿命の長い新規な二次電池を提供する
新規な負極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium ion conductive non-aqueous electrolyte as a negative electrode active material which is a material capable of inserting and extracting lithium, and particularly to a high voltage, The present invention relates to a novel negative electrode active material that provides a new secondary battery with high energy density, excellent charge / discharge characteristics, and long cycle life.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリーバックアップ用、カメラ用等の
電源として既に広く用いられている。
2. Description of the Related Art Non-aqueous electrolyte batteries using lithium as a negative electrode active material have advantages of high voltage, high energy density, low self-discharge and excellent long-term reliability. It has already been widely used as a power source for business.

【0003】しかしながら、近年携帯型の電子機器、通
信機器等の著しい発展に伴い、電源としての電池に対し
大電流出力を要求する機器が多種多様に出現し、経済性
と機器の小型軽量化の観点から、再充放電可能で、かつ
高エネルギー密度の二次電池が強く要望されている。こ
のため、高エネルギー密度を有する前記非水電解質電池
の二次電池化を進める研究開発が活発に行われ、一部実
用化されているが、エネルギー密度、充放電サイクル寿
命、信頼性等々まだまだ不十分である。
However, with the recent remarkable development of portable electronic devices, communication devices, etc., a wide variety of devices requiring a large current output from a battery as a power source have emerged, which is economical and compact and lightweight. From the viewpoint, a rechargeable / dischargeable secondary battery having a high energy density is strongly desired. For this reason, research and development for promoting the non-aqueous electrolyte battery having a high energy density into a secondary battery have been actively carried out and partially put into practical use, but energy density, charge / discharge cycle life, reliability, etc. are still unsatisfactory. It is enough.

【0004】従来、この種の二次電池の正極を構成する
正極活物質としては、充放電反応の形態に依り下記の3
種のタイプのものが見い出されている。第1のタイプ
は、TiS2 、MoS2 、NbSe3 等の金属カルコゲ
ン化物や、MnO2 、MoO3 、V2 5 、Lix Co
2 、Lix NiO2 、Lix Mn2 4 等の金属酸化
物等々のように、結晶の層間や格子位置又は格子間隙間
にリチウムイオン(カチオン)のみがインターカレーシ
ョン、デインターカレーション反応等に依り出入りする
タイプ。第2のタイプは、ポリアニリン、ポリピロー
ル、ポリパラフェニレン等の導電性高分子のような、主
としてアニオンのみが安定にドープ、脱ドープ反応に依
り出入りするタイプ。第3のタイプは、グラファイト層
間化合物やポリアセン等の導電性高分子等々のような、
リチウムカチオンとアニオンが共に出入り可能なタイプ
(インターカレーション、デインターカレーション又は
ドープ、脱ドープ等)である。
Conventionally, as the positive electrode active material constituting the positive electrode of this type of secondary battery, depending on the form of charge / discharge reaction, the following 3
Some types of species have been found. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 or MnO 2 , MoO 3 , V 2 O 5 , Li x Co.
Like metal oxides such as O 2 , Li x NiO 2 and Li x Mn 2 O 4, etc., only lithium ions (cations) are intercalated or deintercalated between crystal layers or between lattice positions or lattice gaps. Type that goes in and out depending on the reaction. The second type is a type such as a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, etc. in which mainly anions are stably doped and come in and out by a dedoping reaction. The third type is like graphite intercalation compounds or conductive polymers such as polyacene,
It is a type (intercalation, deintercalation or dope, dedope, etc.) in which both lithium cations and anions can enter and leave.

【0005】一方、この種の電池の負極を構成する負極
活物質としては、金属リチウムを単独で用いた場合が電
極電位が最も卑であるため、上記のような正極活物質を
用いた正極と組み合わせた電池としての出力電圧が最も
高く、エネルギー密度も高く好ましいが、充放電に伴い
負極上にデンドライトや不働体化合物が生成し、充放電
による劣化が大きく、サイクル寿命が短いという問題が
あった。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2 、MoO2 、Fe2
3 、TiS2 等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の結晶構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをドープしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, when metal lithium is used alone, the electrode potential is the most base. The combined battery has the highest output voltage and high energy density, which is preferable, but there is a problem that dendrites and passivation compounds are generated on the negative electrode during charging and discharging, and deterioration due to charging and discharging is large and cycle life is short. .. In order to solve this problem, as a negative electrode active material, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
Alloys with other metals such as (2) WO 2 , MoO 2 , Fe 2
An intercalation compound or an intercalation compound in which lithium ions are occluded in the crystal structure of an inorganic compound such as O 3 or TiS 2 , graphite, or a carbonaceous material obtained by firing an organic substance, (3) lithium-doped polyacene, It has been proposed to use a substance capable of inserting and extracting lithium ions, such as a conductive polymer such as polyacetylene.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一般
に、負極活物質として上記のような金属リチウム以外の
リチウムイオンを吸蔵放出可能な物質を用いた負極と、
前記のような正極活物質を用いた正極とを組合せて電池
を構成した場合には、これらの物質の電極電位が金属リ
チウムの電極電位より貴であるため、電池の作動電圧が
負極活物質として金属リチウムを単独で用いた場合より
かなり低下するという欠点がある。例えば、リチウムと
Al,Zn,Pb,Sn,Bi,Cd等の合金を用いる
場合には0.2〜0.8V、炭素−リチウム層間化合物
では0〜1V、MoO2 やWO2 等のリチウムイオン挿
入化合物では0.5〜1.5V作動電圧が低下する。
However, in general, a negative electrode using a substance capable of inserting and extracting lithium ions other than metallic lithium as described above as the negative electrode active material,
When a battery is constructed by combining a positive electrode using the positive electrode active material as described above, the electrode potential of these materials is nobler than the electrode potential of metallic lithium. It has a drawback that it is considerably lower than when metallic lithium is used alone. For example, when an alloy of lithium and Al, Zn, Pb, Sn, Bi, Cd or the like is used, it is 0.2 to 0.8 V, a carbon-lithium intercalation compound is 0 to 1 V, and lithium ions such as MoO 2 and WO 2 are used. The insertion compound reduces the operating voltage by 0.5-1.5V.

【0007】また、リチウム以外の元素も負極構成要素
となるため、体積当り及び重量当りの容量及びエネルギ
ー密度が著しく低下する。更に、上記の(1)のリチウ
ムと他金属との合金を用いた場合には、充放電時のリチ
ウムの利用効率が低く、且つ充放電の繰り返しにより電
極にクラックが発生し割れを生じる等のためサイクル寿
命が短いという問題があり、(2)のリチウム層間化合
物又は挿入化合物の場合には、過充放電により結晶構造
の崩壊や不可逆物質の生成等の劣化があり、又電極電位
が高い(貴な)ものが多い為、これを用いた電池の出力
電圧が低いという欠点があり、(3)の導電性高分子の
場合には、充放電容量、特に体積当りの充放電容量が小
さいという問題がある。
Since elements other than lithium also serve as negative electrode constituents, the capacity and energy density per volume and weight are significantly reduced. Further, when the alloy of (1) above with lithium and another metal is used, the utilization efficiency of lithium during charge and discharge is low, and cracking occurs in the electrode due to repeated charge and discharge, and the like. Therefore, there is a problem that the cycle life is short, and in the case of the lithium intercalation compound or the insertion compound of (2), there is a deterioration such as the collapse of the crystal structure or the generation of an irreversible substance due to overcharge and discharge, and the high electrode potential ( Since there are many (noble) batteries, there is a drawback that the output voltage of the battery using this is low, and in the case of the conductive polymer of (3), the charge / discharge capacity, especially the charge / discharge capacity per volume is small. There's a problem.

【0008】このため、高電圧、高エネルギ−密度で、
且つ充放電特性が優れ、サイクル寿命の長い二次電池を
得るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
Therefore, at high voltage and high energy density,
In addition, in order to obtain a secondary battery having excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (base), and the collapse of the crystal structure due to the absorption / desorption of lithium ions during charge / discharge and irreversible substances There is a need for a negative electrode active material that is free from deterioration such as generation and has a large amount of reversible occlusion / release of lithium ions, that is, a large effective charge / discharge capacity.

【0009】[0009]

【課題を解決するための手段】本発明は、上記のような
課題を解決するため、この種の電池の負極活物質とし
て、組成式LixByO3 (但し、x≧0、y>0)で
示されるリチウムとホウ素の複合酸化物もしくはホウ素
の酸化物から成る新規なリチウムイオン吸蔵放出可能物
質を用いることを提起するものである。リチウム量xと
ホウ素量yはx≧0、y>0であれば良いが、特に4≧
x≧0且つ3≧y≧1に於て電極電位が低く(卑)、充
放電特性が優れているので特に好ましい。
In order to solve the above problems, the present invention shows a composition formula LixByO 3 (where x ≧ 0, y> 0) as a negative electrode active material of this type of battery. It is proposed to use a novel lithium ion storage / release material composed of a composite oxide of lithium and boron or an oxide of boron. The amount of lithium x and the amount of boron y may be x ≧ 0 and y> 0, but especially 4 ≧
When x ≧ 0 and 3 ≧ y ≧ 1, the electrode potential is low (base) and the charge / discharge characteristics are excellent, which is particularly preferable.

【0010】本発明電池の負極活物質として用いられる
リチウムとホウ素の複合酸化物の好ましい製造方法とし
ては、下記の2種類の方法があげられるが、これらに限
定されない。第1の方法は、リチウムとホウ素の各々の
単体又はその化合物を所定のモル比で混合し、空気中ま
たは酸素を有する雰囲気中で加熱して合成する方法であ
る。出発原料となるリチウムとホウ素のそれぞれの化合
物としては、各々の酸化物、水酸化物あるいは炭酸塩、
硝酸塩等の塩あるいは有機化合物等々の空気中又は酸素
を有する雰囲気中で加熱して酸化物を生成する化合物で
あれば良い。リチウムとホウ素の各々の化合物として各
々の酸化物、水酸化物又はその他の酸素を有する化合物
を用いる場合には、不活性雰囲気中或は真空中で加熱合
成することも可能である。これらの出発原料の中で、リ
チウムの化合物としては酸化リチウムLi2 O、水酸化
リチウムLiOH、炭酸リチウムLi2 CO3 、硝酸リ
チウムLiNO3 等々、ホウ素の化合物としてはB2
3 や(BO)z 等の酸化ホウ素やオルトホウ酸H3 BO
3 、メタホウ酸HBO2 、テトラホウ酸H2 4 7
次にホウ酸H4 2 4 等のホウ酸等々が、加熱により
容易に分解し酸化物を生成し易く且つ固溶し易いので特
に好ましい。また、これらの出発原料を水やアルコー
ル、グリセリン等の溶媒に溶解もしくは分散し、溶液中
で均一に混合又は反応させた後、乾燥し、次の加熱処理
を行うことも出来る。この方法に依れば、より均一な生
成物が得られる利点がある。加熱温度は、出発原料と加
熱雰囲気に依っても異なるが、通常300゜C以上で合
成が可能であり、好ましくは600゜C以上、より好ま
しくは700〜1000゜の温度がよい。このようなリ
チウムの化合物とホウ素の化合物との混合物の加熱処理
に依って得られるリチウムとホウ素の複合酸化物の例を
上げるとLiBO2 、Li2 4 7 、Li3 BO 3
Li4 2 4 、Li4 2 5 、LiBO3 等の各種
のホウ酸塩及びそれらの縮合物等や、また、これらの化
学量論組成のものに対しリチウムが過剰又は不足した非
化学量論組成のもの等々が上げられる。また、出発原料
にホウ素の化合物として前記のような各種のホウ酸を用
いた場合や、リチウム化合物として水酸化リチウム等を
用いた場合には、加熱処理により水素が完全には脱離せ
ず、熱処理後の生成物中に一部残り、リチウムと水素が
共存することも可能であり、本発明に含まれる。更に、
リチウム化合物と同時に、ナトリウム、カリウム、ルビ
ジウム等の他のアルカリ金属、マグネシウム、カルシウ
ム等のアルカリ土類金属又はその他の金属の化合物等を
も加えてホウ素化合物と混合し加熱処理することによ
り、これらのリチウム以外の金属イオンをリチウムイオ
ンと共存させることもでき、これらの場合も本発明に含
まれる。
Used as the negative electrode active material of the battery of the present invention
As a preferred method for producing a composite oxide of lithium and boron
The following two methods are available, but the methods are not limited to these.
Not determined. The first method is to use lithium and boron
Mix the individual substances or their compounds in the prescribed molar ratio and let them stand in the air.
Or a method of synthesizing by heating in an atmosphere containing oxygen.
It Compounds of lithium and boron as starting materials
As the product, each oxide, hydroxide or carbonate,
In the air or oxygen of salts such as nitrates or organic compounds
A compound that forms an oxide when heated in an atmosphere having
I wish I had it. As each compound of lithium and boron
Various oxides, hydroxides or other compounds containing oxygen
When using, heat in an inert atmosphere or in a vacuum.
It is also possible. Among these starting materials,
Lithium oxide Li is used as a compound of thium.2O, hydroxylation
Lithium LiOH, Lithium carbonate Li2CO3, Nitric acid
Tium LiNO3And so on, as a boron compound, B2O
3And (BO)zBoron oxide and orthoboric acid H3BO
3, Metaborate HBO2, Tetraboric acid H2BFourO 7,
Then boric acid HFourB2OFourBoric acid etc. by heating
It is easily decomposed to form an oxide and is easily dissolved to form a solid solution.
Is preferred. In addition, these starting materials are treated with water or alcohol.
Dissolved or dispersed in a solvent such as
After uniformly mixing or reacting with, dry and then heat treatment
You can also do This method allows for a more uniform raw
There is an advantage that a product can be obtained. The heating temperature depends on the starting material
Although it depends on the heat atmosphere, it is usually higher than 300 ° C.
Is possible, preferably 600 ° C or higher, more preferably
The temperature is preferably 700 to 1000 °. Like this
Heat treatment of mixture of thium compound and boron compound
Examples of composite oxides of lithium and boron obtained by
LiBO when raised2, Li2BFourO7, Li3BO 3,
LiFourB2OFour, LiFourB2OFive, LiBO3Etc.
Borate and its condensates, etc.
Lithium excess or deficiency relative to stoichiometric composition
Examples include stoichiometric compositions. Also the starting material
Various boric acid as mentioned above as a boron compound
Or if lithium hydroxide is used as the lithium compound,
If used, hydrogen will not be completely desorbed by heat treatment.
However, some of the product remains in the product after heat treatment, leaving lithium and hydrogen.
Coexistence is possible and included in the present invention. Furthermore,
At the same time as the lithium compound, sodium, potassium, ruby
Other alkali metals such as dium, magnesium, calcium
Compounds of alkaline earth metals such as aluminum or other metals
In addition to the above, by mixing with a boron compound and heat-treating
The metal ions other than lithium to lithium ion.
Can also be made to coexist with the present invention and these cases are also included in the present invention.
Get caught

【0011】このようにして得られたリチウムとホウ素
の複合酸化物LixByO3 は、これをそのままもしく
は必要により粉砕整粒や造粒等の加工を施した後に負極
活物質として用いることが出来るし、また、下記の第2
の方法と同様に、この複合酸化物とリチウムもしくはリ
チウムを含有する物質との電気化学的反応に依りこの複
合酸化物に更にリチウムイオンを吸蔵させるか、又は逆
にこの複合酸化物からリチウムイオンを放出させること
により、リチウム量xを増加又は減少させたものを負極
活物質として用いても良い。
The lithium-boron composite oxide LixByO 3 thus obtained can be used as the negative electrode active material as it is or after being subjected to processing such as pulverizing and granulating, if necessary. In addition, the second
In the same manner as the method of 1, the composite oxide is allowed to occlude further lithium ions by an electrochemical reaction between the composite oxide and lithium or a substance containing lithium, or conversely, the lithium oxide is absorbed from the composite oxide. The negative electrode active material may be one in which the amount x of lithium is increased or decreased by releasing the amount.

【0012】第2の方法は、B2 3 や(BO)z 等の
ホウ素の酸化物とリチウムもしくはリチウムを含有する
物質との電気化学的反応に依りホウ素の酸化物にリチウ
ムイオンを吸蔵させてリチウムとホウ素の複合酸化物を
得る方法である。リチウムを含有する物質としては、例
えば、従来の技術で上げた正極活物質又は負極活物質等
に用いられるようなリチウムイオンを吸蔵放出可能な活
物質を用いることが出来る。
The second method is to occlude lithium ions in the boron oxide by an electrochemical reaction between a boron oxide such as B 2 O 3 or (BO) z and lithium or a substance containing lithium. Is a method of obtaining a composite oxide of lithium and boron. As the material containing lithium, for example, an active material capable of occluding and releasing lithium ions such as used for a positive electrode active material, a negative electrode active material, and the like, which have been described in the related art, can be used.

【0013】このホウ素の酸化物への電気化学的反応に
依るリチウムイオンの吸蔵は、電池組立後電池内で、又
は電池製造工程の途上において電池内もしくは電池外で
行うことが出来、具体的には次のようにして行うことが
出来る。 即ち、(1)該ホウ素の酸化物又は該ホウ素の酸化物と
導電剤及び結着剤等との混合合剤を所定形状に成形した
ものを一方の電極(作用極)とし、金属リチウム又はリ
チウムを含有する物質をもう一方の電極(対極)として
リチウムイオン導電性の非水電解質に接して両電極を対
向させて電解セルを構成し、作用極がカソード反応をす
る方向に適当な電流で通電し電気化学的にリチウムイオ
ンをホウ素の酸化物に吸蔵させる。得られた該作用極を
そのまま負極として又は負極を構成する負極活物質とし
て用いて非水電解質二次電池を構成する。 (2)該ホウ素の酸化物又は該ホウ素の酸化物と導電剤
及び結着剤等との混合合剤を所定形状に成形し、これに
リチウムもしくはリチウムの合金等を圧着して、もしく
は接触させて積層電極としたものを負極として非水電解
質二次電池に組み込む。電池内でこの積層電極が電解質
に触れることにより自己放電し電気化学的にリチウムが
ホウ素の酸化物に吸蔵される方法。 (3)該ホウ素の酸化物を負極活物質とし、リチウムを
含有しリチウムイオンを吸蔵放出可能な物質を正極活物
質として用いた非水電解質二次電池を構成する。電池と
して使用時に充電を行うことにより正極から放出された
リチウムイオンが該ホウ素の酸化物に吸蔵される方法。
The storage of lithium ions by the electrochemical reaction of the boron oxide can be carried out in the battery after the battery is assembled or in the battery or outside the battery during the battery manufacturing process. Can be done as follows. That is, (1) one of the electrodes (working electrode) is formed by molding the oxide of boron or a mixture of the oxide of boron and a conductive agent, a binder, etc. into a predetermined shape. The substance containing is used as the other electrode (counter electrode) in contact with a lithium ion conductive non-aqueous electrolyte to make both electrodes face each other to form an electrolytic cell, and the working electrode is energized with an appropriate current in the direction of cathodic reaction. Then, the lithium ions are electrochemically absorbed into the oxide of boron. A nonaqueous electrolyte secondary battery is constructed by using the obtained working electrode as it is as a negative electrode or as a negative electrode active material constituting the negative electrode. (2) The boron oxide or a mixture of the boron oxide and a conductive agent, a binder, etc. is molded into a predetermined shape, and lithium or a lithium alloy or the like is pressure-bonded or brought into contact therewith. The laminated electrode as a negative electrode is incorporated into a non-aqueous electrolyte secondary battery as a negative electrode. A method in which this laminated electrode contacts the electrolyte in the battery to cause self-discharge and electrochemically occludes lithium in the oxide of boron. (3) A non-aqueous electrolyte secondary battery is constructed using the oxide of boron as a negative electrode active material and a material containing lithium and capable of inserting and extracting lithium ions as a positive electrode active material. A method in which lithium ions released from the positive electrode by being charged when used as a battery are occluded in the oxide of boron.

【0014】このようにして得られるリチウムとホウ素
の複合酸化物もしくはホウ素の酸化物であるLixBy
3 を負極活物質として用いる。一方、正極活物質とし
ては、前述のようにTiS2 ,MoS2 ,NbSe3
の金属カルコゲン化物や、MnO2 ,MoO3 ,V2
5 ,Lix CoO2 ,Lix NiO2 ,Lix Mn2
4 等の金属酸化物、ポリアニリン、ポリピロール、ポリ
パラフェニレンポリアセン等の導電性高分子、及びグラ
ファイト層間化合物等々のリチウムイオン又はアニオン
を吸蔵放出可能な各種の物質を用いることが出来る。特
に、本発明のリチウムとホウ素の複合酸化物を負極活物
質とする負極は、金属リチウムに対する電極電位が低く
(卑)且つ1V以下の卑な領域の充放電容量が著しく大
きいという利点を有している為、前述の金属酸化物や金
属カルコゲン化物等々のような金属リチウムに対する電
極電位が2V以上、より好ましくはV2 5 、Mn
2 、Lix CoO2 、Lix NiO2 やLix Mn2
4 等々のような3Vもしくは4V以上の高電位を有す
る(貴な)活物質を用いた正極と組み合わせることによ
り高電圧高エネルギー密度でかつ充放電特性の優れた二
次電池が得られるので、特に好ましい。
Lithium and boron thus obtained
LixBy which is a complex oxide or an oxide of boron
O3Is used as the negative electrode active material. On the other hand, as the positive electrode active material
As mentioned above, TiS2, MoS2, NbSe3etc
Metal chalcogenide and MnO2, MoO3, V2O
Five, LixCoO2, LixNiO2, LixMn2O
FourMetal oxides such as polyaniline, polypyrrole, poly
Conductive polymers such as paraphenylene polyacene, and
Lithium ions or anions such as phyto intercalation compounds
Various substances capable of occluding and releasing can be used. Special
In addition, the composite oxide of lithium and boron of the present invention is used as a negative electrode active material.
The quality of the negative electrode has a low electrode potential with respect to metallic lithium.
(Base) and the charge / discharge capacity in the base area of 1 V or less is extremely large.
The metal oxides and gold described above
Electrodes for metallic lithium such as genus chalcogenides, etc.
The polar potential is 2 V or more, more preferably V2OFive, Mn
O2, LixCoO2, LixNiO2And LixMn2
O FourHave a high potential of 3V or 4V or more like etc.
By combining with a positive electrode using a (noble) active material
High voltage, high energy density and excellent charge / discharge characteristics
It is particularly preferable because a secondary battery can be obtained.

【0015】また、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、メチルフォーメイト、1,2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4 ,LiPF6 ,LiBF
4 ,LiCF3 SO3 等のリチウムイオン解離性塩を溶
解した有機電解液、ポリエチレンオキシドやポリフォス
ファゼン架橋体等の高分子に前記リチウム塩を固溶させ
た高分子固体電解質あるいはLi3 N,LiI等の無機
固体電解質等々のリチウムイオン導電性の非水電解質で
あれば良い。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO 4 , LiPF 6 , LiBF 6 as a supporting electrolyte in an organic solvent such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl formate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, dimethylformamide alone or in a mixed solvent.
4 , an organic electrolyte solution in which a lithium ion dissociable salt such as LiCF 3 SO 3 is dissolved, a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as a polyethylene oxide or a crosslinked polyphosphazene, or Li 3 N, A lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte such as LiI may be used.

【0016】[0016]

【作用】本発明のリチウムとホウ素の複合酸化物もしく
はホウ素の酸化物を負極活物質とする負極は、非水電解
質中に於て金属リチウムに対し少なくとも0〜3Vの電
極電位の範囲で安定に繰り返しリチウムイオンを吸蔵放
出することが出来、このような電極反応により繰り返し
充放電可能な二次電池の負極として用いることが出来
る。特にリチウム基準極(金属リチウム)に対し0〜1
Vの卑な電位領域において、安定にリチウムイオンを吸
蔵放出し繰り返し充放電できる高容量の充放電領域を有
する。また、従来この種の電池の負極活物質として用い
られてきたグラファイト等の炭素質材料に比べ可逆的に
リチウムイオンを吸蔵放出できる量即ち有効充放電容量
が著しく大きく、かつ充放電の分極が小さいため、大電
流での充放電が可能であり、更に過充電過放電による不
可逆物質の生成等の劣化が殆ど見られず、極めて安定で
サイクル寿命の長い二次電池を得ることが出来る。
The negative electrode using the composite oxide of lithium and boron or the oxide of boron of the present invention as the negative electrode active material is stable in the range of the electrode potential of at least 0 to 3 V with respect to metallic lithium in the non-aqueous electrolyte. Lithium ions can be repeatedly occluded and released and can be used as a negative electrode of a secondary battery that can be repeatedly charged and discharged by such an electrode reaction. Especially, 0 to 1 for the lithium reference electrode (metal lithium)
In the base potential region of V, it has a high-capacity charging / discharging region capable of stably absorbing and releasing lithium ions and repeatedly charging and discharging. Further, as compared with a carbonaceous material such as graphite which has been conventionally used as a negative electrode active material of this type of battery, the amount capable of reversibly occluding and releasing lithium ions, that is, the effective charge / discharge capacity is remarkably large, and the polarization of charge / discharge is small. Therefore, charging / discharging with a large current is possible, and deterioration such as generation of an irreversible substance due to overcharging / overdischarging is hardly seen, and an extremely stable secondary battery having a long cycle life can be obtained.

【0017】このように優れた充放電特性が得られる理
由は必ずしも明らかではないが、次のように推定され
る。即ち、本発明による新規な負極活物質であるリチウ
ムとホウ素の複合酸化物は、共有結合性の強いホウ素原
子と酸素原子がホウ素原子を中心に酸素原子が三配位も
しくは四配位した三角形もしくは四面体が連なって骨格
構造をなす鎖状構造又は平面層構造又は3次元網目構造
を形成しており、この構造中でのリチウムイオンの移動
度が高く、且つ、リチウムイオンを吸蔵できるサイトが
非常に多いためリチウムイオンの吸蔵放出が容易である
為と推定される。
The reason why such excellent charge and discharge characteristics are obtained is not always clear, but it is presumed as follows. That is, the composite oxide of lithium and boron, which is the novel negative electrode active material according to the present invention, is a triangle in which a boron atom having a strong covalent bond and an oxygen atom are tri- or tetra-coordinated with the oxygen atom centered around the boron atom. It has a chain structure, a planar layer structure, or a three-dimensional network structure that forms a skeleton structure by connecting tetrahedra, and the mobility of lithium ions in this structure is high, and the sites that can store lithium ions are extremely It is presumed that it is easy to store and release lithium ions due to the large amount.

【0018】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0019】[0019]

【実施例】【Example】

(実施例1)図1は、本発明に依る非水電解質二次電池
の負極活物質の性能評価に用いたテストセルの一例を示
すコイン型電池の断面図である。図において、1は対極
端子を兼ねる対極ケースであり、外側片面をNiメッキ
したステンレス鋼製の板を絞り加工したものである。2
はステンレス鋼製のネットから成る対極集電体であり対
極ケース1にスポット溶接されている。対極3は、所定
厚みのアルミニウム板を直径15mmに打ち抜き、対極
集電体2に固着し、その上に所定厚みのリチウムフォイ
ルを直径14mmに打ち抜いたものを圧着したものであ
る。7は外側片面をNiメッキしたステンレス鋼製の作
用極ケースであり、作用極端子を兼ねている。5は後述
の本発明に依る活物質又は従来法に依る比較活物質を用
いて構成された作用極であり、ステンレス鋼製のネット
からなる作用極集電体6と一体に加圧成形されている。
4はポリプロピレンの多孔質フィルムからなるセパレー
タであり、電解液が含浸されている。8はポリプロピレ
ンを主体とするガスケットであり、対極ケース1と作用
極ケース7の間に介在し、対極と作用極との間の電気的
絶縁性を保つと同時に、作用極ケース開口縁が内側に折
り曲げられカシメられることに依って、電池内容物を密
封、封止している。電解質はプロピレンカーボネートと
1,2−ジメトキシエタンの体積比1:1混合溶媒に過
塩素酸リチウムLiClO4 を1モル/l溶解したもの
を用いた。電池の大きさは、外径20mm、厚さ1.6
mmであった。
(Example 1) FIG. 1 is a sectional view of a coin-type battery showing an example of a test cell used for performance evaluation of a negative electrode active material of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 denotes a counter electrode case which also serves as a counter electrode terminal, which is obtained by drawing a stainless steel plate having Ni plated on one outer surface. Two
Is a counter electrode current collector made of a stainless steel net, and is spot-welded to the counter electrode case 1. The counter electrode 3 is formed by punching out an aluminum plate having a predetermined thickness to a diameter of 15 mm, fixing it to the counter electrode current collector 2, and pressing a lithium foil having a predetermined thickness punched out to have a diameter of 14 mm on it. Reference numeral 7 denotes a stainless steel working electrode case having one outer surface plated with Ni, which also serves as a working electrode terminal. Reference numeral 5 denotes a working electrode composed of an active material according to the present invention described below or a comparative active material according to a conventional method, which is integrally molded with a working electrode current collector 6 made of a stainless steel net under pressure. There is.
4 is a separator made of a polypropylene porous film, which is impregnated with an electrolytic solution. Reference numeral 8 is a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode, and at the same time the working electrode case opening edge is inward. By folding and crimping, the battery contents are hermetically sealed. The electrolyte used was prepared by dissolving 1 mol / l of lithium perchlorate LiClO 4 in a 1: 1 volume ratio mixed solvent of propylene carbonate and 1,2-dimethoxyethane. The battery size is 20 mm in outer diameter and 1.6 in thickness.
It was mm.

【0020】作用極5は次のようにして作製した。水酸
化リチウムLiOH・H2 Oと三酸化二ホウ素B2 3
とをLi:B=1:1のモル比で乳鉢を用いて十分混合
した後、この混合物を大気中850゜Cの温度で24時
間加熱処理し、冷却後、粒径53μm以下に粉砕整粒し
た。このようにして得られた生成物を本発明に依る活物
質aとし、これに導電剤としてグラファイトを、結着剤
として架橋型アクリル酸樹脂等を重量比30:65:5
の割合で混合して作用極合剤とし、次にこの作用極合剤
をステンレス鋼製のネットからなる作用極集電対6と共
に2ton/cm2 で直径15mm厚さ0.5mmのペ
レットに加圧成形した後、200℃で10時間減圧加熱
乾燥したものを作用極とした。
The working electrode 5 was manufactured as follows. Lithium hydroxide LiOH.H 2 O and diboron trioxide B 2 O 3
And (3) were thoroughly mixed in a mortar at a molar ratio of Li: B = 1: 1, and this mixture was heat-treated in the atmosphere at a temperature of 850 ° C. for 24 hours, cooled, and then pulverized to a particle size of 53 μm or less. did. The product thus obtained is used as an active material a according to the present invention, and graphite as a conductive agent and a cross-linking acrylic resin as a binder are added in a weight ratio of 30: 65: 5.
To prepare a working electrode mixture, and this working electrode mixture is added together with the working electrode current collector 6 made of a stainless steel net to a pellet having a diameter of 15 mm and a thickness of 0.5 mm at 2 ton / cm 2. After pressure forming, the product was dried under reduced pressure at 200 ° C. for 10 hours and used as a working electrode.

【0021】また、比較のため、上記の本発明に依る活
物質aの代わりに、上記の導電剤に用いたと同じグラフ
ァイトを活物質(活物質cと略記)として用いた他は、
上記の本発明の作用極の場合と同様にして、同様な電極
(比較用作用極)を作成した。 このようにして作製さ
れた電池は、室温で1週間放置エージングされた後、後
述の充放電試験が行われた。このエージングによって、
対極のリチウム−アルミニウム積層電極は電池内で非水
電解液に触れることにより十分合金化が進行し、リチウ
ムフォイルは実質的に全てLi−Al合金となるため、
電池電圧は、対極として金属リチウムを単独で用いた場
合に比べて約0.4V低下した値となって安定した。
For comparison, instead of the active material a according to the present invention, the same graphite as that used for the conductive material is used as the active material (abbreviated as active material c).
Similar electrodes (comparative working electrodes) were prepared in the same manner as the working electrode of the present invention. The battery thus produced was left to stand for one week at room temperature and then subjected to the charge / discharge test described below. By this aging,
The lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolyte in the battery, and the lithium foil is substantially all Li-Al alloy.
The battery voltage became stable at a value that was about 0.4 V lower than that when metal lithium was used alone as the counter electrode.

【0022】このようにして作製した電池を、以下、そ
れぞれの使用した作用極の活物質a,cに対応し、電池
A,Cと略記する。これらの電池A及びCを0.4mA
の定電流で、充電(電解質中から作用極にリチウムイオ
ンが吸蔵される電池反応をする電流方向)の終止電圧−
0.4V、放電(作用極から電解質中へリチウムイオン
が放出される電池反応をする電流方向)の終止電圧2.
5Vの条件で充放電サイクルを行ったときの3サイクル
目の充電特性を図2に、放電特性を図3に示した。ま
た、サイクル特性を図4に示した。尚、充放電サイクル
は充電からスタートした。図2〜4から明らかなよう
に、本発明による電池Aは比較電池Cに比べ、充放電容
量が著しく大きく、充放電の可逆領域が著しく拡大する
ことが分かる。また、全充放電領域に渡って充電と放電
の作動電圧の差が著しく小さくなっており、電池の分極
(内部抵抗)が著しく小さく、大電流充放電が容易なこ
とが分かる。更に、充放電の繰り返しによる放電容量の
低下(サイクル劣化)が著しく小さい。これは、上述の
ように本発明に依る電池Aの作用極の活物質であるリチ
ウムとホウ素の複合酸化物に於いては、ホウ素原子を中
心に酸素原子が3個もしくは4個結合した三角形もしく
は四面体が連なった骨格構造を有する鎖状構造又は平面
層構造又は3次元網目構造を形成しており、この構造中
でのリチウムイオンの移動度が高く、且つ、リチウムイ
オンを吸蔵できるサイトが非常に多いためリチウムイオ
ンの吸蔵放出が容易である為と推定される。
The batteries thus manufactured will be abbreviated as batteries A and C, corresponding to the active materials a and c of the working electrodes used. 0.4 mA for these batteries A and C
With a constant current of, the end voltage of charging (current direction in which the lithium ion is occluded from the electrolyte to the working electrode in the battery reaction) −
Final voltage of 0.4 V, discharge (direction of current causing battery reaction in which lithium ions are released from working electrode into electrolyte) 2.
FIG. 2 shows the charging characteristics of the third cycle when the charging / discharging cycle was performed under the condition of 5 V, and FIG. 3 shows the discharging characteristics. The cycle characteristics are shown in FIG. The charging / discharging cycle started from charging. As is clear from FIGS. 2 to 4, it is understood that the battery A according to the present invention has a significantly higher charge / discharge capacity than the comparative battery C, and the reversible charge / discharge region is significantly expanded. Further, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is significantly small, and large-current charging / discharging is easy. Further, the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. As described above, in the composite oxide of lithium and boron, which is the active material of the working electrode of the battery A according to the present invention, a triangle in which three or four oxygen atoms are bonded around the boron atom or It forms a chain structure having a skeleton structure with tetrahedrons, a planar layer structure, or a three-dimensional network structure. In this structure, the mobility of lithium ions is high, and the sites that can store lithium ions are extremely It is presumed that it is easy to store and release lithium ions due to the large amount.

【0023】(実施例2)実施例1の活物質aの代わり
に、市販の試薬特級グレイドの三酸化二ホウ素B 2 3
を径53μm以下に粉砕整粒したものを作用極の活物質
(活物質bと略記)として用いた。この活物質bと、導
電剤として実施例1で用いたのと同じグラファイトを、
結着剤として実施例1で用いたのと同じ架橋型アクリル
酸樹脂等を重量比10:85:5の割合で混合して作用
極合剤とし、次にこの作用極合剤をステンレス鋼製のネ
ットからなる作用極集電対6と共に2ton/cm2
直径15mm厚さ0.5mmのペレットに加圧成形した
後、200℃で10時間減圧加熱乾燥したものを作用極
とした。このようにして作製した作用極を用いた以外
は、すべて実施例1と同様にして同様な電池Bを作製し
た。
(Example 2) Instead of the active material a of Example 1
Commercial grade reagent grade grade diboron trioxide B 2O3
The active material of the working electrode is pulverized and sized to a diameter of 53 μm or less
(Abbreviated as active material b) This active material b
The same graphite as used in Example 1 was used as an electric agent,
The same cross-linking acrylic used in Example 1 as the binder
It works by mixing acid resin etc. in a weight ratio of 10: 85: 5.
This mixture is made of stainless steel.
2 ton / cm with working electrode current collector 62so
Pressure-molded into pellets with a diameter of 15 mm and a thickness of 0.5 mm
Then, dried under reduced pressure at 200 ° C for 10 hours and dried with a working electrode
And Other than using the working electrode prepared in this way
Manufacture a similar battery B in the same manner as in Example 1.
It was

【0024】このようにして得られた電池Bについても
実施例1と同様な充放電サイクル試験を行った。この時
の結果を実施例1と同様に、図2〜4に併記して示し
た。図から明かなように、本実施例の電池Bは、実施例
1の本発明に依る電池Aと同様に優れた充放電特性を有
することが判る。即ち、充電に依って対極のLi−Al
合金から電解質中にリチウムイオンが放出され、このリ
チウムイオンが電解質中を移動して活物質bと電極反応
し、活物質bに電気化学的にリチウムイオンが吸蔵され
リチウムとホウ素の複合酸化物が生成する。次に放電に
際しては、この複合酸化物からリチウムイオンが電解質
中に放出され、電解質中を移動して対極のLi−Al合
金中に吸蔵されることに依り安定に繰り返し充放電でき
る。ここで、活物質bは1回目の充電によりリチウムと
ホウ素の複合酸化物が生成した後は、その後の放電ー充
電のサイクルに於て、完全放電時以外にはリチウムを含
有しリチウムとホウ素の複合酸化物を形成している。
The battery B thus obtained was also subjected to the same charge / discharge cycle test as in Example 1. The results at this time are also shown in FIGS. As can be seen from the figure, the battery B of this example has the same excellent charge / discharge characteristics as the battery A of the first example according to the present invention. That is, the counter electrode Li-Al depending on the charge
Lithium ions are released from the alloy into the electrolyte, the lithium ions move in the electrolyte and undergo an electrode reaction with the active material b, and the lithium ions are electrochemically occluded in the active material b to form a composite oxide of lithium and boron. To generate. Next, during discharge, lithium ions are released from the composite oxide into the electrolyte, move in the electrolyte, and are occluded in the Li-Al alloy of the counter electrode, whereby stable repeated charge / discharge can be performed. Here, the active material b contains lithium and boron in the discharge-charge cycle after the composite oxide of lithium and boron is formed after the first charge, and contains lithium and boron in a cycle other than complete discharge. It forms a complex oxide.

【0025】また、本発明に依る電池A及びBの活物質
a及びbは対極のLi−Al合金電極に対して−0.4
〜+0.6V(金属リチウムに対して約0〜1Vに対応
する)の卑な電位領域の充放電容量が著しく大きいこと
から、非水電解質二次電池の負極活物質として優れてい
ることが判る。特に、リチウム化合物とホウ素化合物の
混合物を加熱処理して合成された実施例1の活物質aは
卑な電位領域での充放電容量がより大きく、かつより卑
な電位を有しており、負極活物質として特に優れてい
る。
In addition, the active materials a and b of the batteries A and B according to the present invention are -0.4 with respect to the counter electrode Li-Al alloy electrode.
Since the charge / discharge capacity in the base potential region of up to +0.6 V (corresponding to about 0 to 1 V with respect to metallic lithium) is remarkably large, it is found to be excellent as a negative electrode active material of a non-aqueous electrolyte secondary battery. .. In particular, the active material a of Example 1 synthesized by heat-treating a mixture of a lithium compound and a boron compound has a larger charge / discharge capacity in a base potential region and a base electric potential, Especially excellent as an active material.

【0026】尚、実施例においては、対極としてリチウ
ム−アルミニウム合金の場合のみを示したが、本発明は
実施例に限定されず、前述のように、TiS2 ,MoS
2 ,NbSe3 等の金属カルコゲン化物、MnO2 ,M
oO3 ,V2 5 ,Lix CoO2 ,Lix NiO2
Lix Mn2 4 等の金属酸化物、ポリアニリン、ポリ
ピロール、ポリパラフェニレン、ポリアセン等の導電性
高分子、グラファイト層間化合物等々のようなリチウム
カチオン又はアニオンを吸蔵放出可能な物質を活物質と
する正極を対極として、本発明に依る負極活物質を用い
た負極と組合わせて用いることが出来ることは言うまで
もない。
In the examples, only the case of the lithium-aluminum alloy was shown as the counter electrode, but the present invention is not limited to the examples, and as described above, TiS 2 , MoS.
2 , metal chalcogenides such as NbSe 3 , MnO 2 , M
oO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 ,
The active material is a metal oxide such as Li x Mn 2 O 4 , a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, polyacene, a graphite intercalation compound, and the like capable of occluding and releasing lithium cations or anions. It goes without saying that the positive electrode can be used as the counter electrode in combination with the negative electrode using the negative electrode active material according to the present invention.

【0027】[0027]

【発明の効果】以上詳述したように、本発明は、非水電
解質二次電池の負極活物質として、リチウムとホウ素の
複合酸化物もしくはホウ素の酸化物から成る新規な活物
質を用いたものであり、該負極活物質はリチウム基準極
(金属リチウム)に対し0〜1Vの卑な電位領域に於
て、充放電により可逆的にリチウムイオンを吸蔵放出出
来る量即ち充放電容量が著しく大きく、かつ充放電の分
極が小さいため、高電圧・高エネルギー密度で且つ大電
流での充放電特性が優れた二次電池を得ることが出来
る。また、過充電過放電による不可逆物質の生成等の劣
化が殆ど見られず、極めて安定でサイクル寿命の長い二
次電池を得ることが出来る等々優れた効果を有する。
As described in detail above, the present invention uses a novel active material composed of a composite oxide of lithium and boron or an oxide of boron as a negative electrode active material of a non-aqueous electrolyte secondary battery. The negative electrode active material has a remarkably large amount of lithium ions that can be absorbed and released by charging and discharging, that is, a charging and discharging capacity, in a base potential region of 0 to 1 V with respect to a lithium reference electrode (metallic lithium). Further, since the polarization of charge and discharge is small, it is possible to obtain a secondary battery having high voltage and high energy density and excellent charge and discharge characteristics at a large current. Further, there is almost no deterioration such as generation of an irreversible substance due to overcharge and overdischarge, and it is possible to obtain a secondary battery which is extremely stable and has a long cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 2 is an explanatory diagram showing a comparison of the charging characteristics in the third cycle between the battery according to the present invention and the conventional battery.

【図3】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 3 is an explanatory diagram showing a comparison of the discharge characteristics at the third cycle between the battery according to the present invention and the conventional battery.

【図4】本発明による電池と従来電池のサイクル特性の
比較を示した説明図である。
FIG. 4 is an explanatory diagram showing a comparison of cycle characteristics of a battery according to the present invention and a conventional battery.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット 1 counter electrode case 2 counter electrode current collector 3 counter electrode 4 separator 5 working electrode 6 working electrode current collector 7 working electrode case 8 gasket

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極活物質として、組成式LixByO3 (但
し、x≧0、y>0)で示されるリチウムとホウ素の複
合酸化物もしくはホウ素の酸化物を用いたことを特徴と
する非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte, wherein the negative electrode active material has a composition formula of LixByO 3 (where x ≧ 0, y> 0). A non-aqueous electrolyte secondary battery characterized by using a composite oxide of lithium and boron shown or an oxide of boron.
【請求項2】 リチウムとホウ素の各々の単体又はその
化合物を混合し、空気中又は酸素を有する雰囲気中で加
熱してリチウムとホウ素の複合酸化物を得ることを特徴
とする請求項1記載の非水電解質二次電池用負極活物質
の製造方法。
2. The compound oxide of lithium and boron is obtained by mixing each element of lithium and boron or a compound thereof and heating the mixture in air or in an atmosphere containing oxygen to obtain a composite oxide of lithium and boron. A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery.
【請求項3】 電池組立後電池内で、又は電池製造工程
の途上において電池内もしくは電池外で、ホウ素の酸化
物とリチウムもしくはリチウムを含有する物質との電気
化学的反応に依りホウ素の酸化物にリチウムイオンを吸
蔵させてリチウムとホウ素の複合酸化物を得ることを特
徴とする請求項1記載の非水電解質二次電池用負極活物
質の製造方法。
3. A boron oxide obtained by an electrochemical reaction between a boron oxide and lithium or a substance containing lithium inside the battery after the battery is assembled, or inside or outside the battery during the battery manufacturing process. The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium ion is occluded in the mixture to obtain a composite oxide of lithium and boron.
JP3335326A 1991-12-18 1991-12-18 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof Expired - Fee Related JP3008228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335326A JP3008228B2 (en) 1991-12-18 1991-12-18 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335326A JP3008228B2 (en) 1991-12-18 1991-12-18 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Publications (2)

Publication Number Publication Date
JPH05174818A true JPH05174818A (en) 1993-07-13
JP3008228B2 JP3008228B2 (en) 2000-02-14

Family

ID=18287273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335326A Expired - Fee Related JP3008228B2 (en) 1991-12-18 1991-12-18 Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof

Country Status (1)

Country Link
JP (1) JP3008228B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
US5558953A (en) * 1993-10-21 1996-09-24 Matsushita Electric Industrial Co., Ltd. Electrocrystallized lithuim metal, method for producing the same, and lithium secondary battery
US6475554B1 (en) 1998-03-26 2002-11-05 Tdk Corporation Method of producing electrode of non-aqueous electrolyte battery
US6893621B2 (en) 2001-09-05 2005-05-17 Shin-Etsu Chemical Co., Ltd. Lithium-containing silicon oxide powder and making method
US7037581B2 (en) 2002-05-17 2006-05-02 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7358011B2 (en) 2002-11-26 2008-04-15 Shin-Etsu Chemical Co., Ltd Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
EP2088221A1 (en) 2008-02-07 2009-08-12 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
WO2010146759A1 (en) 2009-06-19 2010-12-23 株式会社大阪チタニウムテクノロジーズ Silicon oxide and negative-electrode material for a lithium-ion secondary battery
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
WO2014185005A1 (en) 2013-05-15 2014-11-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
WO2014199554A1 (en) 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
WO2015049836A1 (en) 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
WO2015115055A1 (en) 2014-01-31 2015-08-06 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR20160011633A (en) 2013-05-27 2016-02-01 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
KR20160012152A (en) 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20160059428A (en) 2014-11-18 2016-05-26 신에쓰 가가꾸 고교 가부시끼가이샤 Rotary cylindrical furnace, producing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160118274A (en) 2014-02-06 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
US9608262B2 (en) 2004-07-01 2017-03-28 Shin-Etsu Chemical Co., Ltd. Silicon composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US9887418B2 (en) 2014-04-14 2018-02-06 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
KR20180031761A (en) 2015-07-31 2018-03-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN114072934A (en) * 2019-03-22 2022-02-18 株式会社Lg新能源 Positive electrode active material particles for sulfide-based all-solid-state batteries

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406013B1 (en) 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP4883323B2 (en) 2008-08-26 2012-02-22 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, Si-O-Al composite manufacturing method, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5454353B2 (en) 2010-05-21 2014-03-26 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP6010279B2 (en) 2011-04-08 2016-10-19 信越化学工業株式会社 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP5675546B2 (en) 2011-10-14 2015-02-25 信越化学工業株式会社 Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP6020331B2 (en) 2012-05-16 2016-11-02 信越化学工業株式会社 Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5737265B2 (en) 2012-10-23 2015-06-17 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP6156089B2 (en) 2012-12-10 2017-07-05 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558953A (en) * 1993-10-21 1996-09-24 Matsushita Electric Industrial Co., Ltd. Electrocrystallized lithuim metal, method for producing the same, and lithium secondary battery
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
US6475554B1 (en) 1998-03-26 2002-11-05 Tdk Corporation Method of producing electrode of non-aqueous electrolyte battery
US6893621B2 (en) 2001-09-05 2005-05-17 Shin-Etsu Chemical Co., Ltd. Lithium-containing silicon oxide powder and making method
US7037581B2 (en) 2002-05-17 2006-05-02 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7358011B2 (en) 2002-11-26 2008-04-15 Shin-Etsu Chemical Co., Ltd Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US9608262B2 (en) 2004-07-01 2017-03-28 Shin-Etsu Chemical Co., Ltd. Silicon composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
EP2088221A1 (en) 2008-02-07 2009-08-12 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
WO2010146759A1 (en) 2009-06-19 2010-12-23 株式会社大阪チタニウムテクノロジーズ Silicon oxide and negative-electrode material for a lithium-ion secondary battery
US8932548B2 (en) 2009-06-19 2015-01-13 Osaka Titanium Technologies Co., Ltd. Silicon oxide and negative electrode material for lithium-ion secondary battery
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
WO2014185005A1 (en) 2013-05-15 2014-11-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
KR20160010448A (en) 2013-05-15 2016-01-27 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
US9865868B2 (en) 2013-05-15 2018-01-09 Shin-Etsu Chemical Co., Ltd. Negative electrode material for use in non-aqueous electrolyte secondary battery, method of producing the same, and lithium-ion secondary battery
US10700348B2 (en) 2013-05-23 2020-06-30 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20190047138A (en) 2013-05-23 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
US9893353B2 (en) 2013-05-23 2018-02-13 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20160012152A (en) 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20160011633A (en) 2013-05-27 2016-02-01 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
WO2014199554A1 (en) 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR20160020426A (en) 2013-06-14 2016-02-23 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR20160065107A (en) 2013-10-03 2016-06-08 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
WO2015049836A1 (en) 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20160114076A (en) 2014-01-31 2016-10-04 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
US10396348B2 (en) 2014-01-31 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, method of producing negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015115055A1 (en) 2014-01-31 2015-08-06 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
US10170757B2 (en) 2014-02-06 2019-01-01 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
KR20160118274A (en) 2014-02-06 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
US9887418B2 (en) 2014-04-14 2018-02-06 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
US10566613B2 (en) 2014-04-14 2020-02-18 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
US10069142B2 (en) 2014-11-18 2018-09-04 Shin-Etsu Chemical Co., Ltd. Rotary tubular furnace, method of producing negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160059428A (en) 2014-11-18 2016-05-26 신에쓰 가가꾸 고교 가부시끼가이샤 Rotary cylindrical furnace, producing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20180031761A (en) 2015-07-31 2018-03-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN114072934A (en) * 2019-03-22 2022-02-18 株式会社Lg新能源 Positive electrode active material particles for sulfide-based all-solid-state batteries

Also Published As

Publication number Publication date
JP3008228B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
EP0883199A1 (en) Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
JPH097638A (en) Nonaqueous electrolytic secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2975727B2 (en) Non-aqueous electrolyte battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3663694B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees